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Abstract
Background: Joubert syndrome (JS, OMIM: 213300) is a recessive developmental 
disorder characterized by cerebellar vermis hypoplasia and a distinctive mid‐hindbrain 
malformation called the “molar tooth sign” on axial magnetic resonance imaging. To 
date, more than 35 ciliary genes have been identified as the causative genes of JS.
Methods: Whole exome sequencing was performed to detect the causative gene mu-
tations in a Chinese patient with JS followed by Sanger sequencing. RT‐PCR and 
Sanger sequencing were used to confirm the abnormal transcript of centrosomal pro-
tein 104 (CEP104, OMIM: 616690).
Results: We identified two novel heterozygous mutations of CEP104 in the 
proband, which were c.2364+1G>A and c.414delC (p.Asn138Lysfs*11) (GenBank: 
NM_014704.3) and consistent with the autosomal recessive inheritance mode.
Conclusion: Our study reported the fourth case of JS patients with CEP104 muta-
tions, which expands the mutation spectrum of CEP104 and elucidates the clinical 
heterogeneity of JS.
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1 |  INTRODUCTION

Joubert syndrome (JS, OMIM:213300）is a rare neurolog-
ical disease defined by mid‐hindbrain abnormalities which 
show “molar tooth sign” (MTS) on brain imaging (Maria 
et al., 1997; Poretti et al., 2017). The typical clinical man-
ifestations include cerebellar vermis hypoplasia, hypotonia, 
tachypnea/apnea, ocular motor apraxia, and developmen-
tal delay (Joubert, Eisenring, Robb, & Andermann, 1969; 
Maria, Boltshauser, Palmer, & Tran, 1999; Parisi, 2009; 
Romani, Micalizzi, & Valente, 2013; Sattar & Gleeson, 
2011). Involvement of eyes, kidneys, livers, polydactyly or 
oral‐facial abnormalities leads to the subclassification of JS 
(Brancati, Dallapiccola, & Valente, 2010). JS is a multisystem 
ciliopathy syndrome with high genetic heterogeneity (Reiter 
& Leroux, 2017; Sattar & Gleeson, 2011; Valente, Rosti, 
Gibbs, & Gleeson, 2014). Currently, about 40 ciliary genes 
have been identified to be associated with JS (Bachmann‐
Gagescu et al., 2015; Vilboux et al., 2017).

In 2015, four mutations of CEP104 (OMIM: 616690) were 
found in three JS patients, which elucidated that CEP104 is one 
of the causative genes of JS (Srour et al., 2015). Here, we report 
that a Chinese boy was diagnosed with JS features and carried 
novel compound heterozygous mutations in the CEP104.

2 |  MATERIALS AND METHODS

2.1 | Ethical compliance
This project was approved by Ethics Committee of the 
National Research Institute for Family Planning. The written 
informed consent was obtained from the proband's parents. 
Blood samples were collected from the proband and his par-
ents and sibling after receiving written consent.

2.2 | Whole exome sequencing and 
variants analysis
The blood samples were collected using EDTA anticoagulant 
tube and processed for genomic DNA isolation by QIAamp 
DNA Blood MiNi Kit (Qiagen) following the standard pro-
cedures. We performed the whole exome sequencing using 
the proband's DNA. In brief, the whole exome library was 
prepared using Agilent SureSelect Human All Exon V6 kit 
(Agilent Technologies Inc.) according to manufacturer's stand-
ard protocol. Sequencing was performed on Illumina Novaseq 
6000 platform (Illumina Inc.) with 150 bp paired‐end reads. 
Reads were aligned to reference genome hg19 (GRCh37) by 
Burrows‐Wheeler Aligner (v.0.7.17) along with Samtools. PCR 
duplicates were removed by Picard tools (V2.18.4). Variations 
were called using GATK (Genome Analysis Toolkit, v3.8) 
and annotated with Ensembl Variant Effect Predictor (v91.3) 
(McLaren et al., 2016).Variants were filtered for minor allele 

frequency <0.01 in 1000 Genome project, Exome Aggregation 
Consortium (ExAC), genome Aggregation Database (gno-
mAD), and 200 in‐house Chinese exomes.

PCR was performed using specific primer pairs fol-
lowed by Sanger sequencing on ABI3730xl Genetic an-
alyzer (Life Technologies) following the manufacturer's 
protocol for variants validation in the proband and his par-
ents. Primer 4F (5′‐CTGTTGATCCTGCATAGGGG‐3′) 
and primer 4R (5′‐TCAGCAGTCTCCCAGAAGAGAT‐3′) 
were used for exon 4 amplification, while primer 18F 
(5′‐TTTCAGGCACCTCCTTGGTG‐3′) and 18R (5′‐
TATGGAATGACTCGCACGCA‐3′) were used for exon 18 
amplification.

2.3 | RNA extraction and reverse 
transcription
The blood samples of proband and his parents were col-
lected using Tempus™ Blood RNA Tube (SKU #4342792, 
Invitrogen). Tempus™ Spin RNA Isolation Kit (4380204, 
Invitrogen) was used for RNA extraction from whole blood 
cells of the proband and his parents. One microgram of RNA 
was reverse transcribed into cDNA using SuperScript™ IV 
First‐Strand Synthesis System Kit (Thermo Fisher Scientific, 
Invitrogen). The primer sequences used for cDNA amplifi-
cation were 5′‐GAATCAGGACATTCAAGGAGGGA‐3′ 
(forward, across the junction of exon 16 and exon 17) and 
5′‐TTTCCATGCCTCTTCTCCAGG‐3′ (reverse, across 
the junction of exon 20 and exon 21). The PCR amplifica-
tion products were analyzed by agarose gel electrophoresis. 
The purified DNA bands were cloned into pMD19‐T Vector 
(TaKaRa) and validated by Sanger sequencing.

3 |  RESULTS

3.1 | Clinical report
The patient is a 3‐year‐old boy, who is presented with hypo-
tonia and psychomotor developmental delay. He is the sec-
ond child of an unrelated couple without personal or familial 
medical history. Born by caesarean section at 39 week gesta-
tion, the patient showed normal birth measurements: weight 
of 3.05 kg and height of 48 cm. On examination, he has low‐
set ears, epicanthus, and strabismus. Hypotonia and psycho-
motor developmental delay was obvious in the patient: he 
was unable to hold his neck until 10 months and sit unaided 
at 12 months, and he cannot stand or walk independently by 
3 years. He presented with speech delay and can only speak 
monosyllabic words. The developmental quotients of motor, 
object, adaptability, language, and social abilities were eval-
uated by Gesell Developmental Schedules (GDS). Mild‐to‐
severe retardation of the GDS, especially language and motor 
abilities, was observed. Brain magnetic resonance imaging 
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(MRI) showed cerebellar vermis dysplasia, thickened and 
elongated superior cerebellar peduncles and MTS (Figure 
1a).

3.2 | Genetic analysis
Compound heterozygous variants in CEP104 (GenBank: 
NM_014704.3) (c.414delC [p.Asn138Lysfs*11] and 
c.2364+1G>A) were found in the proband (Figure 1c). The 
frameshift variant, p.Asn138Lysfs*11, in the exon 4 was 
predicted to the generation of a truncated protein. This vari-
ant is a novel variant, which is not found in dbSNP, ExAC, 
or gnomAD. This variant was inherited from his mother 
and also presented in his brother. The c.2364+1G>A vari-
ant led to a nucleotide exchange at an obligatory splice site 
(NM_014704.3: c.2364+1G>A). This position is 100% 
conserved in the canonical sequence of mammalian splice 

sites, mutations of which affect the donor splice site of in-
tron 18. This variant is extremely rare in the gnomAD with 
2 of 246,124 alleles bearing this mutation (allele frequency 
0.000008126) (Lek et al., 2016). This variant was inher-
ited from his father and absent in his sibling. According to 
the ACMG guidelines, both of the frameshift and splicing 
site variants were classified as pathogenic (Richards et al., 
2015). Of note, another heterozygous rare damaging variant 
was detected in centrosomal protein 290 (CEP290, OMIM: 
610142), which was c.6012‐2A>G, but no other susceptive 
pathogenic variant in CEP290 was found.

3.3 | Confirmation for an abnormal 
transcript of CEP104
To evaluate the mutational effect of c.2364+1G>A in 
CEP104, spanning exon amplification product was analyzed 

F I G U R E  1  Clinical and genetic findings of the proband. (a) Brain MRI images. The left panel is the axial view of T1WI, shows the 
characteristic molar tooth sign (white arrow). The right panel is the sagittal view of T1WI, shows the thickened and elongated superior cerebellar 
peduncles (white arrow). (b) Family pedigree. Patient (II‐2) was compound heterozygote for NM_014704.3 (CEP104): c.2364+1G>A (inherited 
from the father) and c.414delC (p.Asn138Lysfs*11) (inherited from the mother) (c) Sanger DNA sequences showing CEP104 sequences of patient, 
his parents, and his sibling. (d–f) Confirmation of the splicing defect caused by c.2364+1G>A mutation. (d) Agarose gel electrophoresis image 
of the PCR products from healthy control, the parents and sibling of the proband, and the proband. * Shows unspecific bands of the reactions. (e) 
A schema showing the mRNA sequences transcripted from wild type and the c.2364+1G>A mutated DNA. (f) Chromatograms and translated 
sequences showing the DNA and proteins of wild type and c.2364+1G>A mutation. MRI, magnetic resonance imaging
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by agarose gel electrophoresis. Four bands were observed in 
the PCR products of the samples from the proband and his fa-
ther, while only one band (400 bp) was detected in the prod-
ucts from his mother, brother and the healthy control (Figure 
1d). Direct sequencing showed that the 906 bp PCR product 
was caused by the failure of correct splicing, which inserted 
506 bp nucleotides from the adjacent intron into the mRNA 
(Figure 1e,f). This insertion led to incorrect translation and 
early translational termination of CEP104.

4 |  DISCUSSION

In this study, we report a Chinese boy with CEP104 mutations 
presenting with symptoms consistent with JS, displaying 
global developmental delay, facial dysmorphism, oculomo-
tor apraxia, and hypotonia. Brain MRI showed MTS, which 
is typical in JS patients. Consistent with the previous reported 
CEP104‐mutated patients, the proband reported here also 
presented with MTS, developmental delay, and oculomotor 
apraxia (Srour et al., 2015) (Table 1). Our patient was noticed 
with hypotonia, which is reported in two of the three other 
patients (Srour et al., 2015). Respiratory abnormality was not 
a common symptom of CEP104‐mutated patients and only 
one patient was observed with this defect (Srour et al., 2015). 
In this case, respiratory abnormality was not noticed as well. 

Different from JS patients caused by CEP290 or TMEM67 
(OMIM: 609884) mutations (Brooks et al., 2018; Fleming 
et al., 2017; Strongin et al., 2018), none of CEP104‐mutated 
patients displayed renal or liver involvement (Srour et al., 
2015). However, the risk of renal or liver failure of CEP104‐
mutated patients cannot be excluded, since all the patients 
are younger than 4 years old. Limb anomalies such as poly-
dactyly were not observed in all of the patients (Srour et al., 
2015). We failed to evaluate the retinal phenotype of the 
proband because of the difficulty of cooperation (Table 1).

Exome sequencing revealed two novel compound 
heterozygous variants of CEP104 (c.2364+1G>A and 
c.414delC) in the proband which are the cause of the dis-
ease. Four pathogenic variants were previously reported 
in three patients from different families, including two 
splicing site mutations, one nonsense mutation and one 
frameshift mutation (Srour et al., 2015). Together with our 
finding, there are six pathogenic variants were reported, 
and all of them result in a truncated protein of CEP104 
(Figure 2b). It reminds us that CEP104 might be like 
two other known JS genes, CEP290 and CSPP1 (OMIM: 
611645) (Bachmann‐Gagescu et al., 2015), in which the 
pairing of truncating variants seem to be the most frequent 
mutation type causing JS.

CEP104 was identified as a ciliary tip protein by a com-
parative, quantitative proteomic study in Chlamydomonas 

T A B L E  1  Clinical features and genotype of our patient and those described in Srour et al. (2015)

Sample name 102C 1763.618 GeneDx01 842629

Gender F F F M

Age 3.5 years 2 years 2.5 years 3.5 years

Ethic Chinese French Canadian Arab Israeli NA

Mutation1 c.2364+1G>A c.735+2T>C c.2572−2A>G c.1328_1329insT

      p.Tyr444fs*3

Mutation2 c.414delC c.735+2T>C c.496C>T c.1328_1329insT

p.Asn138Lysfs*11   p.Arg166* p.Tyr444fs*3

MTS + + + +

OMA + + + +

Retinal involvement NA +e −f −

Renal involvement − −u −u −

Liver involvement − −u −u −u

Limb anomalies − − − −

Developmental delay + + + +

Cognition Moderate ID NA NA Severe ID

Respiratory abnormality − + − −

Hypotonia + + − +

Ataxia − + − +

other − − − Self‐mutilation

Abbreviations: e, electroretinogram; F, female; f, fundoscopy; ID, intellectual disability; M, male; MTS, molar tooth sign; NA, not available or not applicable; OMA, 
oculomotor apraxia; u, ultrasound.
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(Satish Tammana, Tammana, Diener, & Rosenbaum, 
2013). They also found that loss of CEP104 caused cilio-
genesis defect in both Chlamydomonas and human RPE‐1 
cells (Satish Tammana et al., 2013). The biophysical and 
structural work showed that CEP104 was a multidomain 
protein and interacted with several cilia and microtubule‐
related proteins, including CP110, CEP97, end‐binding 
protein, and tubulin (Al‐Jassar et al., 2017; Louka et al., 
2018; Rezabkova, Kraatz, Akhmanova, Steinmetz, & 
Kammerer, 2016). The c.414delC mutation led to the loss 
of two CC domains, TOG domain, and the tandem ZNF 
repeats, which caused the missing of the major functional 
part of CEP104 (Al‐Jassar et al., 2017; Rezabkova et al., 
2016) (Figure 2a,b). The mutation of c.2364+1G>A is at 
the second ZNP repeats, which are showed as the interact-
ing domain of CEP104 with CP110 (Al‐Jassar et al., 2017; 
Rezabkova et al., 2016) (Figure 2a,b). Of note, it cannot be 
excluded that the mutations not only affect the functions 
of the proteins, but also reduce the stability of the protein, 
which have been reported in other proteins.

In summary, this JS patient has two novel mutations in 
CEP104, which expands the mutation spectrum of CEP104 
and elucidates the clinical heterogeneity of JS. Future de-
scription of other patients with mutations in CEP104 and the 
following studies of their underlying cell biology and phys-
iology will define new mechanisms on the role of CEP104 
and cilia in brain development, especially JS.
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F I G U R E  2  Schematic representation of CEP104 protein structure and distribution of all reported mutations. (a) The predicted IFT25/APC10‐
like domain (IFT25/APC10, amino acids 1–155), the two coiled coil domains (CCD, amino acids 200–295 and 673–730), the tumor overexpressed 
gene domain (TOG, amino acids 414–673), the four Zn fingers (ZNF domain, amino acids 751–875), and the SxIP motif are shown. Mutations 
identified in the present study are indicated by red arrow head, and previous reported mutations are indicated as black arrow head. (b) Mutations of 
CEP104 found in our study and all other reported mutations are presented in the upper and lower part of the figure, and marked with red and black 
color, respectively
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