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with Polygenic Risk Scores for Major Cancer Traits
and Their Evaluation in Two Independent Biobanks
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Summary
To facilitate scientific collaboration on polygenic risk scores (PRSs) research, we created an extensive PRS online repository for 35 com-

mon cancer traits integrating freely available genome-wide association studies (GWASs) summary statistics from three sources: published

GWASs, the NHGRI-EBI GWAS Catalog, and UK Biobank-based GWASs. Our framework condenses these summary statistics into PRSs

using various approaches such as linkage disequilibrium pruning/p value thresholding (fixed or data-adaptively optimized thresholds)

and penalized, genome-wide effect size weighting. We evaluated the PRSs in two biobanks: the Michigan Genomics Initiative (MGI), a

longitudinal biorepository effort at Michigan Medicine, and the population-based UK Biobank (UKB). For each PRS construct, we pro-

vide measures on predictive performance and discrimination. Besides PRS evaluation, the Cancer-PRSweb platform features construct

downloads and phenome-wide PRS association study results (PRS-PheWAS) for predictive PRSs. We expect this integrated platform to

accelerate PRS-related cancer research.
Introduction

Since 2005, genome-wide association studies (GWASs)

have successfully uncovered many common genetic vari-

ants associated with a plethora of complex traits and disor-

ders.1–3 Translation of these findings into clinical practice

to improve pre-symptomatic screening and patient care

is a major aspiration in the research community. However,

genetic risk factors for complex diseases like cancer usually

have relatively small risk effects and/or low frequencies

and thus have only limited ability as individual predictors

of risk in the overall population. Alternatively, the integra-

tion of all common risk variants into a single biomarker,

called a polygenic risk score (PRS), represents a widely

used approach for potentially identifying high-risk indi-

viduals at the highest levels of a PRS.4–6 For example, it

was shown that PRSs for five common complex diseases

(coronary artery disease [MIM: 608320], atrial fibrillation,

type 2 diabetes, inflammatory bowel disease [MIM:

266600], and breast cancer [MIM: 114480]) have the po-

tential to detect individuals at significantly higher genetic

risk4 who might benefit from intensified screening efforts,

prophylactic prevention, or earlier treatment. Several chal-

lenges have to be overcome for constructing a PRS that in-

corporates state of the art scientific knowledge: one needs

(1) summary statistics from an independent discovery

GWAS with phenotype and ancestry matching the target
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study;7 (2) individual-level genetic data of a sufficiently

large cohort to adjust for linkage disequilibrium (LD) be-

tween genetic variants; and (3) a computationally efficient

method to calculate each PRS and to find the best PRS

construct for the target cohort.

The gold standards for GWASs to define PRS constructs

are independent, large GWAS analyses or GWAS meta-ana-

lyses. Full summary statistics enable exploration of the

complete spectrum of PRS construction methods, e.g.,

those that determine the optimal inclusion p value

threshold of risk variants for prediction, which often devi-

ates from the standard threshold for genome-wide signifi-

cance (p value % 5 3 10�8). So far, several cancer GWAS

research groups and consortia have openly shared their

full GWAS summary statistics with the research commu-

nity: ovarian carcinoma (MIM: 167000),8,9 breast can-

cer,10,11 prostate cancer (MIM: 176807),12 colorectal cancer

(MIM: 608812),13 and cervical carcinoma (MIM: 603956).14

Other groups have released variants that reached an arbi-

trarily chosen p value threshold below genome-wide signif-

icance (e.g., p value < 10�5).15 In addition to complete or

partial GWAS summary statistics, lists of genome-wide

significant hits are available for nearly all published

GWAS results. The NHGRI-EBI GWAS Catalog2 curates

and stores published risk variants for a wealth of traits in

a structured database, offering a convenient and efficient

way to extract GWAS hits for automated processing.
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Alternative and growing sources for publicly available

GWAS summary statistics across a large ensemble of dis-

eases use UK Biobank genotype and phenotype data,16 ad-

justing for population stratification and/or relatedness

between individuals17 (see Web Resources). These bio-

bank-based approaches accessed thousands of pheno-

types and traits that were defined in efficient automated

fashion, e.g., by ICD10 diagnosis category, with specific

phenotype defining algorithms like PHESANT18 or Phe-

WAS Codes (PheCodes),19 or even with consortium-based

curated phenotype constructs using the content of

the electronic health records (EHR) (FINNGEN, see Web

Resources).

Another important aspect of finding a suitable set of

GWAS summary statistics for a PRS is the mapping of the

discovery GWAS trait, here the cancer phenotype, with

the trait of interest in the target study. GWAS efforts usu-

ally balance specificity and sample size to maximize power

for discovery. Consequently, the analyzed phenotype defi-

nition might not necessarily represent an ideal match to

the phenotype of the target study. Also, differences in diag-

nosis coding practices in EHR systems, e.g., the preference

for certain diagnoses due to billing purposes, might limit

the transferability of phenotype definitions across cohorts,

even if the same coding systems were used.20

The simplest form of PRS construction requires two

things: a selected set of independent risk variants with esti-

mated or weighted risk effect sizes (say bbi ) and genotype

data of individuals genotyped at the selected sites (say Gi

where i˛a list LÞ. A PRS can then be calculated for each in-

dividual as the sum of the weighted risk increasing alleles,

namely Sfi˛Lg ð bbi GiÞ.
PRS construction methods and their underlying variant

selection procedures can roughly be categorized into four

groups: (1) fixed p value thresholds of independent risk

variants, e.g., ‘‘GWAS hits,’’ variants that reached

genome-wide significance (with p < 5 3 10�8); (2) LD

pruning (actually clumping) / p value thresholding

(‘‘P&T’’) of summary statistics that increases power by

determining the most predictive p value cut-off that can

be above or below genome-significance;6 (3) genome-

wide PRS that consider the full GWAS summary statistics

after modeling LD, applying shrinkage or Bayesian ap-

proaches, e.g., lassosum and LDPred;21–25 and (4) methods

that use individual-level data from a GWAS to determine

an optimal set of independent predictors through Bayesian

spike and slab or mixture priors.26 The first two approaches

typically use the originally reported effect sizes for weight-

ing, while the latter two approaches model LD and/or

shrink effect sizes. All methods require a reference panel

for LD estimation that ideally resembles or matches the ge-

notype data underlying the discovery GWAS source. Since

most only have summary statistics and not individual-

level data of the discovery study, we will use only the first

three approaches for PRS construction, i.e., fixed p value

thresholds, LD pruning / p value thresholding, and

lassosum.
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PRSs have increasingly been used in cancer risk

prediction and stratification. A brief survey of PRS-

related literature in PubMed shows that �15% of all

PRS articles are related to cancer, with 67% of cancer

PRS papers focusing on common cancers (defined by

the US National Cancer Institute [NCI] as estimated inci-

dence of 40,000 or more in the United States in 2019). As

of November 9, 173 PubMed articles on PRSs and cancer

have been published in 2019, more than double the pre-

vious high of 86 set in 2018, indicating the rapid growth

in collection, curation, and generation of genetic data.

These studies typically employ construction methods

(1) and (2) as described above, although joint variant

models are becoming more common because they gener-

ally outperform methods (1) and (2) and advanced soft-

ware has made joint modeling more computationally

efficient for large sample sizes.27,28 Several publications

constructed PRSs for cancer traits using different

methods29–31 and described their PRS methodology.

However, very few share the variants selected and their

corresponding weights, making it a challenge to compare

or replicate PRS results in different cohorts. The Poly-

genic Score Catalog (see Web Resources) is a resource

under active development to help researchers share,

apply, and evaluate PRSs. This resource primarily

relies on external PRS sources and currently includes 97

traits; however, no validation is carried out in large bio-

banks.32

The primary goal of this study is the generation of PRS

constructs for common groupings of cancer by using pub-

lished, freely available cancer GWAS summary statistics

and established PRS methods and genetic data from two

large biobanks: the Michigan Genomics Initiative (MGI)

and the UK Biobank (UKB). We explore hundreds of PRS

constructs and offer optimized predictive PRSs (in terms

of maximal increase in an R2-type metric) for 35 cancers.

The resulting repository of cancer PRSs is made available

online via an interactive platform, called Cancer PRSweb

(seeWeb Resources). In this platform, we accompany each

GWAS source / PRS method combination with its down-

loadable constructs and performance metrics (like area

under the receiver operating curve, tail enrichment, and

Brier score), and we offer insights into secondary trait as-

sociations through screening of hundreds of cancer and

non-cancer phenotypes of the EHR-derived phenomes

of MGI and UKB. We also make the summary statistics

for the phenome-wide association study (PheWAS) avail-

able. Thus, this centralized and unified platform is a

timely attempt to accelerate cancer research related to

PRSs.

Our repository contributes to the new and necessary

work of democratizing PRS constructions and applications

for several cancers under a uniform analytic framework to

eventually develop transferable risk scores with clinical

utility. We also offer phenome-wide exploration of PRS

association through PRS-PheWAS, a tool previously intro-

duced by this group.33,34
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Subjects and Methods

Evaluation Cohorts
MGI Cohort

Adult participants aged between 18 and 101 years at enrollment

were recruited through the Michigan Medicine health system be-

tween 2012 and 2018 while awaiting diagnostic or interven-

tional procedures either during a preoperative visit prior to the

procedure or on the day of the procedure that required anes-

thesia. In addition to coded biosamples and secure, protected

health information, participants understood that all EHR,

claims, and national data sources linkable to the participant

may be incorporated into the MGI databank. Each participant

donated a blood sample for genetic analysis, underwent baseline

vital sign testing, and completed a comprehensive history and

physical assessment (also see ethics statement below). We report

results obtained from 38,360 unrelated, genotyped patients of in-

ferred recent European ancestry with available integrated EHR

data (�90% of all MGI participants were inferred to be of recent

European ancestry).33 The data used in this study included diag-

noses coded with the Ninth and Tenth Revision of the Interna-

tional Statistical Classification of Diseases (ICD9 and ICD10)

with clinical modifications (ICD9-CM and ICD10-CM), sex, pre-

computed principal components (PCs), genotyping batch, and

age. Data were collected according to the Declaration of Helsinki

principles.35 MGI study participants’ consent forms and

protocols were reviewed and approved by the University of

Michigan Medical School Institutional Review Board (IRB ID

HUM00099605 and HUM00155849). Opt-in written informed

consent was obtained. Additional details about MGI can be

found online (see Web Resources). A detailed comparison of

the MGI versus UKB cohort (see below) can be found in Beesley

et al.36

UK Biobank Cohort (UKB)

UKB is a population-based cohort collected from multiple sites

across the United Kingdom and includes more than 500,000 par-

ticipants aged between 40 and 69 years when recruited in 2006–

2010.16 The open-access UK Biobank data used in this study

included genotypes, ICD9 and ICD10 codes, inferred sex, inferred

white British ancestry, kinship estimates down to third degree,

birth year, genotype array, and precomputed principal compo-

nents of the genotypes. Table 1 provides some descriptive statistics

of the MGI and UK Biobank samples.
Genotyping, Sample Quality Control, and Imputation
MGI

DNA from 47,364 blood samples was genotyped on customized

Illumina Infinium CoreExome-24 bead arrays and subjected to

various quality-control filters, resulting in a set of 392,323

polymorphic variants. Principal components and ancestry were

estimated by projecting all genotyped samples into the space of

the principal components of the Human Genome Diversity Proj-

ect reference panel using PLINK (938 individuals).37,38 Pairwise

kinship was assessed with the software KING,39 and the software

FastIndep was used to reduce the data to a maximal subset that

contained no pairs of individuals with 3rd or closer degree

relationship.40 We removed participants without EHR data and

participants not of recent European descent from the analysis,

resulting in a final sample of 38,360 unrelated subjects. Addi-

tional genotypes were obtained using the Haplotype Reference

Consortium reference panel of the Michigan Imputation
The American
Server41 and included more than 24 million imputed variants

with R2 R 0.3 and minor allele frequency (MAF) R 0.01%. Gen-

otyping, quality control, and imputation are described in detail

elsewhere.33

UK Biobank

We used the UK Biobank Imputed Dataset (v3) and limited ana-

lyses to the documented 408,961 white British42 individuals and

47,836,001 variants with imputation information score R 0.3

and MAF R 0.01% of which 22,846,729 overlapped with the

imputed MGI data (see above). Two random subsets of 5,000

and 10,000 unrelated, white British individuals were used for LD

analyses of UKB-based summary statistics.
Phenome Generation
MGI

The MGI phenome was based on ICD9-CM and ICD10-CM code

data for 38,360 unrelated, genotyped individuals of recent Euro-

pean ancestry. Longitudinal time-stamped diagnoses were re-

coded to indicators for whether a patient ever had given a

diagnosis code recorded by Michigan Medicine. These ICD9-

CM and ICD10-CM codes were aggregated to form up to 1,857

PheCodes using the PheWAS R package (as described in detail

elsewhere33,43). For each trait, we identified case and control

samples by using the PheCode system where case subjects had

at least one observed diagnosis code of the trait while control

subjects (reference in fitted models) were individuals who did

not have any diagnosis codes belonging to the trait and/or to

the trait-specific PheCode exclusion list (see example in

Figure S1). To minimize differences in age and sex distributions,

avoid extreme case-control ratios, and reduce the computational

burden, we matched up to 10 control subjects to each case sub-

ject using the R package ‘‘MatchIt.’’44 Nearest neighbor match-

ing was applied for age and the first four principal components

of the genotype data (PC1-4) using Mahalanobis distance with a

caliper/width of 0.25 standard deviations. Exact matching was

applied for sex and genotyping array. A total of 1,689 case-con-

trol studies with >50 cases were used for our analyses of the

MGI phenome.

UK Biobank

The UK Biobank phenome was based on ICD9 and ICD10 code

data of 408,961 white British,42 genotyped individuals that were

similarly aggregated to PheCodes as MGI (as described else-

where17). In contrast to MGI, there were many pairwise relation-

ships reported for UKB participants.

To retain a larger effective sample size for each phenotype, we

first selected a maximal set of unrelated case subjects for each

phenotype (defined as no pairwise relationship of 3rd degree or

closer11,40) before selecting amaximal set of unrelated control sub-

jects unrelated to these case subjects. Similar to MGI, we matched

up to 10 control subjects to each case subject using the R package

‘‘MatchIt.’’44 Nearest neighbormatching was applied for birth year

(as proxy for age, because age at diagnosis was not available to us)

and PC1-4 (Mahalanobis-metric matching; matching window

caliper/width of 0.25 standard deviations), and exact matching

was applied for sex and genotyping array. A total of 1,419 case-

control studies with >50 cases each were used for our analyses

of the UK Biobank phenome.

On average, we were able to match 9 control subjects per case

subject in theMGI phenome and 9.9 control subjects per case sub-

ject in the UKB phenome. Additional phenotype information for

MGI and UK Biobank is included in Table S1.
Journal of Human Genetics 107, 815–836, November 5, 2020 817



Table 1. Demographics and Clinical Characteristics of the
Analytic Datasets

Characteristic MGI UKB

Total participants 38,360 408,595

Females, n (%) 20,141 (52.5%) 220,896 (54.1%)

Mean age, years (SD) 56.8 (16.2) 56.9 (8.0)

Median number of visits per
participant

45 not available

Median time (years) between
first and last visit

5.5 not available

Median number of unique
ICD9 codes

36a 2

Median number of unique
ICD10 codes

31a 6

Number of PheCodes with
more than 50 cases

1,689 1,419

Any cancer diagnosis 20,751 (54.1%) 69,190 (16.9%)

20 Most Common Cancer Traits in MGI (PheCode)

Basal cell carcinoma (172.21)b 2,988 (7.79%) not available

Melanomas of skin, dx or
hx (172.1)

2,701 (7.04%) 2,682 (0.66%)

Breast cancer [female] (174.1) 2,605 (12.93%) 12,483 (5.65%)

Cancer of prostate (185) 2,432 (13.35%) 5,977 (3.18%)

Squamous cell carcinoma
(172.22)b

1,917 (5.00%) not available

Cancer of bladder (189.2) 1,575 (4.11%) 2,413 (0.59%)

Colorectal cancer (153) 1,196 (3.12%) 4,585 (1.12%)

Non-Hodgkins lymphoma
(202.2)

1,141 (2.97%) 1,810 (0.44%)

Cancer of connective tissue
(170.2)

1,097 (2.86%) 331 (0.08%)

Malignant neoplasm of kidney,
except pelvis (189.11)

1,083 (2.82%) 1,033 (0.25%)

Colon cancer (153.2) 941 (2.45%) 3,108 (0.76%)

Myeloproliferative disease
(200)

886 (2.31%) 992 (0.24%)

Cancer of bronchus; lung
(165.1)

874 (2.28%) 2,232 (0.55%)

Thyroid cancer (193) 798 (2.08%) 347 (0.08%)

Malignant neoplasm of rectum,
rectosigmoid junction, and
anus (153.3)

669 (1.74%) 2,167 (0.53%)

Malignant neoplasm of uterus
(182)

643 (3.19%) 1,285 (0.58%)

Nodular lymphoma (202.21) 632 (1.65%) 365 (0.09%)

Cancer of tongue (145.2) 550 (1.43%) 310 (0.08%)

Leukemia (204) 545 (1.42%) 1,665 (0.41%)

Cancer of brain (191.11) 483 (1.26%) 525 (0.13%)

The provided characteristics are based on the European subjects in MGI and
white British subjects in UKB for which phenotype and imputed genotype
data were available. SD, standard deviation.
aICD9/10-CM codes
bSkin cancer sub-types
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PRS Structure
PRSs combine information across a defined set of genetic loci, incor-

porating each locus’s association with the target trait. The PRS for

patient j takes the form PRSj ¼
P

ibiGij where i indexes the included

loci for that trait, weight bi is the log odds ratios retrieved from the

externalGWAS summary statistics for locus i, andGij is a continuous

version of the measured dosage data for the risk allele on locus i in

subject j. In order to construct a PRS, onemust determine which ge-

netic loci to include in the PRS and their relative weights. Below, we

obtain GWAS summary statistics from several different sources, re-

sulting in several sets of weights for each trait of interest. For each

set of weights, we consider several strategies for determining which

genetic loci to include in the PRS construction.
Sources of GWAS Summary Statistics
For each of 68 cancers of interest, we collected GWAS summary sta-

tistics from up to three different sources: (1) merged genome-wide

significant association signals published in the NHGRI EBI GWAS

Catalog45 if available; (2) large cancer GWAS meta-analysis if avail-

able; and (3) publicly available GWAS summary statistics of

phenome 3 genome screening efforts of the UK Biobank data17

(seeWeb Resources; Figure 1). If needed, we used LiftOver to convert

coordinates of GWAS summary statistics to human genome assem-

bly GRCh37 (UCSC Genome Browser Store, see Web Resources).

GWAS Catalog

We downloaded previously reported GWAS variants from the

NHGRI-EBI GWAS Catalog (file version: r2019-05-03).45,46 Single

nucleotide polymorphism (SNP) positions were converted to

GRCh37 using variant IDs from dbSNP (build 151; UCSC Genome

Browser) after updating outdated dbSNP IDs to their merged

dbSNP IDs.

Entries with missing risk alleles, risk allele frequencies, or SNP-

disease odds ratios were excluded. If a reported risk allele did not

match any of the reported forward strand alleles of a non-ambig-

uous SNP (not A/T or C/G) in the imputed MGI genotype data

(which correspond to the alleles of the imputation reference

panel), we assumed minus-strand designation and corrected the

effect allele to its complementary base of the forward strand. En-

tries with a reported risk allele that did notmatch any of the alleles

of an ambiguous SNP (A/T and C/G) in our data were excluded at

this step. We only included entries with broad European ancestry

(as reported by the NHGRI-EBI GWAS Catalog) tomatch ancestries

of discovery GWAS and target cohorts (MGI and UKB). As a qual-

ity-control check, we compared the GWAS Catalog reported risk

allele frequencies (RAF) with the RAF in MGI individuals. We

then excluded entries whose RAF deviated more than 15%. This

chosen threshold is subjective and was based on clear differentia-

tion between correct and likely flipped alleles on the two diagonals

(Figure S2), as noted frequently in GWAS meta-analyses quality-

control procedures.47 For SNPs with multiple entries, we kept

the SNP with the most recent publication date (and smaller

p value, if necessary) and excluded the others.

Large GWAS Meta-analyses

We downloaded full GWAS summary statistics made available by

the Breast Cancer Association Consortium (BCAC),11 the Prostate

Cancer Association Group to Investigate Cancer Associated Alter-

ations in the Genome (PRACTICAL),12 and the Ovarian Cancer As-

sociation Consortium (OCAC).2,9 In addition, we extracted partial

GWAS summary statistics that accompanied recent publications

but were incomplete, i.e., reporting only SNPs below a certain p

value threshold.15,48–50 GWAS summary statistics were
ber 5, 2020



Figure 1. Schematic Overview of PRS Generation and Analysis
harmonized and, if needed, lifted over to human genome assem-

bly GRCh37. In this paper, this source is referred to as Large GWAS.

UK Biobank-Based GWAS

We downloaded UK Biobank-basedGWAS summary statistics from

two public repositories.

The first set of UK Biobank GWAS summary statistics were based

on the analysis of up to 408,961 white British European-ancestry

samples (UKB GWAS Lee Lab, see Web Resources). SNP-disease

odds ratios were estimated using logistic mixed modeling adjust-

ing for sample relatedness, and p values were estimated using

saddlepoint approximations (SAIGE method)17 to calibrate the

distribution of score test statistics and, thus, control for unbal-

anced case-control ratios. The underlying phenotypes were auto-

curated phenotypes based on the PheCodes of the PheWAS R

package17,33,43 similar to the phenomes used in our study and in

the following are referred to as UKB PHECODE (Table S2).

The second set of UK Biobank GWAS summary statistics were

based on a linear regressionmodel of up to 361,194 unrelated white

British samples adjusting for relevant covariates (UKB GWAS Neale

Lab, see Web Resources). Three phenotype models were used in

their analyses: (1) PHESANT, auto-curated phenotypes using PHE-

nome Scan ANalysis Tool; (2) ICD10, individuals with the same

ICD10 category code (first three characters, e.g., ‘‘C50’’) were used

as case subjects while all non-coded individuals were treated as con-

trol subjects, and (3) FINNGEN, curated phenotypes/endpoints

based on definitions of the Finngen consortium. In addition to

the UKB PHECODE (described above), these three latter sources

are referred to as UKB PHESANT, UKB ICD10, and UKB FINNGEN,

respectively (Table S2; see Web Resources).
PRS Construction
For each set of GWAS summary statistics from the above-

mentioned sources and each cancer, we develop up to seven
The American
different PRSs using three different construction methods

(Figure 1). Our goal of this approach was to compare multiple

PRS methods and find the method that works best for the various

types of GWAS summary statistics.

For the first two construction strategies, we performed LD clump-

ing/pruning of variants with p values below 10�4 by using the

imputed allele dosages of 10,000 randomly selected samples and a

pairwise correlation cut-off at r2 < 0.1 within 1 Mb window. Using

the resulting loci, we defined up to five sub-sets of variants with

p values below different thresholds (<53 10�9 to<53 10�5). These

were used to construct a PRS tied to each threshold, where the PRS

associated with p values less than 53 10�8 is sometimes denoted as

‘‘GWAS hits.’’ For the second PRS construction method, we

construct many different PRSs across a fine grid of p value thresh-

olds. The p value threshold with the highest cross-validated

pseudo-R2 (see PRS Evaluation below) was used to define the

more optimized ‘‘Pruning and Thresholding (P&T)’’ PRS.

As an alternative to the p value thresholding and P&T PRS con-

struction strategies, we also used the software package ‘‘lassosum’’24

to define a third typeof PRS forGWASsourceswith full summary sta-

tistics. Lassosum obtains PRS weights by applying elastic net penali-

zation to GWAS summary statistics and incorporating LD informa-

tion from a reference panel. Here, we used 5,000 randomly

selected, unrelated samples as the LD reference panel. We applied a

MAF filter of 1% and, in contrast to the other two approaches, only

included autosomal variants that overlap between summary statis-

tics, LD referencepanel, and target panel. Each lassosumrun resulted

in up to76 combinations of the elastic net tuning parameters s and l,

andconsequently, in76SNPsetswithcorrespondingweightsusedto

construct 76 PRS.We then selected the PRSwith the highest pseudo-

R2 to define the lassosum PRS (see PRS Evaluation below).

For each cancer and set of GWAS summary statistics, this

approach resulted in up to seven PRSs, where PRSs with less than

5 included variants were excluded and the available GWAS
Journal of Human Genetics 107, 815–836, November 5, 2020 819



summary statistics limited the available PRS construction tech-

niques in some cases. Using the R package Rprs (seeWeb Resources),

the value of each PRS was then calculated for each MGI participant

and, if the GWAS source was not based on UKB, also for each UKB

participant. For comparability of association effect sizes correspond-

ing to the continuous PRS across cancer traits and PRS construction

methods, we centered PRS values in MGI and UKB to their mean

and scaled them to have a standard deviation of 1.
PRS Evaluation
For the PRS evaluations, except for when computing the pseudo-

R2 (which is a measure of marginal association of the PRS with

the outcome), we fit the following model for each PRS and cancer

phenotype adjusting for covariates:

logit ðPðPhenotype is presentjPRS;Age; Sex;Array;PCÞÞÞ ¼b0

þ bPRSPRSþ bAgeAgeþ bSexSexþ bArrayArrayþ b PC

(Equation 1)

We used Nagelkerke’s pseudo-R2 to select the tuning parameters

within the P&T and lassosum construction methods (p value for

P&T SNP sets; s and l for lassosum) and kept the PRS with the

highest pseudo-R2 for further analyses. For each PRS derived for

each GWAS source/method combination, we assessed the

following performancemeasures relative to observed disease status

in MGI and UKB:

(1) overall performance with Nagelkerke’s pseudo-R2 using R

package ‘‘rcompanion’’ (see Web Resources)

(2) accuracy with Brier score using R package ‘‘DescTools’’ (see

Web Resources)

(3) ability to discriminate between case and control subjects as

measured by the area under the covariate-adjusted receiver

operating characteristic (AROC; semiparametric frequent-

ist inference55) curve (denoted AAUC) using R package

‘‘ROCnReg’’ (see Web Resources)51.

For cross-validation purposes, we split the data corresponding to

each trait in a phenome into training and test set. To retain case-

control matching (see Phenome Generation above), we randomly

and equally distributed unique strata from matching and thus

obtained a 50%/50% split of cases where their matched control

subjects were assigned to the same subset. We used the training

set to determine the PRS tuning parameter(s) with the highest

pseudo-R2 and used the testing set to obtain performance metric

for that PRS. Firth’s bias reduction method was used to resolve

the problem of separation in logistic regression (see R package

brglm2 in Web Resources).52
PRS Association Testing
Next, we assessed the strength of the relationship between these

PRSs and the traits they were designed for. To do this we fit the

model of Equation 1 for each PRS and cancer phenotype adjusting

for various covariates, where the PCs were the first four principal

components obtained from the principal component analysis of

the genotyped GWAS markers, where ‘‘age’’ was the age at last

observed diagnosis in MGI and birth year in UKB and where

‘‘array’’ represents the genotyping array. Our primary interest is

bPRS, while the other factors (age, sex, and PC) were included to

address potential residual confounding and do not provide inter-

pretable estimates due to the preceding application of case-control
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matching. Firth’s bias reduction method was used to resolve the

problem of separation in logistic regression (R package brglm2;

see Web Resources).53,52

To study the ability of the PRS to identify high-risk patients, we

fit the above model but replacing the PRS with an indicator for

whether the PRS value was in the top 1%, 2%, 5%, 10%, or 25%

(defined in control subjects) among the matched case control

cohort.

Phenome-wide Exploration of PRS Associations
We selected PRSs that were strongly associated with the cancer

trait they were designed for phenome-wide association explora-

tion in the phenomes of MGI and UKB for (p value % (0.05 /

[#phenotypes in corresponding phenome]); see below).

We conducted PheWAS in MGI and also UKB (if the GWAS

source was not based on UKB) to identify additional, secondary

phenotypes associated with the PRS.33 To evaluate PRS-phenotype

associations, we conducted Firth bias-corrected logistic regression

by fittingmodel of Equation 1 above for each PRS and each pheno-

type of the corresponding phenome. To adjust for multiple

testing, we applied the conservative phenome-wide Bonferroni

correction according to the total number of analyzed PheCodes

(MGI: 1,689 phenotypes; UKB: 1,419 phenotypes; Table S1). In

Manhattan plots, we present –log10 (p value) corresponding to

tests of H0 : bPRS ¼ 0. Directional triangles on the PheWAS plot

indicate whether a phenome-wide significant trait was positively

(pointing up) or negatively (pointing down) associated with

the PRS.

To investigate the possibility of the secondary trait associations

with PRS being completely driven by the primary trait association,

we performed a second set of PheWAS after excluding individuals

affected with the primary or related cancer traits for which the PRS

was constructed, referred to as Exclusion-PRS-PheWAS as described

previously.33

Online Visual Catalog: PRSweb
The online open access visual catalog PRSweb was implemented

using Grails, a Groovy- and Java-based backend logic, to integrate

interactive visualizations and MySQL databases. Interactive Phe-

WAS plots are drawn with the JavaScript library ‘‘LocusZoom.js’’

which is maintained by the UM Center for Statistical Genetics

(Locuszoom, see Web Resources) and offers dynamic plotting,

automatic plot sizing, and label positioning. Additional data-

driven visualizations (e.g., temporal relationship plots) were

implemented with the JavaScript library ‘‘D3.js.’’

Unless otherwise stated, analyses were performed using R

3.6.1.54
Results

PRS Construction

We screened the GWAS Catalog, PubMed, and UK Biobank

GWAS efforts for any cancer GWAS summary statistics that

were reported for European ancestry, tomatch the predom-

inantly European cohorts of MGI and UKB, and that were

openly available, i.e., did not require contacting the main

authors or any form of written approval process. We iden-

tified 232 source sets that reported complete information

for each tested single nucleotide polymorphisms (SNP)

(position [and/or dbSNP ID], effect allele, effect estimate,
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Table 2. Overview of GWAS Sources and PRS Construction
Methods

Source of
Summary
Statistics

PRS Construction
Method

Fixed p Value
Thresholdsa P&Tb Lassosum

GWAS Catalog yes yes no

Large GWAS yes yes yes, if full
GWAS

UKB GWAS PHECODE yes yes yes

FINNGEN yes yes yes

ICD10 yes yes yes

PHESANT yes yes yes

Multiple PRSs were constructed per trait of interest depending on availability of
GWAS summary statistics.
aUncorrelated variants with p value% 53 10�5, 53 10�6, 53 10�7, 53 10�8

(‘‘GWAS Hits’’), or 5 3 10�9

bLD pruning and p value thresholding
p value, and, ideally, effect allele frequency). We obtained

188 SNP sets based on UKB GWAS, 24 based on excerpts

from the GWAS Catalog, and 20 from large GWAS or

GWAS meta-analyses (Tables S2 and S3).

We manually matched the traits of the identified cancer

GWAS to cancer traits of MGI and UKB PheCodes and

analyzed each GWAS source separately, generating PRS

for each. The discovery GWAS traits of the 232 source

sets approximated 68 cancer PheCodes of the MGI phe-

nome and 21 PheCodes in the UKB phenome (Tables S2

and S3). Following the scheme in Figure 1 and Table 2,

we generated PRSs using the P&T and/or lassosum

approach and also generated PRSs using fixed p value

thresholds after LD clumping (p value % 5 3 10�5, 5 3

10�6, 5 3 10�7, 5 3 10�8 [‘‘GWAS Hits’’], or 5 3 10�9). Us-

ing these methods and the available GWAS sources, we

generated a total of 1,307 PRSs (1,077 PRSs for the MGI

cohort and 230 PRSs for the UKB cohort) (Table S4).

PRS Evaluation

We tested the association between each PRS and its corre-

sponding cancer trait and evaluated each PRS in terms of

performance (pseudo-R2), accuracy (Brier score), and

discrimination (covariate-adjusted area under the receiver

operating characteristic curve [AAUC]). Finally, we tested

their utility for risk stratification, i.e., their ability to enrich

cases in five selected top percentiles (1%, 2%, 5%, 10%,

and 25%) versus the rest of the PRS distribution (Figure 2).

As an initial filtering step, we removed 760 PRSs (57% of

total PRSs considered) that were not significantly (751 PRSs

with p > 0.05) or negatively (252 PRSs) associated with

their corresponding cancer trait in MGI and/or UKB. The

majority of these filtered PRSs were either based on discov-

ery GWAS with small sample sizes that often did not

identify any genome-wide significant hits or were evalu-

ated for diseases with few cases or both, indicating a poten-

tial lack of power in our analysis. A total of 547 PRSs for 35
The American
different cancer traits were positively and significantly

associated with their corresponding cancers in MGI (354

PRSs; 31 cancer traits) and UKB (193 PRSs; 20 cancer traits)

(Table S4).

Comparison of Performance Metrics

In general, we found that the ranking by pseudo-R2

ensured strong performance across other metrics related

to discrimination, accuracy, and overall association of

PRS constructs for their specific cancers. Conversely, the

enrichment analyses in the extreme PRS percentiles (e.g.,

top 5% versus rest) was not always concordant with the se-

lection of optimal PRSs based on pseudo-R2, showing that

performance in the extreme tails could be optimized by a

modified criterion that focuses on extremes of the risk dis-

tribution.55

An example evaluation is shown in Table 3. Here we

compare PRSs across seven construction methods (lasso-

sum, P&T, and five fixed p value thresholds) that were all

based on a single summary statistics source, a large

GWAS on overall breast cancer.11 In MGI, we observed

that the lassosum-based PRS (118,388 SNPs) had the best

performance (highest pseudo-R2 ¼ 0.059), the highest ac-

curacy (Brier score ¼ 0.134), the best discrimination be-

tween breast cancer case and control subjects (AAUC ¼
0.641 [95% confidence interval (CI): 0.625,0.656]), and

showed the strongest association with breast cancer itself

(odds ratio [OR] continuous PRS ¼ 1.70 [95% CI: 1.59,1.81]).

In this scenario, modeling LD information with lassosum

retained more information than LD clumping,24 even

though, unlike the other methods, lassosum only consid-

ered autosomal variants.

The enrichment of cases in the top 1% compared to the

rest was more pronounced for the PRSs with a fixed p value

threshold (p % 5 3 10�7; 464 SNPs; ORTop1% 3.38 [95% CI:

2.28,5.02]) than for the lassoum PRS (OR Top1% ¼ 2.48 [95%

CI: 1.63,3.77]) (Table 3). In UKB, we observed a similar

ranking of PRS methods in terms of pseudo-R2 and AAUC,

but we noted several differences with MGI. First, the tuning

parameters of the lassosum PRS and the P&T PRS differed

between MGI and UKB, resulting in a different number of

included variants (lassosum: MGI 118,388 variants versus

UKB 286,144 variants; P&T: MGI 3,038 variants versus

UKB 1,682 variants) (Table 3). Closer inspection of the un-

derlying tuning parameter optimization revealed compara-

ble parameter ranking for lassosum and P&T, suggesting

that optimizations seem cohort specific but stable, i.e., tun-

ing parameters for PRSs established in UKB might perform

similarly well in MGI and vice versa (Spearman’s rank corre-

lation rho > 0.982) (Figure S3).

Comparison across GWAS Sources

We also explored the influence of various GWAS sources on

the predictive performance of PRSs. As an illustrative

example, we again focus on breast cancer PRSs, but now

consider PRSs constructed from different breast cancer

GWAS sources, using for each source the method that

yielded the highest pseudo-R2 (Table 4). In MGI, the PRS

(lassosum) of the largest available GWAS (122,977 case
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Figure 2. Distribution of Breast Cancer and Chronic Lymphoid Leukemia PRSs in MGI and UKB
Breast cancer (A, B) and chronic lymphoid leukemia (C, D) PRSs in matched case-controls samples in MGI (A, C) and UKB (B, D) are
shown. The five top PRS percentiles (1%, 2%, 5%, 10%, and 25% [defined in control subjects]) are indicated by the shaded areas under
the density curves while corresponding odds ratios (OR) and their 95% confidence intervals are given in the top right corner of each plot.
PRSs were standardized.
subjects and 105,974 control subjects) yielded the best per-

formance across most PRS metrics (e.g., pseudo-R2 ¼
0.0592, AAUC ¼ 0.641 [0.625,0.656]). The GWAS Catalog

PRS (P&T), which included 62 top hits from 18 different

GWASs,11,56–73 was ranked second (pseudo-R2 ¼ 0.0346)

and showed inferior discrimination ability (AAUC 0.607

[0.589,0.623]). The case enrichment in the top 1%was pro-

nounced but not significantly different from the top-

ranked PRS (ORTop1%[GWAS Catalog] ¼ 3.06 [2.04,4.60]

versus ORTop1%[Large GWAS] ¼ 2.48 [1.63,3.77]). The

four UKB GWAS-based PRSs (all based on lassosum) fol-

lowed next and showed similar performances (pseudo-R2:

0.034–0.020; AAUC between 0.609 and 0.579 with over-

lapping confidence intervals) and could be ranked accord-
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ing to their effective sample sizes. Most interestingly, the

UKB PheCode PRS (6,977 variants) could differentiate

case and control subjects as well as the GWAS Catalog

PRS, which was based on 62 independent risk variants

with p % 3.2 3 10�9 reported in 18 GWASs (AAUC[UKB

PheCode] 0.609 [0.592,0.624] and AAUC[GWAS Catalog]

0.607 [0.589,0.623]). This suggested that biobank-based

PRSs can be a viable alternative for PRS construction, espe-

cially if summary statistics from a large disease-specific

GWASs are unavailable (Table 4) though UKB-GWAS-based

PRSs underperformed compared to PRSs based on GWASs

frommuch larger meta-analysis efforts. A detailed compar-

ison of GWAS sources across the 31 cancer traits in MGI is

available in Table S5.
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Table 3. Comparison of PRS Methods on Breast Cancer PRS Performance in MGI and UKB

Method Tuning Parameter # SNPs Pseudo-R2 Brier Score AAUC (95% CI)

Odds Ratio
Continuous PRS
(95% CI)

Odds Ratio Top
1% (95% CI)

MGI Cohort

Lassosum: s ¼ 0.5, l ¼ 0.0043 118,388 0.0592 0.134 0.641 (0.625,0.656) 1.70 (1.59,1.81) 2.48 (1.63,3.77)

P&T: p % 4 3 10�4 3,038 0.0532 0.135 0.635 (0.618,0.651) 1.64 (1.54,1.75) 2.84 (1.88,4.28)

Fixed threshold: p % 5 3 10�5 1,307 0.0521 0.135 0.634 (0.618,0.65) 1.63 (1.53,1.74) 2.75 (1.81,4.17)

Fixed threshold: p % 5 3 10�6 712 0.0484 0.135 0.629 (0.612,0.645) 1.60 (1.50,1.70) 3.06 (2.04,4.59)

Fixed threshold: p % 5 3 10�7 464 0.0476 0.135 0.627 (0.611,0.644) 1.60 (1.50,1.70) 3.38 (2.28,5.02)

Fixed threshold: p % 5 3 10�8 334 0.0462 0.136 0.625 (0.609,0.641) 1.58 (1.49,1.69) 3.32 (2.24,4.93)

Fixed threshold: p % 5 3 10�9 264 0.0455 0.136 0.624 (0.608,0.64) 1.58 (1.48,1.68) 2.56 (1.68,3.90)

UKB Cohort

Lassosum: s ¼ 0.9, l ¼ 0.0043 286,144 0.0487 0.0807 0.643 (0.637,0.65) 1.70 (1.65,1.75) 4.02 (3.46,4.67)

P&T: p % 1 3 10�4 1,682 0.0401 0.0811 0.63 (0.623,0.637) 1.61 (1.57,1.66) 3.69 (3.16,4.31)

Fixed threshold: p % 5 3 10�6 712 0.0402 0.0811 0.628 (0.62,0.635) 1.61 (1.57,1.65) 3.32 (2.83,3.90)

Fixed threshold: p % 5 3 10�5 1,307 0.0392 0.0812 0.627 (0.62,0.634) 1.60 (1.56,1.64) 3.49 (2.98,4.08)

Fixed threshold: p % 5 3 10�7 464 0.0384 0.0812 0.626 (0.618,0.633) 1.59 (1.55,1.63) 3.81 (3.27,4.44)

Fixed threshold: p % 5 3 10�8 334 0.0361 0.0813 0.622 (0.615,0.63) 1.57 (1.53,1.61) 3.69 (3.16,4.31)

Fixed threshold: p % 5 3 10�9 264 0.0347 0.0813 0.62 (0.612,0.627) 1.55 (1.51,1.59) 3.28 (2.79,3.86)

PRSs are based on the BCAC Consortium GWAS on overall breast cancer.11 Italic values indicate best performing PRSs according to the corresponding metrics for
MGI or UKB.
Comparison of Performance across Methods

First, we explored the benefit of p value thresholding for

the pre-filtered risk variants of the GWAS Catalog.

Compared to the GWAS hits only approach, i.e., only

perform LD-clumping of risk variants with p % 5 3 10�8,

the p value thresholding step of the P&T PRS construction

overall was very similar but we observed for several UKB

PRSs improved performance, as previously reported.74

This implied that p value thresholding might be beneficial

for some of the relatively sparse sets of GWAS hits reported

in the GWAS Catalog (Figure S4).

The P&T approach will, by definition, also cover fixed p

value thresholds in its tuning parameter optimization;

therefore, we limited our next comparison of PRS methods

for full summary statistics to P&T and lassosum PRSs. We

assessed both methods for different GWAS sources in

MGI (37 PRSs) and UKB (10 PRSs). We found that both

methods ranked comparably, i.e., a GWAS source that pro-

duced a lassosum PRS with high pseudo-R2 also produced a

P&T PRS with high pseudo-R2 and vice versa (Spearman’s

rank correlation: rho > 0.907; Figure S5).

Comparison of Performance across Cancers

Next, we were interested in comparisons between PRSs

across traits to assess overall performance and general dif-

ferences between cancer traits. Table 5 shows the top-

ranked PRSs for the 20 most common cancer traits in

MGI and highlights the different properties of the gener-

ated PRSs. The PRSs vary in their numbers of included

SNPs and their abilities to distinguish case from control
The American
subjects or to enrich cases in the top percentiles. The

AUC of the presented PRSs was highest for the chronic

lymphoid leukemia PRS (AUC ¼ 0.696 [0.621,0.764]) and

lowest for the lung cancer PRS (0.529 [95%

CI:0.503,0.558]). Significant enrichment of cases in the

top 1% ranged fromOR of 12.9 (95%CI: 4.45,37.6; chronic

lymphoid leukemia) to 2.48 (95%CI: 1.63,3.77; breast can-

cer [female]). Table 6 shows that similar trends were

observed for traits in UKB. Due to limited sample sizes in

the top percentiles, we could not detect significant enrich-

ment for most of the rarer cancers.

Our observed variations between these cancer PRSs likely

recapitulates the different genetic architectures of cancers

in combination with their prevalences in the discovery

and evaluation cohorts. First, the prevalence impacted

the ability to identify true associations in the discovery

GWASs and also affected our capacity to observe significant

effects in the PRS performance evaluation.

Comparison of Performance across Cohorts

The two evaluation cohorts, MGI and UKB, varied in,

among other things, their sample sizes, their use of diag-

nosis code systems, and their recruitment mechanisms,

with UKB representing a population-based cohort and

MGI an EHR-based, cancer-enriched cohort. We limited a

comparison of the cancer PRSs to the top-ranked PRSs for

13 cancers that were present for both cohorts. We selected

the top PRS for each cancer within each cohort, i.e., their

GWAS source and method might be different between

MGI and UKB (Table S6).
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Table 4. Influence of GWAS Sources on Breast Cancer PRS Performance in MGI

GWAS Source
(Effective Sample Size)a Method Tuning Parameter # SNPs Pseudo-R2

Brier
Score AAUC (95% CI)

Odds Ratio
Continuous PRSb

Odds Ratio
Top 1%c

MGI Cohort

Large GWAS Michailidou
et al.11 (113,845)

Lassosum: s ¼ 0.5, l ¼ 0.0043 118,388 0.0592 0.134 0.641 (0.625,0.656) 1.70 (1.59,1.81) 2.48 (1.63,3.77)

GWAS Catalog (N/A) P&T: p % 3.2 3 10�9 62 0.0346 0.136 0.607 (0.589,0.623) 1.49 (1.40,1.58) 3.06 (2.04,4.6)

UKB GWAS PHECODE
(23,839)

Lassosum: s ¼ 0.5, l ¼ 0.014 6,977 0.0340 0.137 0.609 (0.592,0.624) 1.48 (1.39,1.57) 1.94 (1.21,3.11)

UKB GWAS FINNGEN
(18,376)

Lassosum: s ¼ 0.5, l ¼ 0.018 2,267 0.0300 0.137 0.600 (0.584,0.616) 1.44 (1.35,1.53) 2.37 (1.54,3.65)

UKB GWAS ICD10
(15,792)

Lassosum: s ¼ 0.5, l ¼ 0.018 4,047 0.0264 0.137 0.595 (0.579,0.610) 1.40 (1.32,1.49) 2.05 (1.30,3.24)

UKB GWAS PHESANT
(15,282)

Fixed threshold: p % 5 3 10�8 22 0.0204 0.138 0.579 (0.561,0.597) 1.34 (1.27,1.43) 2.32 (1.49,3.61)

UKB Cohort

Large GWAS Michailidou
et al.11 (113,845)

Lassosum: s ¼ 0.9, l ¼ 0.0043 286,144 0.0487 0.0807 0.643 (0.637,0.65) 1.70 (1.65,1.75) 4.02 (3.46,4.67)

GWAS Catalog (N/A) P&T: p % 2.5 3 10�8 79 0.0226 0.0819 0.598 (0.59,0.605) 1.43 (1.39,1.46) 2.68 (2.25,3.18)

Italic values indicate best performing PRS according to the corresponding metrics for MGI or UKB.
aEffective sample size: 4 / (1/#cases þ 1/#controls); n/a: not available; references of studies contributing to GWAS Catalog PRS are listed in Table S4.
bPRSs were scaled to mean ¼ 0 and SD ¼ 1.
cTop 1% versus rest.
We noticed the similar ranking of AAUC values for most

cancer PRSs but found significantly higher estimates for

cancer of brain, colorectal cancer, and prostate cancer in

UKB than in MGI (Figure S6). The former estimate might

reflect the different underlying GWAS sources, while the

latter two might be inflated in UKB due to overlapping

samples between their discovery GWAS meta-analyses

and the UKB cohort.12,15 The other ten cancers showed a

similar ranking of AAUC estimates in both cohorts that

ranged between ‘‘cancer of bronchus/lung’’ (AAUCMGI:

0.520, AAUCUKB: 0.552) and highest for ‘‘chronic

lymphoid leukemia’’ (AAUCMGI: 0.696, AAUCUKB: 0.672).

AAUC values tended to be slightly higher for UKB than

for MGI, while confidence intervals were mostly smaller

in UKB corresponding to their (often) larger observed effec-

tive sample sizes.

A similar comparison of the enrichment of cases in the

top 10% versus bottom 90% revealed a lack of power for

two cancer PRSs inMGI, but a relatively consistent ranking

from PRSs for bladder cancer (MGIORTop10%: 1.52 and UKB

ORTop10%: 1.60) to chronic lymphoid leukemia (MGI

ORTop10%: 4.57 and UKB ORTop10%: 3.06). Overall enrich-

ment effects were often stronger in UKB compared to

MGI, reflecting the larger sample sizes of these cancers,

but also indicated a disparity between population- and

hospital-based control subjects (Tables 1, S1, and S6;

Figure 3). However, when comparing the enrichment of

cases for two PRSs that were well powered in both cohorts

(PRSs for breast cancer and chronic lymphoid leukemia),

we found it to be strikingly comparable across all tested

percentiles (1%, 2%, 5%, 10%, and 25% versus rest;

Figure 2).
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Phenome-wide Association Analyses

Beyond case enrichment and risk stratification, PRSs can

also be used in phenome-wide screenings to uncover sec-

ondary trait associations through shared genetic risk fac-

tors.33,34 These secondary traits might uncover features

in the EHR that occur before cancer diagnosis and thus

could represent important predictors for cancer outcomes.

From the generated PRSs for 35 cancer traits, we selected 14

PRSs in MGI and 19 PRSs in UKB (whose association with

their corresponding cancer traits reached phenome-wide

significance) for phenome-wide screens of PRS associa-

tions. In total, we observed phenome-wide significant

associations between 19 cancer PRSs and 143 different sec-

ondary traits (Table S7). We performed Exclusion-PRS-Phe-

WAS (i.e., removed primary cancer cases and repeated the

phenome-wide analysis) to assess whether the identified

secondary associations were mainly driven by the primary

cancer trait, e.g., through intensified screening or represent

post-treatment effects.33 While the exclusion of case

subjects markedly decreased case counts of secondary

traits, we still identified 63 secondary traits that remained

significantly associated with the corresponding cancer PRS

(Table S7). Most of the secondary traits in MGI that

remained phenome-wide significant in the Exclusion-

PRS-PheWAS, e.g., skin cancer PRS associated with actinic

keratosis or thyroid cancer PRS associated with hypothy-

roidism, were reported in our previous studies.34,75 Due

to the larger sample sizes for most traits in UKB compared

to MGI (Table S1), we observed more and stronger second-

ary trait associations in UKB PRS-PheWAS. Several second-

ary trait associations were seen in both cohorts (e.g., hypo-

thyroidism associated with thyroid cancer PRS after
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Table 5. Top PRSs for the 20 Most Common Cancer Traits in MGI

PRS Cancer Trait (PheCode) GWAS Source Method Tuning Parameter # SNPs Brier Score AAUC (95% CI)
Odds Ratio Continuous
PRS (95% CI)a

Odds Ratio Top
1% (95% CI)b

Basal cell carcinoma (172.21) Large GWAS: Chahal et al.49 P&T: p % 4 3 10�8 27 0.106 0.632 (0.616,0.647) 1.66 (1.57,1.76) 3.79 (2.68,5.35)

Melanomas of skin (172.1) UKB GWAS PHECODE P&T: p % 2 3 10�7 15 0.0952 0.604 (0.587,0.62) 1.49 (1.4,1.57) 2.97 (2.04,4.34)

Breast cancer [female] (174.1) Large GWAS: Michailidou et al.11 Lassosum: s ¼ 0.5, l ¼ 0.0043 118,388 0.134 0.641 (0.625,0.656) 1.70 (1.59,1.81) 2.48 (1.63,3.77)

Cancer of prostate (185) Large GWAS: Schumacher et al.12 Lassosum: s ¼ 0.5, l ¼ 0.007 26,418 0.145 0.665 (0.647,0.684) 1.91 (1.77,2.05) 4.92 (3.21,7.55)

Squamous cell carcinoma (172.22) GWAS Catalog P&T: p % 1 3 10�11 7 0.0977 0.593 (0.573,0.613) 1.45 (1.36,1.55) 3.74 (2.46,5.68)

Cancer of bladder (189.2) GWAS Catalog P&T: p % 5 3 10�8 13 0.0917 0.572 (0.55,0.594) 1.29 (1.2,1.39) 1.47 (0.779,2.77)

Colorectal cancer (153) Large GWAS: Huyghe et al.15 P&T: p % 4 3 10�7 81 0.0828 0.553 (0.525,0.577) 1.21 (1.12,1.32) 3.04 (1.79,5.17)

Colon cancer (153.2) UKB GWAS PHECODE Lassosum: s ¼ 0.2, l ¼ 0.038 150 0.083 0.567 (0.54,0.594) 1.25 (1.13,1.37) 1.17 (0.477,2.87)

Cancer of bronchus/lung (165.1) GWAS Catalog P&T: p % 1 3 10�10 14 0.0827 0.529 (0.503,0.558) 1.12 (1.01,1.24) 1.75 (0.796,3.85)

Thyroid cancer (193) GWAS Catalog P&T: p % 3.2 3 10�10 8 0.0812 0.618 (0.587,0.647) 1.57 (1.41,1.74) 5.14 (2.94,8.99)

Nodular lymphoma (202.21) UKB GWAS FINNGEN Lassosum: s ¼ 1, l ¼ 0.018 2,209,179 0.0825 0.538 (0.504,0.573) 1.15 (1.02,1.29) 1.48 (0.538,4.05)

Cancer of brain (191.11) UKB GWAS ICD10 Lassosum: s ¼ 0.9, l ¼ 0.1 522 0.0824 0.546 (0.504,0.587) 1.20 (1.04,1.37) 1.42 (0.453,4.47)

Cancer of esophagus (150) UKB GWAS ICD10 Lassosum: s ¼ 1, l ¼ 0.078 2,001 0.0826 0.551 (0.51,0.588) 1.20 (1.04,1.39) 1.81 (0.56,5.82)

Cancer of larynx (149.4) UKB GWAS ICD10 Lassosum: s ¼ 0.9, l ¼ 0.1 25,920 0.0822 0.570 (0.522,0.618) 1.28 (1.09,1.51) 2.14 (0.649,7.06)

Cancer of other male genital
organs (187)

UKB GWAS FINNGEN P&T: p % 4 3 10�6 97 0.083 0.558 (0.506,0.606) 1.23 (1.03,1.46) 1.04 (0.183,5.95)

Lymphoid leukemia (204.1) UKB GWAS FINNGEN P&T: p % 1 3 10�6 6 0.0819 0.578 (0.517,0.642) 1.36 (1.11,1.66) 3.69 (1.01,13.4)

Multiple myeloma (204.4) UKB GWAS ICD10 P&T: p % 7.9 3 10�6 27 0.0823 0.547 (0.479,0.613) 1.24 (1,1.53) 2.6 (0.593,11.4)

Cancer of testis (187.2) UKB GWAS PHESANT Lassosum: s ¼ 0.9, l ¼ 0.078 771 0.084 0.656 (0.593,0.717) 1.67 (1.3,2.14) 2.72 (0.568,13.1)

Hodgkin’s disease (201) GWAS Catalog P&T: p % 1 3 10�6 20 0.0821 0.620 (0.559,0.688) 1.48 (1.15,1.89) 2.64 (0.572,12.2)

Lymphoid leukemia, chronic
(204.12)

GWAS Catalog P&T: p % 7 3 10�6 44 0.0776 0.696 (0.621,0.764) 2.12 (1.65,2.74) 12.9 (4.45,37.6)

Cancer traits are sorted by observed case counts in MGI; references of studies contributing to GWAS Catalog PRSs are listed in Table S4.
aPRSs were scaled to mean ¼ 0 and SD ¼ 1.
bTop 1% versus rest.
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Table 6. Best Performing PRSs for the 20 Analyzed Cancer Traits in UKB

PRS Cancer Trait (PheCode) GWAS Source Method Tuning Parameter # SNPs Brier Score AAUC (95% CI)

Odds Ratio
Continuous
PRS (95% CI)a

Odds Ratio Top
1% (95% CI)b

Breast cancer [female] (174.1) Large GWAS: Michailidou et al.11 Lassosum: s ¼ 0.9, l ¼ 0.0043 286,144 0.0807 0.643 (0.637,0.65) 1.70 (1.65,1.75) 4.02 (3.46,4.67)

Cancer of prostate (185) Large GWAS: Schumacher et al.12 Lassosum: s ¼ 0.9, l ¼ 0.0055 178,259 0.0794 0.699 (0.690,0.710) 2.13 (2.04,2.22) 5.88 (4.85,7.14)

Colorectal cancer (153) Large GWAS: Huyghe et al.15 P&T: p % 7.8 3 10�6 87 0.0812 0.617 (0.605,0.630) 1.55 (1.48,1.62) 4.00 (3.11,5.13)

Melanomas of skin (172.1) GWAS Catalog P&T: p % 5 3 10�7 27 0.0812 0.619 (0.603,0.634) 1.56 (1.48,1.66) 3.12 (2.18,4.47)

Cancer of bladder (189.2) GWAS Catalog P&T: p % 7 3 10�7 15 0.0821 0.571 (0.555,0.588) 1.30 (1.23,1.38) 2.91 (1.99,4.24)

Cancer of other lymphoid, histiocytic
tissue (202)

GWAS Catalog P&T: p % 5 3 10�7 5 0.0822 0.490 (0.476,0.505) 1.15 (1.09,1.21) 1.97 (1.25,3.12)

Cancer of bronchus/lung (165.1) GWAS Catalog P&T: p % 2.5 3 10�8 19 0.0824 0.552 (0.534,0.569) 1.22 (1.15,1.30) 1.94 (1.22,3.10)

Non-Hodgkins lymphoma (202.2) GWAS Catalog P&T: p % 1 3 10�9 10 0.082 0.547 (0.527,0.566) 1.24 (1.16,1.32) 2.05 (1.24,3.40)

Cancer of uterus (182) GWAS Catalog P&T: p % 1 3 10�7 20 0.082 0.572 (0.549,0.596) 1.30 (1.20,1.41) 2.60 (1.50,4.51)

Cancer of kidney, except pelvis (189.11) GWAS Catalog P&T: p % 5 3 10�8 12 0.0825 0.517 (0.492,0.540) 1.15 (1.06,1.25) 2.17 (1.13,4.14)

Cancer of ovary (184.11) Large GWAS: Phelan et al.9 P&T: p % 1.3 3 10�9 12 0.0824 0.558 (0.530,0.586) 1.23 (1.12,1.35) 1.55 (0.71,3.38)

Pancreatic cancer (157) GWAS Catalog P&T: p % 5 3 10�9 10 0.0822 0.579 (0.548,0.611) 1.34 (1.20,1.50) 1.64 (0.655,4.12)

Cancer of brain and nervous system
(191.1)

GWAS Catalog P&T: p % 3.2 3 10�9 19 0.0812 0.622 (0.590,0.653) 1.56 (1.40,1.75) 2.93 (1.34,6.41)

Multiple myeloma (204.4) GWAS Catalog P&T: p % 2.5 3 10�8 21 0.0818 0.576 (0.536,0.616) 1.32 (1.16,1.50) 2.20 (0.854,5.66)

Cancer of brain (191.11) GWAS Catalog P&T: p % 5 3 10�29 5 0.0813 0.606 (0.568,0.642) 1.52 (1.34,1.71) 4.15 (2.04,8.41)

Lymphoid leukemia, chronic (204.12) GWAS Catalog P&T: p % 2.5 3 10�8 27 0.0796 0.672 (0.637,0.703) 1.85 (1.62,2.11) 2.52 (1.04,6.08)

Thyroid cancer (193) GWAS Catalog P&T: p % 1 3 10�16 5 0.0804 0.628 (0.582,0.675) 1.61 (1.38,1.88) 4.41 (1.81,10.7)

Cancer of testis (187.2) GWAS Catalog P&T: p % 5 3 10�6 44 0.0793 0.703 (0.659,0.745) 2.11 (1.73,2.56) 4.60 (1.75,12.1)

Basal cell carcinoma (172.21) GWAS Catalog P&T: p % 5 3 10�9 24 0.0813 0.615 (0.608,0.623) 1.53 (1.48,1.57) 3.05 (2.55,3.64)

Squamous cell carcinoma (172.22) Large GWAS: Chahal et al.50 P&T: p % 1.6 3 10�8 9 0.0819 0.571 (0.563,0.579) 1.33 (1.30,1.37) 1.93 (1.56,2.39)

Cancer traits are sorted by observed case counts in UKB; references of studies contributing to GWAS Catalog PRSs are listed in Table S4.
aPRSs were scaled to mean ¼ 0 and SD ¼ 1.
bTop 1% versus rest.
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Figure 3. Case Enrichment of the Top
Ranked PRSs for 13 Cancers that Were
Available in MGI and UKB
Odds ratios (OR, top 10% versus bottom
90% of PRS distribution [defined in control
subjects]) and their 95% confidence inter-
vals are shown for MGI (left) and UKB
(right).
exclusion of thyroid cancer cases: ORMGI ¼ 0.883

[0.858,0.910] and ORUKB ¼ 0.896 [0.881,0.912]; Figures

4A and 4C). We also observed several secondary trait asso-

ciations exclusively in UKB. Some of these associations,

e.g., hyperplasia of prostate associated with cancer of pros-

tate PRS (Exclusion-PRS-PheWAS in UKB: OR 1.07 [95% CI:

1.05,1.09], p ¼ 2.16 3 10�10), represent known risk factors

or presentation features of primary cancers.76,77 However,

we also observed traits where the cancer relevance was

less clear, e.g., varicose veins associated with breast cancer

PRS (Exclusion-PRS-PheWAS in UKB: OR 1.05 [95% CI:

1.03,1.07], p ¼ 2.88 3 10�7) (Figures 4C and 4D; Table

S7). Deeper explorations and replications are needed to un-

derstand these observed associations and to distinguish be-

tween spurious and genuine associations.

Online Visual Catalog: Cancer PRSweb and R package

Rprs

In our current study, we compared three PRS construction

methods for 68 cancer traits using more than 232 sets of

GWAS summary statistics. By doing so, we created a large

number of PRSs in which predictive or enrichment proper-

ties differed between GWAS source, PRS method, and/or

evaluation cohort. After assessing 1,307 constructed PRSs,

we found PRSs for 35 different cancer traits that we deemed

to have predictive value. In our explorations, we established

that it could be beneficial to select PRSs with certain predic-

tive properties for a specific application instead of using one
The American Journal of Human Gene
PRS for all applications. Also, it could

be computationally more convenient

to use a slightly less powerful PRS

based on a fewer number of SNPs

than to use a PRS that is based on a

few hundred thousand variants. To

allow the user the option to explore

various PRS constructs, we created

PRSweb (see Web Resources), an inter-

active and intuitive web interface, to

explore the available PRS constructs

for 35 different cancer traits as well as

their performance metrics and suit-

ability for risk stratification, associa-

tion studies, or other PRS applications.

After an initial selection menu for

cancer trait and evaluation cohort

(MGI or UKB), PRSweb provides tabu-

larized information about all available

PRSs, their evaluation metrics (perfor-
mance, discrimination, calibration, and accuracy) and case

enrichment capabilities in five top percentiles of their dis-

tributions. The tables, similar to Tables 3 and 4, can be

sorted, filtered, or downloaded in full. These tables contain

detailed information about the underlying GWAS source(s)

and LD reference panels and are directly linked to down-

loadable PRS constructs. The PRS construct files include

headers with information about the PRS construction

(source, version, method, and references) and lists its un-

derlying risk variants, their physical positions, effect/

non-effect alleles (forward strand orientation for a given

genome assembly), and its weights. Together with the

Rprs R package we developed (see Web Resources), the

construct file will enable the reproduction of PRS associa-

tion inMGI or UKB and allow a straightforward generation

of comparable PRS in external datasets using imputed

dosage data in VCF or BCF format.

For phenome-wide predictive PRSs (association

PPrimaryCancer % 0.05 / [# phenotypes in phenome]),

PRSweb also links to PRS-PheWAS results for their evalua-

tion cohort. The PRS-PheWAS result page includes inter-

active Manhattan plots for PRS-PheWAS and Exclusion-

PRS-PheWAS with mouseover information for each tested

association. The PheWAS plots can be exported as scalable

vector graphics (SVG) and are accompanied by interactive

and downloadable result tables that provide PheWAS

summary statistics plus sample counts per analyzed

phenotype.
tics 107, 815–836, November 5, 2020 827



A
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B

D

Figure 4. Example Exclusion PRS-PheWAS in the MGI and UKB Phenomes
The plots show Exclusion PheWAS for the thyroid cancer PRS (A, B) and for breast cancer [female] (C, D). The horizontal line indicates
phenome-wide significance. Only the strongest and phenome-wide significantly associated traits within a category are labeled. Direc-
tional triangles indicate whether a phenome-wide significant trait was positively (pointing up) or negatively (pointing down) associated
with the PRS.
We also implemented a search interface for each pheno-

type/PheCode to provide insights into the ICD-codes un-

derlying the primary cancers as well as the traits of our

EHR-derived MGI and UKB phenomes. A methods section

describes the approaches we applied.
Discussion

In our study, we constructed and evaluated a large set of can-

cerPRSsusingmore than200different sourcesofGWASsum-

mary statistics. We applied three common PRS construction

methods: GWAShits, LDpruning/p value thresholding, and

lassosum. While doing so, we created an online repository

called PRSweb withmore than 500 PRSs for 35 cancer traits.

We observed that construction and resulting performance

of PRSs depend onmultiple factors, including GWAS source,
828 The American Journal of Human Genetics 107, 815–836, Novem
PRS method, and evaluation cohort. Researchers who plan

to apply PRSs in their projects are often faced with an agony

of choice from a set of PRSs in the current literature ormight

not find predictive PRS at all. Furthermore, if PRSs are avail-

able, a direct comparison of multiple constructs is often not

feasible, as their performance can be cohort specific and

limited by available sample size.

To alleviate this situation, we generated PRSweb that

could serve as a central hub for standardized PRSs. PRSweb

so far offered a selection and exploration of PRSs based on

publicly available cancer GWAS data. The platform inte-

grated the evaluation of the rich EHR data of two indepen-

dent biobanks, MGI and UKB. In our initial version of

PRSweb, we focused on cancer traits because MGI is en-

riched for cancer.

There are several remaining challenges in developing

PRSs, and we will discuss the following four: access to
ber 5, 2020



independent GWAS summary statistics, mapping of trait

definitions between discovery and evaluation cohorts, po-

wer limitations, and finally, transferability of PRSs across

cohorts and ancestries.

Access to Independent GWAS Summary Statistics

Limited accessibility to full summary statistics for cancer

GWASs in the published literature resulted in a lack of PRS

constructs for many cancers. By systematically integrating

openly available cancer GWAS summary statistics, we can

also openly share PRS constructs, some with millions of

markers, with the research community. However, there are

large cancer GWASdatasets used in the cancer research com-

munity that are not yet integrated into PRSweb. For

example, a recent study analyzed 14 different cancer types

based on summary-level association statistics from larger

cancer GWAS consortia.78 To our knowledge, only the full

summary statistics on breast cancer,11 ovarian cancer,9

and prostate cancer12 were openly shared. We are confident

that future versions of PRSweb will be able to integrate sum-

mary statistics from other large GWAS consortia, e.g., on

chronic lymphocytic leukemia, glioma, melanoma, esopha-

geal, testicular, oropharyngeal, pancreatic, renal, colorectal,

endometrial, or lung cancer, some with substantially larger

samples sizes than the GWASs used in our current analysis.

With the tendency to form large consortia and to inte-

grate available biobank data comes another challenge,

namely the potential overlap between the discovery and

evaluation cohorts and, thus, potential overfitting. For

our current study, we used GWASs that are (to the best of

our knowledge) independent from MGI. Since UKB is a

popular and widely used resource, the assumption of inde-

pendence of large GWAS efforts from UKB does not always

hold true as we have seen for the large colorectal cancer

GWAS.15 In the future, the assessment of independence

of GWASs from PRS construction will become more chal-

lenging, especially when relying on GWAS databases

(e.g., the GWAS Catalog), where the distinction of contrib-

uting cohorts might not be obvious from a database entry

alone. If the performance of optimized PRSs is promising

in both MGI and UKB, we would recommend the use of

theMGI-optimized PRSs to alleviate concerns about poten-

tial overlap between the discovery GWAS that led to the

summary data used for PRS construction and the cohort

used for PRS evaluation. The risk of such overlap is mini-

mal with MGI and substantial with UKB. An alternative so-

lution, especially for consortia joining large GWASs, is

leave-one-out meta-analysis where in addition to the full

meta-analysis results, a separate set of meta-analysis results

will be provided for each contributing cohort so that each

resulting leave-one-out meta-analysis can be shared and

used for PRS generation in that cohort to avoid overfitting.

Until such leave-one-out meta analyses summary statistics

become publicly available, we recommend users interested

in applying PRSs to UKB to use UKB- independent PRS con-

structs, e.g., the MGI-based PRS constructs that are shared

through PRSweb.
The American
We anticipate a more accessible landscape of high-quality

full GWAS results in the near future, not only for cancer.

First, funding agencies, e.g., the US National Institutes of

Health (NIH), are updating their policy regarding access to

GWAS summary statistics of funded projects.79 Second, bio-

bank studies are growing in numbers and size and, when

connected to EHR data, enable GWASs for thousands of

traits each.75 In addition, global efforts are forming that

will enable even more powerful phenome 3 GWAS meta-

analyses through collaboration, likely reaching sample sizes

that can compete with classical disease-specific consortia.80

Mapping of Trait Definitions

One of the premises for PRS utility is the resemblance of

the original trait in the discovery GWAS with the trait of

the evaluation cohort.

For our current study, we relied on EHR-based cohorts

and defined cancer via PheCodes that are adopted from

ICD codes. It is important to bear in mind that we used

EHR-based diagnosis data that per se were not collected

for research. Besides misclassification, EHR-derived phe-

nomes might be prone to selection and recruitment biases

that can negatively impact power or result in false-positive

associations.36 ICD codes usually serve administrative and

billing purposes and often lack the specificity found in the

discovery GWAS. Due to the difference in trait definitions,

we often had to fall back to the broad phenotype definition

in the EHR cohorts and, by doing so, might have nega-

tively influenced the predictive power for PRS.41 For

example, we had only one definition for ovarian cancer

in MGI and UKB (PheCode 184.11 ‘‘malignant neoplasm

of ovary’’) that was defined by ICD9 codes 183.0 and

V10.43 as well as by ICD10:C56 and their sub-codes. In

contrast, the large GWAS on ovarian cancer included re-

sults for nine more refined cancer subtypes: invasive

epithelial, low-grade serous, high-grade serous, serous

invasive, endometrioid, epithelial, mucinous, low-grade

serous and serous borderline ovarian cancer, and ovarian

clear cell cancer. For our PRS generation, we used all nine

GWAS as separate sources and tested each resulting PRS

against the single PheCode 184.11. Consequently, the

best performing PRS might represent the combination

where the discovery GWAS’s trait specificity and the co-

hort’s trait composition maximized predictive power.

While we restricted our analysis to PheCode definitions,

future PRS explorations and evaluations with growing EHR

data should include more refined cancer phenotypes by

integrating cancer registry data, pathology results, and/or

natural language processing of clinical notes. The currently

chosen phenotype definitions represent valid and com-

mon cancer groupings that are frequently used in clinical

and research applications.81 A broader phenotype defini-

tion may lead to a larger sample size but may also lump

genetically distinct phenotypes together. This heterogene-

ity can dilute the specificity of the PRS to molecular sub-

types of cancer and consequently lower the predictive

power.
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Power Limitations

For our project, we used data from MGI, a medical center-

based cohort, and UKB, a population-based cohort. Due to

MGI’s recruitment mechanism through surgery, the

observed case counts in MGI reflected the numbers of adult

(18þ) patients that underwent a surgical procedure and had

at least one corresponding cancer diagnosis in their medical

records. The case counts in UKB, a rather healthy subset of

the older (40–69) British population,82 might be even lower

than the population’s cancer prevalence. We observed an

enrichment of many cancers in MGI compared to UKB,

especially for rarer cancers like thyroid cancer, but generally

registered more case subjects in the UKB because its cohort

is ten times larger (Table S1). In addition, MGI’s recruitment

through surgical procedures likely resulted in a relative

depletion of blood cancers (e.g., leukemia, lymphoma,

and myeloma), since affected patients undergo surgery

less frequently than somatic cancer patients. As a conse-

quence, we often had sufficient power to evaluate and

analyze PRSs for these diseases in UKB but not MGI.

We also recognize that each cancer we consider is hetero-

geneous and there are molecular subtypes that behave very

differently (for example estrogen receptor status for breast

cancer). In these situations, using a broader phenotype

definition will entail larger sample sizes but might lead to

an inclusion of genetically distinct phenotypes that in-

creases heterogeneity of the disease and consequently

lower the predictive power.34 Similarly, a more refined

phenotype might increase homogeneity but consequently

reduce sample size and lead to a loss of power. Moreover,

GWAS data for subtypes may be limited and based on

smaller studies, making summary statistics less reliable in

some cases. Considering established sub-types of a given

cancer and optimizing between phenotype definition

and sample size will be critical as cancer PRS research con-

tinues to grow.

One may be interested in defining a combined pheno-

type of ‘‘any cancer’’ for a composite cancer PRS with a

maximal sample size. We defined this phenotype in UKB

(with 69,190 cases of any cancer), performed a GWAS

that revealed known risk variants for numerous cancers,

and created an ‘‘any cancer’’ PRS using our established

methods (Tables S1 and S8, Figures S7 and S8). The lasso-

sum PRS with a choice for 179 variants performed best

among the constructs (Table S9). However, while defining

such a composite phenotype, we have to remember that

the endpoint is a heterogeneous mix of various cancers,

and the discovery will be driven by the cancers with larger

numbers of cases or strong risk effects in the discovery

(UKB) and evaluation (MGI) cohort. In the PRS PheWAS

in MGI, we saw many related traits associated with the

overall PRS. No secondary trait reached phenome-wide sig-

nificance in the exclusion PRS-PheWAS (Table S10;

Figure S9). We incorporated this overall PRS construct in

Cancer-PRSweb.

Besides accessible sample sizes, the ability to create pre-

dictive PRSs depends on the cancers’ ‘‘chip heritability,’’
830 The American Journal of Human Genetics 107, 815–836, Novem
i.e., the variance explained through polygenic variants of

genotyped and imputed datasets. A previous study on six

common cancers found that chip heritability estimates

can vary substantially for cancers (e.g., estimated heritabil-

ity for prostate cancer: 27%, breast cancer 12%, and

pancreatic cancer 7%).83 Thus, indicating that even if the

most powerful cancer PRS can be generated, other factors

play a bigger role, emphasizing the limitations of PRSs

for personal risk prediction if used on its own without

considering other risk factors.84

Also, genetic architecture affects the choice of PRS con-

struction methods. A recent study estimated the heritabil-

ity explained by genome-wide significant variants for 14

common cancers and found a wide variability of explained

heritability estimates among the analyzed cancer types.

For some cancers like testicular cancer, chronic lympho-

cytic leukemia, prostate, and breast cancer, GWAS hits

could explain a large fraction of the chip heritability, while

GWAS hits for other cancers like esophageal, colorectal,

endometrial, ovarian, or lung cancer explained only mod-

erate to very low fractions.78 Consequently, approaches

that only consider GWAS hits might work better for the

former, while less conservative p value thresholds or

genome-wide PRS methods might work better for the latter

cancer traits.

Finally, we realize that a k-fold cross-validation will be

more ideal than the single 50:50 split we have adopted to

define our training and test sets. Our choice was governed

by computational consideration, ease of presentation, and

the fact that with larger sample sizes the selection of tun-

ing parameters and the optimized pseudo-R2 values re-

mained relatively stable across multiple random splits.

Transferability of PRS across Cohorts

In our current study, we constructed and evaluated PRSs in

individuals of broadly European ancestry. However, we

recognize the need to also construct and share PRSs for

non-European ancestry groups, especially because of the

limited transferability of PRSs across ancestries and ethnic-

ities.7 The integration of PRSs for non-European individ-

uals into our platform PRSweb so far is hampered by the

scarcity of GWAS data for diverse ancestry groups85 and

by the limited diversity in MGI and UKB, both encompass-

ing predominantly European ancestry individuals. The

next largest ancestry groups are Blacks/African Americans

(5.4% in MGI; 1.6% in UKB) and Asian (1.6% in MGI,

2.0% in UKB), but even the most common cancers like

breast or prostate cancer had less than 250 cases in these

groups and thus limited power for PRS evaluations. More-

over, lack of publicly available GWAS summary statistics

made it very difficult to construct ancestry-specific PRSs

for Blacks.

Differences in genotyping and sequencing strategies can

also negatively impact comparability between studies.

Ideally, genotype data in the discovery GWAS, the LD refer-

ence panel, and the evaluation cohort should be compara-

ble in quality, density, and LD structure for ultimate
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compatibility. GWASs usually rely on genotyping arrays

that can differ in composition and density of variants.

Phasing and imputation methods are constantly

improving thanks to growing reference panels and refined

methods86 and are essential in harmonizing genotype data

across cohorts. However, the achievable accuracy is depen-

dent on the study’s sample size and variant density. Conse-

quently, a PRS that was constructed from a large and

marker-dense GWAS might not be directly transferable to

smaller, sparser genotype data.

In our current analysis of two genotype datasets that

differed in genotype density and sample size, we found

that the tuning parameters of PRSs established separately

for MGI and UKBwere ranked similarly in terms of their re-

sulting predictive performance. This indicated that sharing

of PRS constructs might represent a feasible and conve-

nient alternative to computationally expensive PRS

methods and evaluations.

Conclusions

By generating PRSs from a large collection of freely avail-

able cancer GWAS summary statistics and by evaluating

them in two independent biobanks, we created the analyt-

ical backbone of PRSweb, an online repository for cancer

PRSs offering detailed constructs and comparisons. So far,

we included PRS constructs and analyses for 35 different

cancer traits that showed promising performance in MGI

and/or UKB.

We designed PRSweb with the following scientific goals

in mind. (1) Expedite and accelerate research with cancer

PRSs by curating the freely available GWAS summary statis-

tics. Researchers can access GWAS and PheWAS summary

data and optimized constructs without exhaustive compu-

tational work. (2) Provide PRS PheWAS results in two bio-

banks with interactive plots to open up exploring associa-

tion of cancer with other phenotypes through underlying

common genetic susceptibilities. (3) Share a comprehen-

sive evaluation framework for selecting PRSs with an

ensemble of metrics that can be adopted in other studies.

(4) Distribute PRS constructs and an R package Rprs (see

Web Resources) to generate dosage-based PRSs in external

dataset so that the PRSs can be easily generated and used

as a covariate in research studies or used as an instrumental

variable in research related to Mendelian randomization.

Our long-term goal is to integrate PRSs with the subject’s

EHR to enable translational PRS research in MGI. For

now, we plan to simply flag which percentile of PRS distri-

bution the subject falls into for risk stratification. The goal

is for the physician to have easy access to this information

as a potential tool to inform their cancer screening deci-

sions. We are also actively working on protocols for the re-

turn of PRSs results through the University of Michigan

Precision Health Initiative. The ultimate goal is to have ab-

solute risk metrics for each individual in the EHR, trans-

lating GWAS findings to informed patient care.

The next logical step using the PRS constructs will be to

proceed toward absolute risk prediction at an individual
The American
level that will require auxiliary data beyond summary

statistics from case-control studies. We anticipate the in-

clusion of additional PRS constructs andmethods in an up-

coming version of PRSweb that also will expand our focus

beyond cancers. There are several Bayesian methods using

continuous shrinkage priors that have been proposed for

PRS construction (LDPred, PRS-CS, DBSLMM).21–23 In our

initial exploration with a limited number of traits, we

found the predictive performance of PRS-CS to be better

than the Lassosum method (Table S11) but at a higher

computational cost. Operationalizing these three methods

to the PRSweb platform requires massive computational re-

sources, especially because MGI is a growing resource with

ongoing recruitment. We are currently working on imple-

menting these choices to the PRSweb menu.

Several challenges remain in PRS research in terms of ac-

cess, power, and transferability. Nevertheless, PRSs have

proven to be a valuable tool for risk stratification, espe-

cially if combined with non-genetic risk factors.87–89 PRSs

will likely become more powerful with growing sample

sizes, better tools, and more diverse resources.
Data Availability

The PRS constructs, evaluations, and PheWAS summary

statistics generated during this study are available on the

Cancer PRSweb site (see Web Resources).

There are restrictions to the availability of individual-

level data of the MGI study due to patient confidentiality;

however, researchers who meet the criteria for access to

confidential data can apply for access through the Univer-

sity of Michigan Medical School Central Biorepository and

from the UK Biobank (see Web Resources).
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Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.08.025.
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Web Resources

Breast Cancer Association Consortium, http://bcac.ccge.medschl.

cam.ac.uk

brglm2, https://cran.r-project.org/web/packages/brglm2/index.

html

Cancer PRSweb, https://prsweb.sph.umich.edu

DescTools, https://andrisignorell.github.io/DescTools/

FINNGEN Clinical Endpoints, https://www.finngen.fi/en/

researchers/clinical-endpoints

Liftover, https://genome-store.ucsc.edu

Locuszoom, https://github.com/statgen/locuszoom

Logistf, https://rdrr.io/cran/logistf/man/logistf.html

Michigan Genomics Initiative, https://precisionhealth.umich.

edu/our-research/michigangenomics/

NCI Common Cancers Statistics, https://www.cancer.gov/types/

common-cancers

NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas

OMIM, http://www.omim.org/

Ovarian Cancer Association Consortium, http://ocac.ccge.

medschl.cam.ac.uk

PHESANT, https://github.com/MRCIEU/PHESANT

Polygenic Score Catalog, http://www.pgscatalog.org

PubMed, https://www.ncbi.nlm.nih.gov/pubmed

Rcompanion, https://rdrr.io/cran/rcompanion/

ROCnReg, https://cran.r-project.org/web/packages/ROCnReg/index.

html

Rprs, https://github.com/statgen/Rprs

UCSC Genome Browser, http://genome.ucsc.edu

UK Biobank, https://www.ukbiobank.ac.uk

UK Biobank dataset, https://www.ebi.ac.uk/ega/datasets/

EGAD00010001474

UKB GWAS Lee Lab, https://www.leelabsg.org/resources

UKB GWAS Neale Lab, http://www.nealelab.is/uk-biobank

University of Michigan Medical School Central Biorepository,

https://research.medicine.umich.edu/our-units/

central-biorepository/get-access
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