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ABSTRACT
Cancer cells accumulate iron to supplement their aberrant growth and 

metabolism. Depleting cells of iron by iron chelators has been shown to be selectively 
cytotoxic to cancer cells in vitro and in vivo. Iron chelators are effective at combating 
a range of cancers including those which are difficult to treat such as androgen 
insensitive prostate cancer and cancer stem cells. This review will evaluate the 
impact of iron chelation on cancer cell survival and the underlying mechanisms of 
action. A plethora of studies have shown iron chelators can reverse some of the 
major hallmarks and enabling characteristics of cancer. Iron chelators inhibit 
signalling pathways that drive proliferation, migration and metastasis as well as 
return tumour suppressive signalling. In addition to this, iron chelators stimulate 
apoptotic and ER stress signalling pathways inducing cell death even in cells lacking 
a functional p53 gene. Iron chelators can sensitise cancer cells to PARP inhibitors 
through mimicking BRCAness; a feature of cancers trademark genomic instability. 
Iron chelators target cancer cell metabolism, attenuating oxidative phosphorylation 
and glycolysis. Moreover, iron chelators may reverse the major characteristics of 
oncogenic transformation. Iron chelation therefore represent a promising selective 
mode of cancer therapy.

INTRODUCTION

Iron is vital for normal cell growth and survival. 
Cancer is an evolutionary maverick, which exploits its 
trademark genomic instability to drain environmental 
resources. As an enzyme cofactor, iron is responsible for 
many cellular processes including mitochondrial metabolism 
and DNA synthesis [1–3]. As iron can drive cellular 
proliferation, cancer cells have an adapted iron metabolism 
allowing increased iron accumulation. Studies have 
demonstrated cancer cells have an aberrant expression of 
iron metabolism genes, as well as an overexpression of iron 
import proteins and underexpression of iron export proteins 
[4–7]. This has led to iron accumulation being considered as 
a target for cancer therapies. Among the potential therapies 
which target iron metabolism, iron chelators are one of the 
most well studied. Iron chelators selectively deplete cancer 
cells of iron, exploiting cancer’s iron addiction – a trait 
displayed by a range of different cancers. 

Deferoxamine (DFO) was the first iron chelator 
taken forward for clinical trials in 1987. Initially DFO was 

designed as a treatment for iron overload, but promising 
research conducted in cell models prompted clinical 
testing [8–11]. Of note, in a Phase II trial neuroblastoma 
patients treated with DFO displayed reduced bone marrow 
infiltration and one patient had a significant decrease in 
tumour mass [12]. Overall patients’ response to DFO has 
been variable with some patients showing complete or 
partial response and some patients showing no response 
(See Supplementary Table 2) [12–16]. This has been 
attributed to the poor lipophilicity of DFO, as well as its 
rapid clearance by the kidneys and poor absorption in the 
small intestine [17, 18]. Moreover, DFO is administered 
through continuous infusions, which is inconvenient, time-
consuming and painful for patients [19]. This mixed bag of 
results has fuelled further functional and structural studies 
aimed at designing improved iron chelators as potential 
anticancer therapies. 

The thiosemicarbazone class is a later stage of iron 
chelator evolution which manifested in 1992 [20]. Unlike 
their predecessor DFO, thiosemicarbazone chelators 
are capable of inducing reactive oxygen species (ROS). 
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Triapine (3-AP) is a thiosemicarbazone; its primary 
mode of action is thought to be ribonucleotide reductase 
inhibition with a higher potency than commonly used 
ribonucleotide reductase inhibitor, hydroxyurea [21, 22]. 
Interestingly, tumours resistant to hydroxyurea retain 
sensitivity to triapine [23]. Triapine was taken forward 
to clinical trials in 2002 where it was successful with 
blood cancers, but not solid tumours (See Supplementary 
Table 2) [24–27]. Triapine acted as a radiosensitiser 
during cervical, vaginal and ovarian cancer clinical trials 
(See Supplementary Table 2) [28, 29]. Another issue that 
manifested was a short-lived patient response, suggesting 
patients develop resistance [24, 30]. Triapine is rapidly 
metabolised and its metabolite is inactive, rendering it 
ineffective against solid tumours [31, 32].

More structural and functional studies lead to the 
emergence of Dp44mT – a terminally demethylated 
triapine derivative. ROS induction is pivotal for Dp44mT 
function as antioxidants inhibit Dp44mT cytotoxicity 
[33]. Dp44mT is almost 50-fold more potent than its 
predecessor triapine. Dp44mT is effective in vivo; treated 
mice experience no changes in body or organ weight 
and little change in hematologic indices [34, 35]. New 
innovative ways of drug delivery have been explored in 
an effort to lower the risk of Dp44mT side effects such 
as methemoglobin in clinic. Nanoparticles have been 
used to counteract Dp44mT high cytotoxicity and low 
bioavailability. This approach is predicted to protect 
healthy tissues from the cytotoxic effects as the timing 
and place of the drug release can be controlled [36]. 
Encapsulating Dp44mT in PLGA nanoparticles enhanced 
its ability to induce apoptosis and improved its selectivity 
towards cancer cells [37]. 

At present many more classes of iron chelators 
are being taken into consideration as potential cancer 
therapy candidates. VLX600 is a novel iron chelator 
capable of targeting both senescent and proliferative 
cells [38]. VLX600 has been taken forward to a phase 
I clinical trial where it showed limited adverse effects 
(See Supplementary Table 2) [39]. Promising preclinical 
and clinical work may prompt further VLX600 studies. 
Furthermore, there are many natural compounds, which 
chelate iron. Natural iron chelators have shown a similar 
impact on oncogenic signalling pathways as well-
characterized iron chelators DFO and Dp44mT (See 
Supplementary Table 1). Silibinin (isolated from milk 
thistle), quercetin (plant flavonoid), epigallocatechin 
gallate (the most abundant component of green tea) have 
been suggested to have chemo-preventative properties in 
a range of cancers suggesting potential benefit to their 
dietary intake, however not without limitations [40–42]. 
Epigallocatechin gallate has poor bioavailability as it 
is degraded by the gut microbiota [43]. There are some 
potential risks associated with quercetin; many animal 
studies indicated nephrotoxicity, limiting the use of 
quercetin in patients with pre-existing kidney damage 

[44]. Although silibinin has been proven safe at high doses 
its use in clinic still limited by its poor bioavailability, 
poor solubility in water, and poor absorption in the small 
intestine [45, 46]. 

This review aims to explore the underlying 
mechanisms of action behind iron chelator driven 
cytotoxicity in the context of the hallmarks of cancer 
established by Hanahan and Weinberg [47, 48] (see 
Figure 1, Supplementary Table 1). This will in turn support 
further research into iron chelators as a potential effective 
anti-cancer therapy.

NDRG1: The proposed target of iron chelators

N-MYC downregulated gene 1 (NDRG1) plays a 
critical role in inducing iron chelator mediated cytotoxicity 
[49]. The NDRG family is composed of 4 members: 
NDRG1, NDRG2, NDRG3, and NDRG4, sharing 53–
65% sequence similarity [50] The C-terminus of NDRG 
proteins contains residues, which are potential targets 
for kinases [50, 51]. Numerous studies have implicated 
NDRG1 as the key target of iron chelation with few 
implicating NDRG2 and NDRG3. NDRG1 expression has 
been linked to cell differentiation, adhesion, development 
and p53 dependent apoptosis [52–55]. Despite a strong 
relation between iron chelators, a link between NDRG1 
and natural iron chelators has not been explored in the 
literature. 

There is conflicting evidence on whether NDRG1 
should be classified as a tumour suppressor or an 
oncogene. NDRG1 can display pleiotropy - performing 
different roles in different cell types and conditions [56]. 
Low levels of NDRG1 have been associated positive 
patient prognosis in oesophageal squamous cell carcinoma 
and neuroblastoma, yet poor patient prognosis in gastric 
cancer, breast cancer and hepatocellular carcinoma 
[57–60]. Pre-metastatic tumours are more likely to be 
hypoxic; this potentially explains higher levels of NDRG1 
expression potentially through HIF-1α. Post translational 
modifications (PTM) could be another driver of pleiotropy. 
PTMs have been shown to influence NDRG1 cellular 
localisation [61]. Phospo-NDRG1 (Serine 330) localises 
within the nucleus, while Phospho-NDRG1 (Threonine 
346) localises within the cytoplasm. PTEN gene silencing 
has the ability to increase Thr346 phosphorylation in 
prostate cancer cells, but not in hepatocellular carcinoma 
[61]. This further supports a pleiotropic mode of action. 
Treatment with DFO and Dp44mT both increase Thr346 
and Ser330 phosphorylation [62]. Western blot analysis of 
DU145 cell lysates demonstrated two bands corresponding 
to NDRG1 one at 41kDa and one at 46kDa from DU145. 
The 41kDa band represented the truncated isoform of 
NDRG1, which is expressed in prostate cancer cell lines; 
PC3, DU145, LNCaP but not normal prostate cells PrEC 
[63]. Truncated NDRG1 has also been observed in PANC-
1 and HT-29 cells. The truncated isoform demonstrates 



Oncotarget108www.oncotarget.com

lowered nuclear localisation than the full-length isoform 
[61]. Localisation of proteins can have a major impact 
on classification as an oncogene of a tumour suppressor. 
Taken together, this suggests the truncated isoform may 
serve a role during carcinogenesis. Future studies should 
be sure to classify and distinguish between truncated and 
wild type NDRG1 isoforms. 

Uncontrolled cell growth and proliferation: Iron 
chelation attenuates cancer cell proliferation, 
enhancing signalling pathways 

Uncontrolled proliferation is the most well 
recognised hallmark of cancer. During malignant 
transformation, cancer cells acquire changes in signalling 
pathways which amplify their proliferative potential. A 
plethora of evidence has linked iron chelation mediated 
NDRG1 upregulation to the inhibition of many oncogenic 
signalling pathways including STAT3, Wnt/ β-catenin, 

RAS and AKT/PI3K [62, 64–66]. Overexpression 
of NDRG1 - driven by iron chelators Dp44mT and 
DFO - in MIAPaCa-2 pancreatic cancer cell line lead 
to a downregulation of the oncogenic TGF-β and 
RAS pathways through an upregulation of SMAD4 
(the pathway’s negative regulator). As a result, RAS 
downstream signalling molecules pERK, pSMAD2L are 
inhibited [64]. STAT3 is a transcription factor, which 
is constitutively active in tumours [67]. DFO, Dp44mT 
and DpC inhibit upstream kinases c-BCL and SRC, 
which promote STAT3 phosphorylation and subsequent 
dimerisation. As a result, STAT3 cannot promote the 
expression of its target genes: Bcl-2, cyclin D1, and c-myc 
[65]. 

NDRG1 can also suppress AKT and ERK signalling 
pathways. NDRG1 upregulation mediated through iron 
chelation has been shown to elevate PTEN expression 
levels in DU145 (prostate cancer cells), PrEC (normal 
prostate epithelial cells), but not PC3 (prostate cancer 

Figure 1: The impact of iron chelators on the hallmarks of cancer. Iron chelators have been shown to reverse many oncogenic 
signalling pathways associated with each hallmark of cancer with NDRG1 being a common thread. Generated through BioRender.com 
[47, 48].
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cells), which harbour a homozygous deletion in PTEN 
[62, 68]. While iron chelation did not increase the levels 
of AKT total protein it did increase the levels of pAKT 
(Ser473) in prostate cancer cells, whereas in Caco-
2 cells there was a decrease in pAKT (Thr308) and no 
change in (Ser473) [62, 66]. The downstream effectors 
of pAKT – p-mTOR, S6K1, S6, 4E-BP1 and cyclin 
D1 - were not activated, despite the significant rise in 
pAKT [62, 66]. Both phosphorylation sites must be 
phosphorylated for pAKT to fulfil its role as a kinase 
[69]. Moreover, DFO stimulates REDD1 gene expression, 
which inhibits mTORC1 action [66]. Despite PC3 cells 
harbouring a deletion in PTEN, iron chelation still had an 
antiproliferative effect and still blocked AKT signalling, 
so hypothetically tumours with mutations in PTEN could 
still be treated with iron chelators. DFO and Dp44mT 
altered the ratio of p-SMAD2C and p-SMAD2L through 
decreasing the levels of oncogenic p-SMAD2L and 
p-SMAD2C levels remaining the same [62]. Levels of 
pERK1/2 dropped following iron chelation, suggesting 
pERK1/2 maybe responsible for the altered p-SMAD2L/
p-SMAD2C ratio. NDRG1 overexpression mimicked the 
impact of iron chelation on AKT signalling, while NDRG1 
silencing had the reverse effect, suggesting NDRG1 
is responsible for the attenuation of AKT signalling. 
However, NDRG1 overexpression only slightly decreased 
the levels of pERK1/2 and p-SMAD2L so there may 
be another mechanism of signalling inhibition [62]. In 
contrast, treating triple negative breast cancer cells with 
DFO induces IL-6/PI3K/AKT signalling leading to an 
upregulation of iron uptake proteins Transferrin 1 and 
DMT1thus increasing iron uptake and supporting the 
pleiotropic function of NDRG1 [70]. It is possible that 
despite the capacity of NDRG1 to act as an oncogene, 
treating cells with iron chelators could return its tumour 
suppressive functions in certain conditions.

Wnt/β-catenin signalling represents another 
oncogenic signalling pathway attenuated by iron chelators. 
Deferasirox (DFX) inhibits Pyk2 phosphorylation without 
impacting total levels of Pyk2 protein, increasing β-catenin 
degradation through GSK-3β activation, thus impairing 
Wnt/β-catenin signalling [71]. Moreover, iron chelation by 
acyl hydrazones targeted β-catenin for ubiquitin mediated 
degradation even in cells with an abrogated destruction 
complex [72]. NDRG1 overexpression has been shown to 
increase β-catenin expression at the cell membrane and 
decrease β-catenin nuclear expression leading to lowered 
TCF/LEF signalling [73]. NDRG1 can interact with the 
Wnt receptor LRP6 in prostate cancer cells, inhibiting Wnt 
signalling cascade [74]. Cyclin D1 expression is a target 
gene of Wnt/ β-catenin signalling [75]. NDRG1 knockout 
lead to an increase in cyclin D1 levels [76].

It has been hypothesised that the ability of NDRG1 
to block a range of oncogenic signalling pathways 
can be attributed to EGFR signalling as many of the 
pathways described previously are influenced by EGFR 

signalling. NDRG1 overexpression driven by Dp44mT 
and DpC in PANC-1 cells increases the half-life MI6 
which facilitates EGFR degradation through lysosomal 
processing. This was dependent on PTEN expression [77]. 
Dp44mT can also prevent HER2 and HER3 activation 
leading to lower levels of EGFR/HER2 and EGF/
HER3 heterodimer formation. Strikingly, Dp44mT has 
higher antiproliferative activity than the EGFR inhibitor 
erlotinib. The IC50 of erlotinib exceeds 80 µM in PANC-
1, HT-29 and MIAPaCa-2 cells, whereas Dp44mT has an 
IC50 0.02–0.04 µM [78]. When proliferative signalling 
exceeds a certain threshold, it can induce senescence [47]. 
VLX600 is an iron chelator which can target senescent 
and actively proliferating proving that cytotoxicity driven 
by iron chelation is not always dependent on cell cycle 
progression [38]. 

Uncontrolled cell growth and proliferation: Iron 
chelation induces cell cycle arrest

The inhibition of cell proliferation pathways will 
have a domino effect across many cellular functions 
including cell cycle progression. Cells treated with iron 
chelators exhibit cell cycle arrest at two phases of the cell 
cycle: mid G1 phase and late G1/ early S phase [79, 80]. 
It has been predicted that an iron dependent checkpoint 
exists between G1 and S phase as cells depleted from iron 
will not enter S phase unless they had already reached S 
phase [79–81]. The mode of action of CDK1 is reliant on 
iron, which activates its kinase activities stimulating JAK/
STAT3 signalling. Treatment with DFO inhibits CDK1 and 
its downstream signalling pathways [82]. Iron chelation 
can also elevate levels of cyclin E - a cyclin associated 
with mid G1 phase [83]. MDA MB 453 Breast cancer cells 
treated with mimosine have lowered levels of CDK4 and 
cyclin D – another CDK/cyclin complex which manifests 
during G1 phase [80]. 

Ribonucleotide reductase (RR) is an enzyme which 
provides cells with dNTPs - the building blocks of DNA. 
RR protein expression peaks during late G1 phase and 
early S phase to initiate the rate limiting step of DNA 
synthesis [84]. Iron is an enzyme cofactor for RR. When 
the binuclear iron reacts with oxygen a tyrosyl radical 
forms which is essential for RR enzyme activity [85]. 
The iron centre is labile and therefore requires constant 
replacing and as a result RR activity is dependent on the 
labile iron supply of the cell [85]. Iron chelators DFO, 
triapine and Dp44mT are capable of inhibiting RR, but 
through different mechanisms. DFO chelates the labile 
iron pool causing the disappearance of the tyrosyl radical 
and loss of RR enzyme activity [86]. Dp44mT inhibits RR 
activity through its impact on thiol antioxidant systems: 
thioredoxin, glutaredoxin and glutathione, which play a 
key role in maintaining RR protein double bonds [87]. 
Triapine has been suggested to bind directly to a binding 
pocket on the surface of the R2 subunit of RR freeing the 
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diferric centre in mouse models [22]. Nevertheless, the net 
result is RR activity inhibition and cell cycle arrest. 

Evading growth suppression: Iron chelation 
reactivates tumour suppressor genes 

Tumour suppressor genes safeguard normal cells 
from uncontrolled growth and proliferation. During 
malignant transformation many tumour suppressor genes 
are mutated or switched off, therefore it is useful for new 
cancer therapies to be able to return of tumour suppressive 
signalling. NDRG1 is a potential tumour suppressor 
gene that has been implicated in iron chelator mediated 
cytotoxicity. NDRG1 gene expression is upregulated 
following treatment with DFO, 311 and Dp44mT and is 
attenuated when cells were supplemented with iron salts 
[88]. This suggests NDRG1 expression is stimulated by 
iron chelation rather than ROS induction. When NDRG1 
is knocked out, cells become less sensitive to iron 
chelation, suggesting a crucial role for NDRG1 in the 
mode of iron chelator action. Interestingly, overexpression 
of NDRG1 combined with iron chelation treatment does 
not further sensitise cells to iron chelators [89]. There are 
several ways iron chelation could be inducing NDRG1 
gene expression. Hypoxia-inducible factor 1α (HIF-1α) 
can promote NDRG1 gene expression through a Hif 
response element (HRE) sequence in the promoter region 
of NDRG1, however HIF-1α is not essential for NDRG1 
gene expression [90]. In HIF-1α knockout (HIF-1α-/-) 
murine embryo fibroblasts (MEFs), which lack wild type 
HIF-1α protein expression iron chelation could still induce 
NDRG1 expression under normoxic conditions but not 
hypoxic conditions [88]. SP1, CEBPα, YB-1, Smad7 and 
p53 have also been proposed as transcriptional factors 
which upregulate NDRG1 gene expression [53, 88]. 
NDRG1 expression is repressed by oncogenic C-MYC and 
N-MYC [91]. NDRG1 was upregulated in p53 wild type 
MCF7 cells and p53 deficient H1299 to same extent in 
response to DFO and 311, suggesting this is independent 
of p53 expression [88]. 

Cell cycle progression is driven by components 
which are perceived as oncogenic (cyclins and cyclin 
dependent kinases) and inhibited by tumour suppressors 
(cyclin dependent kinase inhibitors). Iron chelation can 
inhibit oncogenic cell cycle drivers (e.g. cyclin D, CDK4), 
and simultaneously activate the tumour suppressive CDK 
inhibitors driving cell cycle arrest. Interestingly, iron 
chelation can modulate p21 levels and nuclear localisation 
independently of p53 status. Dp44mT can downregulate 
p21 in MCF7 (Breast cancer) cells, upregulate p21 in SK-
MEL-28 (Melanoma) and CFPAC-1 (Pancreatic ductal 
adenocarcinoma) cells and has no effect on p21 in LNCaP 
(Prostate cancer) and SK-N-MC (Neuroepithelioma cell 
line derived from a supra orbital brain tumor) cells [92]. 
This is thought to be through MDM2. Iron chelation by 
DFO increases MDM2 gene expression, this is reversed 

by iron overload, as MDM2 expression is regulated by 
Iron Regulatory Protein 2 (IRP2) [93–95]. DFO can 
elevate the expression of p27 in serum-stimulated 3T3 
cells inhibiting CDK2/cyclin E activity and preventing 
S phase entry [81]. DFO inhibits src kinase mediated 
phosphorylation and degradation of p27 [96]. Iron 
chelation increases levels of tumour suppressor gene 
PTEN and SMAD4 (detailed above) [64]. In addition 
to this, PTEN can upregulate NDRG1 gene expression 
suggesting a positive feedback loop [97]. 

Resisting programmed cell death: Iron chelation 
induces apoptotic signalling and the unfolded 
protein response

Normal cells have built-in mechanisms to prevent 
replication across damage thus passing on mutation. 
Among these mechanisms is apoptosis, which plays a 
vital role in growth and development of multicellular 
organisms and provides protection against carcinogenesis. 
Cancer cells develop mutations which prevent normal 
apoptotic signalling. Iron chelation has been shown to 
induce apoptosis in vitro and in vivo. This is accompanied 
by an increase in the levels of pro-apoptotic proteins 
such as BAX, caspase 8 caspase 9 and caspase 3 and a 
drop in anti-apoptotic proteins such as Bcl-2 as well 
as a release of cytochrome C [34, 98–103]. The dual 
involvement of caspase 8 and 9 suggests a death receptor 
and mitochondrial apoptotic cascade. Iron chelation by 
DFO induces an increase in p53 protein levels but not the 
mRNA levels indicating post-transcriptional regulation. 
The iron chelators 311 and Dp44mT have also been 
observed to increase p53 protein expression [99, 104, 105]. 
It has been established that an excess of iron leads to a 
downregulation of p53. Iron polyporphyrin heme triggers 
p53 degradation and blocks p53-DNA interactions 
[106]. However, iron chelator Dp44mT can induce p53 
independent cell death in cell lines with non-functional 
p53 mutations such as PC-3 cells [33]. The effectiveness 
of iron chelation is therefore not dependent on p53.

Iron chelators DFO, DFX and Dp44mT induce ER 
stress through the four main modules of the unfolded 
protein response: protein kinase RNA-like endoplasmic 
reticulum kinase (PERK), inositol-requiring enzyme 
1 (IRE1), activating transcription factor 6 (ATF6) and 
CaMKII. As a result of iron chelation mediated ER stress, 
JNK signalling is activated; a crucial signalling pathway 
for ROS induced cell death, and this initiates apoptotic 
signalling, therefore iron chelation mediated apoptosis 
is induced through ER stress [103, 107]. Interestingly, 
non-ROS inducing iron chelator DFO can stimulate JNK 
signalling [108]. 

The MAPK subfamilies p38, and JNK have been 
implicated in iron chelation induced death, however 
studies have not been consistent in assigning which 
signalling module is primarily responsible. The p38 
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MAPK was shown to be the primary inducer of apoptosis 
in HL-60 cells (human promyeloid leukemic cells), as p38 
activation was observed prior to the early apoptotic traits 
and blocking p38 activity prevented the apoptotic cascade. 
Only low levels of JNK activation at the late stages of 
apoptosis was observed in HL-60 cells, whereas in gastric 
cancer cells AGS and SNU638 there was a rise in JNK 
phosphorylation and inhibiting JNK lead to a halt in iron 
chelation mediated cell death [101, 103]. 

In addition to this, iron chelation has been shown to 
induce autophagy. Interestingly, DFO and Dp44mT can 
drive LC3-I to LC3-II transformation - a marker of the 
autophagosome - through the PERK/eIF2α axis but NDRG1 
overexpression represses pro-survival autophagy [109]. 

DFO and Dp44mT induced severe phenotypic 
changes in MDA MB 231 and MDA MB 157 breast 
cancer cell lines that closely resembled non-apoptotic non-
autophagic cell death methuosis [110]. This was thought 
to be a survival adaptation allowing cells to accumulate 
nutrients extracellularly. The cells displayed lipid droplet 
accumulation, mitochondrial defects, a halt in protein 
translation and eventual cell death. These phenomena 
were undetected in any other cell lines [110]. Potentially 
different signalling pathways could trigger cell death in 
different cell lines. Another intriguing cellular response 
was silibinin induced mitophagy. Breast cancer cells 
MDA MB 231, MCF7 cells treated with silibinin suffered 
from mitochondrial fission, which lead up to mitophagy 
and apoptosis [111]. Ferroptosis is a form of cell death 
driven by iron accumulation, and ROS induction. Events 
observed during ferroptosis include lipid peroxidation, 
GPX4 depletion and cell rounding. As expected DFO can 
inhibit the onset of ferroptosis, but cannot reverse ongoing 
ferroptosis [112]. 

Enabling replicative immortality: Iron chelation 
inhibits stemness and Wnt/β-catenin signalling 

In a normal cell population, there is a limit to the 
number of achievable cell doublings before cells reach their 
natural fate – senescence. Cancer cells lose this attribute 
to enable indefinite replication often showcasing stem cell 
like features. Enhanced telomerase activity is a driver of 
cancer’s immortality. Wnt/β-catenin signalling has been 
shown to directly induce telomerase transcription [113]. As 
mentioned previously iron chelation downregulates Wnt/
β-catenin signalling and prevents nuclear translocation of 
β-catenin abrogating any changes in target gene expression. 
Iron chelation could potentially block replicative 
immortality, but this has not been directly investigated. 
Iron depletion by DFX hindered the expression of 
stemness markers Nanog, Oct3/4, Sox2, Klf4, and c-Myc 
and inhibited spherogenicity in colorectal and lung cancer 
stem cell models in vivo and in vitro. In addition to this, 
iron chelators DFO and DFX are cytotoxic to cancer stem 
cells which are resistant to classical chemotherapeutic 

drugs [114, 115]. Epigallocatechin gallate is also capable 
of inhibiting the expression of stem cell markers (CD)44, 
CD133, Oct4, ALDH1A1 and Nanog, through inhibiting 
sonic hedgehog signalling [116]. 

Sustained angiogenesis: Iron chelators 
demonstrate pro and anti-angiogenic capabilities

Angiogenesis is the creation of new blood vessels 
which sprout from pre-existing vessels improving 
access to nutrients and oxygen as well as increasing the 
likelihood of metastasis [47, 117]. Studies have been 
unclear and inconsistent regarding whether iron chelation 
can inhibit or stimulate angiogenesis. Iron chelation can 
inhibit PI3K signalling which is a proangiogenic pathway 
[64, 118]. NDRG1 upregulation has also been shown 
to downregulate MMP2 and MMP9 - key mediators of 
angiogenesis [119, 120]. On the other hand, DFO and 
Dp44mT upregulate VEGF expression through HIF- α, 
as hypoxia is a driver of angiogenesis [35, 117]. This is 
concerning as iron chelation has been proven to induce 
hypoxia [121]. Interestingly, VEGF gene expression 
is driven by HIF-α and STAT3 binding to the promoter 
region simultaneously [122]. As mentioned previously 
iron chelators prevent STAT3 activation and blocking 
STAT3 activity has been shown to inhibit VEGF gene 
expression [65, 123]. Iron chelation has been shown to 
induce macular edema in vivo [124]. This suggests iron 
chelation may induce angiogenesis. The reverse has 
been observed with natural iron chelators with silibinin, 
quercetin and epigallocatechin gallate decreasing the 
levels of angiogenesis associated proteins VEGF, MMP2, 
MMP9, and HIF-1α [125–128]. In fact, quercetin has 
been shown to inhibit angiogenic protein expression 
through STAT3 signalling inhibition [127]. The impact 
of iron chelation on angiogenesis in vivo has not been 
investigated. Iron chelators could potentially be combined 
with an angiogenesis inhibitor to prevent angiogenesis 
promotion induced by iron chelation. 

Activating migration and metastasis Iron 
chelation prevents the initiation of metastasis 
through EMT and ROCK/MLC2 and NF-kB 
inhibition

Epithelial-mesenchymal transition (EMT) is a 
morphological change occurring during embryogenesis 
and wound healing. Cancer cells exploit the EMT to drive 
their migration and invasion. During the EMT cells undergo 
morphological and biochemical changes transforming 
them from an epithelial phenotype to a mesenchymal 
phenotype. TGF-β signalling promotes EMT and migration 
during the later stages of carcinogenesis [129]. When 
HT29 (colorectal cancer) or DU145 (prostate cancer) 
cells are treated with TGF-β, they undergo EMT which is 
characterised by a more spindle-like cell morphology, the 
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presence of mesenchymal marker vimentin and a decrease 
in epithelial markers β-catenin and E-cadherin at the cell 
surface membrane. Combining TGF-β with iron chelators 
prevents TGF-β mediated EMT as displayed by a retained 
epithelial morphology and markers [76]. NDGR1 has been 
observed near the adhernes junctions and desomosomes in 
the cytoplasm so it possible that NDRG1 plays a role in cell 
adhesion through the formation of the E-cadherin/ β-catenin 
complex [56]. Another way the EMT is blocked is through 
the attenuation of NF-kB signalling. During tumorigenic 
conditions, the EMT is driven through TNF-α mediated 
LYRIC expression, which upregulates NF-kB signalling and 
in turn vimentin gene expression is induced. Treating cells 
with Dp44mT and DpC prevents this signalling cascade 
from occurring through NDRG1 upregulation. NDRG1 
overexpression inhibits NF-ĸB signalling through reducing 
NEMO expression, preventing activation of Iĸĸα/β and 
blocking nuclear localisation of p65 [130]. During the EMT 
E-cadherin is downregulated by the transcriptional factors 
SLUG, SNAIL, TWIST and ZEB2. Iron chelation driven 
NDRG1 expression downregulates SLUG and SNAIL, 
whereas NDRG1 knockout has the reverse effect [76]. 
SMAD molecules are modulators of TGF-β signalling. 
Knockout of NDRG1 increased SMAD2, pSMAD3, and 
SMAD4 and overexpression lead to decreased SMAD2 
and pSMAD3. These could mean NDRG1 regulation of 
TGF-β signalling could be through SMAD molecules [62, 
76]. On the other hand, treating aggressive breast cancer 
cells, MDA MB 231 with DFO caused them to accumulate 
iron and acquire mesenchymal markers through activating 
TNF-alpha, NF-ĸB and TGF-β signalling. DFO was still 
effective in blocking EMT in non-aggressive MCF7 breast 
cancer cells [131]. 

Dp44mT and DFO have been shown to inhibit cell 
migration through NDRG1 mediated suppression of the 
Rho associated coiled-coil-forming protein kinase 1/
myosin light chain 2 (ROCK1/pMLC2) pathway. ROCK1 
phosphorylates MLC2 and this induces cell migration 
through actomyosin contractility [132, 133]. MLC2 drives 
cell motility through linking anti-parallel actin filaments 
causing sliding and forming stress fibres [132, 134]. 
Metastasis signalling is a trigger of stress fibre formation, 
therefore inhibiting MLC2 activity may inhibit metastasis 
[135]. Iron chelation treatment in HT29, HCT116 
and DU145 cells decreases the levels of ROCK1 and 
phosphorylated MLC2 with no change in basal MLC2. 
Moreover, the levels of F-actin were also decreased 
making stress fibres less likely to form and attenuating 
cell motility and metastasis [136]. 

Genomic instability and mutation: Iron chelation 
exploits and mimics genomic instability

Many cancers have defective DNA damage repair, 
giving rise to mutants that will survive new selection 
pressures. As a result, many current cancer therapies 

exploit the genomic instability of cancer cells by causing 
irreparable DNA damage or inhibiting DNA damage 
repair eventually triggering cell death. ROS inducing 
iron chelators such as Dp44mT can induce double 
strand breaks [137–139]. Interestingly, iron chelators 
can not only induce DNA damage, but they can also 
inhibit homologous recombination repair DNA damage 
repair. Dp44mT and Triapine have been shown to inhibit 
ribonucleotide reductase preventing the production 
of the dNTP precursors of DNA damage repair [137]. 
Moreover, triapine can sensitise BRCA wildtype and 
PARP resistant epithelial ovarian cancer cells and 
xenograft mice to PARP inhibitor olaparib [140]. This 
is beneficial as reversal of BRCA mutations and a return 
of homologous recombination repair functioning have 
been observed in ovarian cancer patients [140–143]. 
Triapine combined with olaparib prevents homologous 
recombination repair of double strand breaks in wild type 
BRCA ovarian cancer cells through preventing RAD51 
and BRCA1 foci formation as well as preventing BRCA1 
from associating with the MRN complex and attenuation 
of CtIP phosphorylation [144]. In summary triapine 
blocks all olaparib driven homologous recombination 
repair in BRCA wildtype ovarian cancer cells, mimicking 
BRCAness [144, 145]. Cyclin D1 plays a role in mediating 
homologous recombination repair. Ionising radiation 
induces a cyclin D1/RAD51 interaction and inhibition of 
cyclin D1 expression sensitises cancer cells to ionising 
radiation [146]. Triapine could potentially be inhibiting 
HR through blocking cyclin D1 gene expression. 

Metabolic reprogramming: Novel iron chelator 
VLX600 targets oxidative phosphorylation

Cancer cells undergo a metabolic transformation 
known as the Warburg effect, which shifts their source 
of energy from oxidative phosphorylation to glycolysis. 
This is another trait which is exploited by iron chelators. 
VLX600 diminishes the ability of MCF7 and HCT116 
cells to undergo oxidative phosphorylation [38]. Triapine, 
DFO and CPX can inhibit oxidative phosphorylation 
but to a lesser extent. VLX600 reduces hypoxia which 
suggests it has lowered cell oxygen consumption. VLX600 
also reduces cytochrome oxidase (complex IV) activity - 
the rate limiting step of oxidative phosphorylation [38]. 
The cells in the deep layers of a tumour are vulnerable to 
even the slightest decrease in oxidative phosphorylation, 
so theoretically they would be highly sensitive to VLX600 
[38, 147, 148]. DFO can inhibit aerobic glycolysis and 
oxidative phosphorylation through ERK1/2 inhibition 
and reduce the gene expression of the 13 mitochondrial 
complex components [149]. 

Iron chelators can also impact iron metabolism. 
DFO targets ferritin for degradation through autophagy, 
whereas DFX and deferiprone target ferritin for 
proteasomal degradation [150]. Quercetin not only 
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potently forms complexes with iron but can also induce 
cellular iron deficient behaviour such as induction of 
transferrin receptor-1 and iron regulatory protein-2 
expression and lowered ferritin expression. Additionally, 
quercetin can modulate iron metabolism gene expression 
in rats decreasing expression of DMT1, Dcytb, FPN, 
and hepcidin. This decreased the level of iron absorption 
[151]. Dp44mT induced transferrin expression in DMS-
53 xenograft mice, which could potentially lead to iron 
accumulation [35]. Although counterintuitive, iron 
chelation of MDA MB 231 cells by DFO lead to iron 
accumulation through an increase in TfR1 and DMT1 
expression. This is thought to be a survival adaptation 
[152].

CONCLUSIONS AND FUTURE WORK

Iron chelation has proven to be successful on a 
range of different tumour types in vitro and in vivo as iron 
addiction is a universal cancer trait. Even cancers which 
are notoriously hard to treat due to resistance have been 
subdued by iron chelation such as androgen insensitive 
prostate cancer and cancer stem cells or cells with loss of 
p53 and PTEN function. 

Based on the data presented in this review iron 
chelators could potentially reverse many of the key 
hallmarks of cancer. Stripping the cells of iron impacts 
many cellular targets with some targets still undiscovered. 
NDRG1 has been proven to be the common link between 
the ability of iron chelators to reverse many of the hallmarks 
of cancer as overexpression of NDRG1 mimics the impact 
of iron chelation on several signalling pathways. Problems 
may arise from treating aggressive breast cancer cells 
with iron chelators. Aggressive breast cancer cells have 
demonstrated a unique reaction to iron chelators, including 
the accumulation of iron, activation of oncogenic signalling 
pathways and a methuosis-like death. Another potential 
issue is the ability of iron chelators to induce autophagy, 
which can function as a pro-survival response and a tumour 
suppressor response in cancer cells. There are still many 
unanswered questions about the mechanism of action of 
iron chelators. A consensus must be reached on the impact 
of iron chelation on angiogenesis through in vivo studies. 
As STAT3 is essential for VEGF gene expression and 
iron chelation attenuates STAT3 dimerisation and nuclear 
localisation. Studies must confirm if STAT3 is still capable 
of inducing VEGF gene expression in cells treated with iron 
chelators such as Dp44mT, as this has been confirmed with 
epigallocatechin gallate. If more evidence is found linking 
iron chelation and angiogenesis, iron chelation could 
potentially be combined with an angiogenesis inhibitor to 
prevent angiogenesis promotion. Any future studies on the 
impact of NDRG1 on patient prognosis or tumorigenesis 
must differentiate between the cleaved and full isoforms as 
well as the phosphorylation isoforms. The cleaved isoform 
is only present in cancer cells and could potentially be 

oncogenic. Although many mechanistic studies have been 
undertaken iron chelators, the complexity of cell signalling 
remains a hurdle preventing the discovery of all cellular 
targets of iron chelation. A potential way of discovering 
new targets is combining iron chelators with well-
characterised cancer therapeutics. Triapine was discovered 
to inhibit homologous recombination repair as a result of 
combinatorial studies. We propose a combinatorial study 
of iron chelators with immune checkpoint inhibitors as 
they have shown success in clinic and could uncover more 
mechanisms of action. The full impact of iron chelators 
on the two remaining hallmarks of cancer inflammation 
and immune evasion must be established. Moreover, 
iron chelation has multiple targets within a cancer cell, 
so the question lies whether the ideal cancer therapy is 
overarching or specific. 

Note

References [153–218] are present in the main article, 
whereas their citations are called out in the Supplementary 
Materials.
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