
J A C C : C A R D I O O N C O L O G Y V O L . 4 , N O . 5 , 2 0 2 2

ª 2 0 2 2 T H E A U T HO R S . P U B L I S H E D B Y E L S E V I E R O N B E H A L F O F T H E A M E R I C A N

C O L L E G E O F C A R D I O L O G Y F O U N DA T I O N . T H I S I S A N O P E N A C C E S S A R T I C L E U N D E R

T H E C C B Y - N C - N D L I C E N S E ( h t t p : / / c r e a t i v e c o mm o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 / ) .
STATE-OF-THE-ART REVIEW
Atherosclerosis With Immune Checkpoint
Inhibitor Therapy
Evidence, Diagnosis, and Management:
JACC: CardioOncology State-of-the-Art Review
Giselle Alexandra Suero-Abreu, MD, PHD,a Markella V. Zanni, MD,b Tomas G. Neilan, MD, MPHa,c
ABSTRACT
ISS

Fro
bM

Ma

Ma

Th

ins

vis

Ma
As the clinical applications of immune checkpoint inhibitors (ICIs) expand, our knowledge of the potential adverse

effects of these drugs continues to broaden. Emerging evidence supports the association between ICI therapy with

accelerated atherosclerosis and atherosclerotic cardiovascular (CV) events. We discuss the biological plausibility and

the clinical evidence supporting an effect of inhibition of these immune checkpoints on atherosclerotic CV disease.

Further, we provide a perspective on potential diagnostic and pharmacological strategies to reduce atherosclerotic

risk in ICI-treated patients. Our understanding of the pathophysiology of ICI-related atherosclerosis is in its early

stages. Further research is needed to identify the mechanisms linking ICI therapy to atherosclerosis, leverage the

insight that ICI therapy provides into CV biology, and develop robust approaches to manage the expanding

cohort of patients who may be at risk for atherosclerotic CV disease. (J Am Coll Cardiol CardioOnc 2022;4:598–615)

© 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C ancer immunotherapy has changed the land-
scape of oncology, amplified by the emer-
gence of immune checkpoint inhibitors

(ICIs).1-4 Immune checkpoints are molecules
expressed by multiple immune regulators to activate
or inactivate the immune system. However, cancer
cells can also express these molecules to avoid detec-
tion by the immune system. Current Food and Drug
Administration (FDA)–approved ICIs are monoclonal
antibodies that block these immune checkpoints to
reduce the negative regulatory signals and enhance
the positive co-stimulatory signals that modulate
cytotoxic T cell recognition against tumor neoanti-
gens.2 ICIs blocking the cytotoxic T-lymphocyte
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associated protein 4 (CTLA-4), programmed cell
death protein 1 (PD-1), and programmed cell death
ligand 1 (PD-L1) pathways have become pillars in the
treatment of numerous malignancies when used
either alone or in combination regimens.5

Beyond these, multiple other immune check-
points are being targeted for cancer therapy. Some
of these are more recently FDA-approved (lympho-
cyte-activation gene 3 [LAG-3]), and many others
are in the later stages of clinical development such
as those targeting CD47, T cell immunoglobulin and
mucin-domain containing-3 (TIM-3), inducible T cell
costimulatory (ICOS), T cell immunoglobulin and
ITIM domain (TIGIT), B7 homolog 3 protein (B7-H3),
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HIGHLIGHTS

� Immune checkpoint inhibitor (ICI) therapy
is associated with an increased risk of
atherosclerotic CV events likely mediated
by accelerated atherosclerosis.

� The pathophysiological mechanism of
ICI-related atherosclerosis is incom-
pletely understood but may be linked to
inflammation and immune dysregulation.

� There is a need for heightened awareness
of potential atherosclerotic CV events
during and after ICI treatment.

� Optimization of CV risk factors and
pharmacological interventions may help
mitigate atherosclerotic CV risk and
improve the prognosis of ICI-treated
patients.

AB BR E V I A T I O N S

AND ACRONYM S

ASCVD = atherosclerotic

cardiovascular disease

CTLA-4 = cytotoxic

T-lymphocyte associated

protein 4

ICI = immune checkpoint

inhibitor

IFN = interferon

IL = interleukin

irAE = immune-related adverse

event

PD-1 = programmed cell death

protein 1

PD-L1 = programmed cell

death ligand 1

TNF = tumor necrosis
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V-domain immunoglobulin suppressor of T cell
activation (VISTA), and B and T lymphocyte atten-
uator (BTLA). There are 10 ICIs approved by the U.S.
FDA: 2 CTLA-4–blocking antibodies (ipilimumab,
tremelimumab), 4 PD-1–blocking antibodies (nivo-
lumab, cemiplimab, dostarlimab, and pem-
brolizumab), 3 PD-L1–blocking antibodies
(atezolizumab, avelumab, durvalumab), and 1 tar-
geting LAG-3 (relatlimab).1,2 Given the effectiveness
of these therapies, the number of approvals for ICIs
has rapidly increased. As of June 2022, there were
approximately 125 indications for ICIs in adjuvant
and neoadjuvant settings, including some as first-
line therapy, in more than 20 distinct cancer
types.6 This number will increase as multiple ICIs
targeting over 300 different proteins are being
tested in more than 5600 clinical trials. It is esti-
mated that approximately 36% of U.S. cancer pa-
tients are currently eligible for ICI therapy.7,8

Because immune checkpoints also regulate autor-
eactivity, it is not surprising that ICIs have been
associated with disinhibited cytotoxic T cells off-
targeting healthy tissue in multiple organs, known
as immune-related adverse events (irAEs). These
irAEs are clinically diverse, may arise in up to 70%
of patients, and are typically mild and easy-to-
manage events.9 However, disabling or life-
threatening high-grade events, such as ICI-
associated cardiotoxicities, can also occur and
significantly impact both cancer therapy and overall
outcomes. Our understanding of the range and
incidence of cardiotoxicity associated with ICI use
has improved. For example, the frequency
of cardiac events in patients treated with an
ICI has, until recently, been underestimated
but studies now show an incidence of major
adverse cardiac events up to 10.3%.10-12

Additionally, the understanding of the
breadth of ICI-related toxicities and their
potential cardiovascular (CV) effects have
increased. Initially, ICI-related cardiac
events focused on myocarditis; however,
recent data have expanded this association
to include heart failure, cardiomyopathy,
conduction abnormalities, venous throm-
bosis, pericardial disease, vasculitis, and the
focus of this review, atherosclerotic-related
events.10,11,13-16 Given the success of ICIs
across many cancers, the increased risk of
aggravated atherosclerosis and atheroscle-

rotic cardiovascular disease (ASCVD) in ICI-treated
patients, particularly in adjuvant and neoadjuvant
settings, is potentially important.

KEY POINTS.

� ICIs have revolutionized the field of oncology,
becoming the standard of care for numerous
malignancies.

� The rapidly expanding use of ICIs has revealed
many possible irAEs, including several ICI-related
cardiac events beyond the rare incidences of
myocarditis.
ICI-ASSOCIATED ASCVD: AN OVERVIEW

Several established cancer therapies such as radiation
and targeted therapies have been shown to increase
atherosclerosis and related events.17,18 Evolving data
suggest that current FDA-approved ICIs may accel-
erate atherosclerosis and lead to an increase in
atherosclerosis-related CV events such as acute
myocardial infarction (MI), stroke, and peripheral
arterial disease.19 Heart disease is a leading cause of
death in cancer survivors, and cancer and cardiovas-
cular disease (CVD) share risk factors such as aging,
diabetes, hypertension, cardiometabolic dysfunction,
physical inactivity, tobacco use, and chronic low-
grade inflammation.20,21 Additionally, cancer,
beyond shared risk factors and cancer therapies, is
being studied as a potential independent risk factor
for the development of heart disease.22,23 Accord-
ingly, as the ICI approvals expand, especially to
adjuvant and neoadjuvant care, and the overall sur-
vival time of patients receiving ICIs improves, the
potential risk of CV events in this population needs to
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be considered. This risk is supported by a deep un-
derstanding of the role of these ICIs in
critical atherosclerosis pathways, as illustrated in
Central Illustration.6,8 Specifically, robust basic
cellular and animal data demonstrate that the im-
mune checkpoint proteins, which are currently tar-
geted in FDA-approved ICI-approved therapies
(CTLA-4, PD-1, LAG-3, and PD-L1), are also critical
negative regulators of atherosclerosis.24-26 Thus, their
blockade may lead to accelerated atherosclerosis by
enhancing effector T cell responses, limiting regula-
tory T (Treg) cell function, and infiltrating the
vascular endothelium.25-29 Furthermore, a growing
body of clinical evidence supports these preclinical
findings by showing that ICI therapy leads to the
accelerated progression of atherosclerotic plaque,
thereby increasing the risk of ASCVD.30-32 In this re-
view, we highlight the existing evidence on the
impact of ICIs on coronary atherosclerosis and
describe the molecular mechanisms linking inflam-
mation and cell-mediated immunity to atherogenesis
in the context of ICI therapy. We discuss potential
diagnostic and therapeutic approaches to reduce the
impact of ASCVD on ICI-treated patients with cancer—
and the clinical implications for optimal CV risk
management and cardio-oncology care in ICI-treated
patients during and after immunotherapy.

KEY POINTS.

� Cancer and CVD share many risk factors, and heart
disease is a leading cause of morbidity and mor-
tality in cancer survivors.

� Emerging robust preclinical and clinical evidence
associates ICIs with progression of atherosclerosis
and increased ASCVD.
THE ROLE OF INFLAMMATION IN

ATHEROSCLEROSIS

Decades of insightful basic, translational, and clinical
research have established atherosclerosis as a chronic
inflammatory disease driven by an imbalance in lipid
CENTRAL ILLUSTRATION Continued

Immune checkpoint inhibitors (ICIs) cause an enhanced immune respons

atherosclerosis, with the strongest evidence for the co-inhibitory blocka

protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and the co-sti

family-related protein (GITR) pathways. Costimulatory molecules were B

tumor necrosis factor family-related protein ligand; ICAM¼ intracellular

3 ¼ lymphocyte activation gene 3; MHC ¼ major histocompatibility com

SIRP ¼ signal-regulatory protein; TCR ¼ T cell receptor; TGF ¼ transfo

domain-3; TNF ¼ tumor necrosis factor; Treg ¼ regulatory T; VCAM ¼
metabolism, vascular function, and a maladaptive
immune response.33 At the broadest level, activated
M1 macrophages initiate and sustain inflammation,
whereas activated M2 macrophages are linked to
inflammation resolution. M1 macrophages promote
the accumulation of intracellular lipids and the secre-
tion of proinflammatory factors such as tumor necrosis
factor (TNF)-a, interleukin (IL)-1b, and IL-6.
Conversely, M2 macrophages (associated with IL-4
and IL-13) promote the clearance of lipids and
the secretion of anti-inflammatory factors such as IL-
10 and collagen.34,35 These M1/M2 macrophage phe-
notypes are present in human and mouse atheroscle-
rotic lesions, and their balance is a dynamic process
recognized as an essential driver in plaque formation,
progression, and vulnerability. ICIs may accelerate
atherosclerosis and increase ASCVD through inflam-
mation and immune activation. This is similar to other
established disease models of ASCVD such as HIV.
Specifically, studies have shown that patients with HIV
with undetectable viral loads have a heightened CVD
risk that is not fully accounted for by traditional risk
factors, with a persistent immune activation and
inflammation, leading to the progression of athero-
sclerosis.36-38 Moreover, studies using coronary
computed tomography (CT) angiography have
described an association between arterial inflamma-
tion and increased noncalcified plaque (NCP) and high-
risk plaque (HRP) morphology among treated HIV pa-
tients with low Framingham Risk Score and without
known CVD as compared with control subjects.39,40

The overlap here is not insignificant as the same
immune checkpoints targeted in cancer likely also
play a key role in HIV, and these patients have
increased CTLA-4 and PD-1 on T cells.41 Further, HIV is
known to evade the immune system by promoting
exhaustion, similar to how cancers elude immune
eradication.2,41

Studies such as CANTOS (Canakinumab Anti-
inflammatory Thrombosis Outcome Study), COLCOT
(Colchicine Cardiovascular Outcomes Trial), and
LoDoCo (Low-dose Colchicine) have suggested
e and persistent inflammation. Several pathways are being implicated in post-ICI aggravated

de via the cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death

mulatory agonism of CD40/CD40L and glucocorticoid-induced tumor necrosis factor

7.1¼ CD80 and B7.2 ¼ CD86. APC ¼ antigen-presenting cell; GITRL ¼ glucocorticoid-induced

adhesion molecule; ICOS ¼ inducible costimulatory; IFN ¼ interferon; IL ¼ interleukin; LAG-

plex; MI ¼ myocardial infarction; MMP ¼ matrix metalloproteinase; NK ¼ natural killer;

rming growth factor; Th1 ¼ T helper 1; TIM-3 ¼ T cell immunoglobulin and mucin containing

vascular cell adhesion molecule.



TABLE 1 Preclinical Studies on the Role of CTLA-4, PD-1, and PD-L1/2 in Atherosclerosis

Model Atherosclerosis Effect on plaque

Pdl1/2-/- Ldlr-/- mice25 [ [ CD4þ/CD8þ T
[ Macrophages

Pd1-/- Ldlr-/- mice27 [ [ CD4þ/CD8þ T
[ Macrophages
[ Apoptotic cells

Antibody-mediated PD-1 inhibition in
Ldlr-/- mice27

[ [ CD4þ/CD8þ T

Abatacept in ApoE3 Leiden mice55 Y Y Intimal thickening
Y Intimal leukocytes

Anti-CTLA-4 antibody in ApoE3 Leiden
mice55

[ [ Intimal thickening
¼ intimal leukocytes

CTLA-4 transgenic T cell–specific
constitutive expression (CTLA-4-Tg)/
Apoe(-/-) mice29

Y Y CD4þ T cells
Y Macrophages

Anti-CTLA-4 antibody in Ldlr-/- mice56 [ [ Advanced lesions
[ Necrotic core
[ CD3þ T cells

Combined anti-CTLA-4 and anti-PD-1
antibodies in Ldlr-/- mice57

[ [ CD3þ/CD8þ T[ Advanced lesions
[ Necrotic core
[ Apoptotic macrophages

Up arrows indicate an increase in atherosclerotic burden; down arrows indicate a decrease in atherosclerotic
burden.

CTLA-4 ¼ cytotoxic T-lymphocyte associated protein 4; PD-1 ¼ programmed cell death protein 1;
PD-L1 ¼ programmed cell death protein ligand 1.
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that therapeutic targeting of some inflammatory
and immune-related pathways may reduce
atherosclerosis-related CV events.42 Therefore, un-
derstanding this mechanistic diversity and immune
dysregulation at the plaque site is crucial in identi-
fying immunotherapeutic targets for CVD beyond the
standard of care management.

KEY POINTS.

� Atherosclerosis is a complex process of persistent
inflammation and immune activation.

� An imbalance between proinflammatory and anti-
inflammatory factors is an essential driver of
atherosclerotic plaque formation, progression, and
rupture, which is potentially influenced by the ef-
fect of ICIs.

THE ROLE OF IMMUNITY IN

ATHEROSCLEROSIS

While B and T lymphocytes both contribute to
plaque development and progression, atherosclerosis
is mainly considered a T cell-driven disease.43 Inno-
vative single-cell proteomic and transcriptomic ana-
lyses of murine and human atherosclerotic lesions
have helped characterize the immune cell repertoire
and the distinct molecular features of innate and
adaptive immune cells associated with stable and
vulnerable lesions.44-47 For example, single-cell RNA
studies in human atherosclerotic carotid lesions from
patients with clinically symptomatic disease identi-
fied activated T cells such as CD8þ cytotoxic T lym-
phocytes and CD4þ lymphocytes (T helper 1 [Th1]
cells, Th2 cells, Th17 cells, and Treg cells).26,48 Th1
cells are the predominant cell type found in plaques
and have been associated with proatherogenic cyto-
kines such as interferon gamma (IFN-g) and TNF-a.49

In mouse studies, TNF-a is linked to advanced
necrotic plaques, and Th1 inhibition is atheropro-
tective through reduced IFN-g levels in plaques.
Another well-defined atheroprotective role is related
to Treg cells through secretion of transforming
growth factor b and IL-10 thus promoting the anti-
inflammatory macrophage phenotype.50,51 Studies
also showed that Treg cells constitutively express
CTLA-4, and their quantity is inversely correlated
with human plaque size and vulnerability.52 Addi-
tionally, plaques of ICI-treated patients contain T cell
subsets with markers of cell exhaustion (high levels of
PD-1 and perforin as well as transcriptional signatures
for PDCD1 and LAG-3) and macrophages with acti-
vated phenotypes associated with plaque vulnera-
bility.26 Because exhausted T cells expressing PD-1
exist in atherosclerotic plaques, it suggests that PD-1
inhibitors may activate T cells in plaques and aggra-
vate atherosclerosis.53

KEY POINTS.

� Immune checkpoint proteins have a role in
the crosstalk between and within immune and
nonimmune cells that modulate atherogenesis.

� The immune checkpoint proteins that are inhibi-
ted to treat cancer (CTLA-4, PD-1, PD-L1, and
LAG-3) are also critical negative regulators of
atherosclerosis.

IMMUNE CHECKPOINTS AND THE

PATHOPHYSIOLOGY OF ICI-RELATED

ATHEROSCLEROTIC CVD

Numerous studies have explored immune check-
points as potential therapeutic targets for athero-
sclerosis and the first 2 therapeutic strategies
translated from bench to bedside are the antibody-
mediated blockade of CTLA-4 and the PD-1–PD-L1
dyad.54 Genetic knockout models and pharmacolo-
gical modulation of the ICI target proteins PD-1,
PD-L1, and CTLA-4 have been used to elucidate the
role of these co-inhibitory proteins in experimental
atherogenesis (Table 1).

Mechanistically, lower levels of the PD-1–PD-L1
dyad are linked to higher coronary atherosclerotic
plaque burden, in which both PD-1 and PD-L1
suppress T cell–driven inflammation in plaques and
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plaque progression.28 Gotsman et al25 studied the role
of the PD-L1/2 pathway in regulating proatherogenic
T cell responses by comparing atherosclerotic lesion
burden and phenotype in hypercholesterolemic PD-
L1/2-/-LDLR-/- mice and LDLR-/- control subjects. They
showed that PD-L1/2 deficiency correlated with
increased atherosclerotic burden throughout the
aorta and increased numbers of CD4þ and CD8þ T
cells in the lesions.25 Similarly, a study by Bu et al27

showed that PD-L1/2-/-Ldlr-/- mice developed
larger lesions with abundant CD8þ T cells and mac-
rophages. Additionally, these studies showed that
PD-L1/2-/-Ldlr-/- cells were more susceptible to
antigen-presenting cell–induced proliferation, had an
activated phenotype, and expressed higher levels of
proatherosclerotic cytokines (IFN-g and TNF-a).25,27

Further, expression of PD-1 and PD-L1 on human pe-
ripheral blood mononuclear cells by flow cytometry
was significantly down-regulated on T cells and
myeloid dendritic cells in 76 patients with coronary
artery disease when compared with healthy control
subjects.28 These findings indicated the critical role of
the PD-1/PD-L pathway in down-regulating proa-
therogenic T cell response and atherosclerosis by
limiting antigen-presenting cell–dependent T cell
activation.

The effects of the CTLA-4 pathway in atheroscle-
rosis were also studied in a transgenic (CTLA-4-Tg)/
Apoe(-/-) mouse model in which constitutive over-
expression of CTLA-4 in T cells reduced atheroscle-
rotic lesion formation and intraplaque accumulation
of macrophages and CD4þ T cells.29 In addition, sys-
temic treatment with abatacept, a soluble CTLA-4Ig
fusion protein that prevents CD28-CD80/86 co-
stimulatory T cell activation, reduced accelerated
atherosclerosis development and prevented CD4 T
cell activation in hypercholesterolemic ApoE3*Leiden
mice.55 Poels et al56 showed that antibody-mediated
inhibition of CTLA-4 Ldlr-/- mice accelerated the
progression of atherosclerosis by inducing a pre-
dominantly T cell-driven endothelial inflammation
and resulted in a 2-fold increase in plaque area with
an advanced, clinically unfavorable phenotype.
Similarly, T cell–mediated inflammation, vascular
dysfunction, and plaque progression were seen
with dual antibody-mediated inhibition of CTLA-4
and PD-1 on atherosclerosis in hyperlipidemic mice
(Ldlr-/- and Apoe-/- mice) using a combination of
immunological and 2-deoxy-2-[fluorine-18] fluoro-
D-glucose (18F-FDG) positron emission tomography–
CT (PET–CT) techniques.57

In summary, these experimental models of
atherosclerosis have elucidated that the PD-1–PD-L1
dyad and CTLA-4 reduce T cell–driven inflammation,
thereby mitigating plaque development and pro-
gression. Therefore, their inhibition in current onco-
logical immunotherapies may activate T cells in
plaques and aggravate atherosclerosis in these pa-
tients. While the molecular pathways of ICI-
associated atherosclerosis beyond PD-1, PD-L1, and
CTLA-4 are incompletely understood, approaches
targeting novel co-stimulatory and co-inhibitory im-
mune checkpoints, are currently under investigation
(Table 2).58-60

Importantly, not all ICIs that are targeted for can-
cer are likely to aggravate atherosclerosis, and some
may prevent the progression of atherosclerosis. There
are significant data on the role of CD47, a critical
macrophage-mediated immune checkpoint associ-
ated with efferocytosis, in atherosclerosis regression.
Specifically, CD47 is increased in cancer and is being
targeted in several cancer trials.61-63 CD47 is also
increased in the atherosclerotic plaque and treatment
with CD47 inhibitory antibodies in mouse models
reduced atherosclerosis by restoring efferocytosis
and removing diseased vascular smooth muscles and
macrophages.32,64,65 In addition, CD47 inhibition
down-regulated genes implicated in the macrophage
response to IL-1 and IFN-g, leading to a reduction in
atherosclerotic inflammation in PET–CT imaging.64

However, in contrast, a study by Engelbertsen
et al66 observed increased plaque formation in CD47-
deficient mice compared with wild-type control mice
via activation of dendritic cells, T cells, and natural
killer cells. Clinically, there are some early supportive
data toward an atheroprotective role via CD47 in-
hibition.66 In a small, single-institution retrospec-
tive analysis of data from a phase 1b-2 trial of a
CD47-targeting macrophage checkpoint inhibitor
(magrolimab) there was a reduction in arterial 18F-
FDG uptake suggestive of suppressed vascular
inflammation. However, further work is warranted,
as this study was limited by the inclusion of only a
small number of patients at a single institution, and
the study was neither randomized nor placebo
controlled.61

KEY POINTS.

� Robust preclinical data show that ICI therapies
modulate T cell activation—via either co-inhibitory
signal blockade or co-stimulatory signal agonism—

and promote atherosclerosis.
� Future translational and clinical studies are

warranted to elucidate the inflammatory and
immune biomarkers linked to ICI-associated
atherosclerosis.



TABLE 2 Immune Checkpoint Targets Associated With Atherosclerosis

Immune
Checkpoint Class ICI Target Role on Immunitya Role on Atherosclerosisa Effect of ICIb Therapies

Co-inhibitory PD-1/PD-L1122-126 Y Immunity
[ Self-tolerance
Y T cell activation
[ APC apoptosis
Y Treg apoptosis

Atheroprotective25-28,47,127 [ Plaque size
[ Plaque progression
[ CD4þ/CD8þ activation
[ Macrophage activation
[ TNF-a
[ Intracellular cholesterol

Anti-PD-1:
Nivolumabc Pembrolizumabc

Cemiplimabd

Spartalizumabd

Camrelixumabd Tislelizumabd

Anti-PD-L1:
Atezolizumabc

Avelumabc

Durvalumabc

Cosebelimabd

Sugemalimabd

CX-072d

Co-inhibitory CTLA-4128,129 Atheroprotective25,29,55,56,130,131 [ Plaque size
[ Plaque progression
[ Endothelial activation
Y Collagen
[ Necrotic core

Ipilimumabc

Tremelimumabd

Zalifrelimabd

Co-inhibitory TIM-360,132,133 Y Immunity
Y Th1 apoptosis
Y CD8þ apoptosis
Y NK cells

Atheroprotective134,135 [ Plaque size
Y Treg intraplaque
[ Macrophage activation
[ IFN-g
[ TNF-a

Cobolimabd

MBG453d

BMS-986258d

BGB-A425d

TSR-022d

Sym023d

Co-inhibitory LAG-360,136 Y Immunity
Y T cell suppression
[ Treg

Likely atheroprotective137 Y CD4þ/CD8þ activation
Y NK cells
Y DC cells
Synergistic with PD-1

Relatlimabd

Eftilagimod alphad

Favezelimabd

Tebotelimabd

LAG525d

REGN 3767d

Co-stimulatory GITR/GITRL138,139 [ Macrophage
[ CD4þ/CD8þ

Y Treg
[ IFN-g
[ IL-2
[ ICAM-1
[MMP

Proatherogenic140,141 Y Plaque size
[ Plaque stability
Y Macrophages activation
Y T cell recruitment
Y Necrotic core

AMG228d

MEDI-1873d

BMS-986156ad

Co-stimulatory CD40/CD40L142,143 [ B cells
[ APCs
[ IFN-g
[ TNF-a
[ IL-6
[ IL-1b
[ VCAM-1
[ MMP
[ Selectin

Proatherogenic93,144,145 [ Plaque stability
Inconsistent plaque size
Y Atherothrombosis
Y T cells
Y Th1
Y IFN-g

Selicrelumabd

Dazetuzumabd

CP-870893d

JNJ-107d

APX005Md

Co-stimulatory CD27/CD70146,147 [ T cell expansion
[ Treg survival
[ IFN-g
[ Efferocytosis

Atheroprotective148,149 [ Plaque size
[ Plaque progression
[ Plaque inflammation
Y oxLDL removal

Anti-CD27:
Varlilumabd

AMG-172d

Anti-CD70: Cusatuzumabd

BMS-936561163d

Co-stimulatory ICOS/ICOSL 150,151 [ Cytotoxic T cell
[ Effector T cell
[ Treg activity
[ IL-4, IL-5
[ TNF-a, IL-10

Atheroprotective152-154 [ Plaque size
Y Treg intraplaque
[ IFN-g
Y IL-10

ICOS agonists:
Feladilimabd

Vopratelimabd

ICOS antagonists:
MEDI-570d

KY1044100

Macrophage
signal

CD4761,155 [ Efferocytosis
[ Phagocytosis
Y Inflammation
SIRP-a blockade

Likely
atheroprotective62,64-66

Y Macrophage response to IL-b and IFN-g
Y Vascular inflammation
[ Clearance of VSMCs

Magrolimabd

SRF231d

AO-176d

CC-900021d

aIC/pathway effect under normal conditions. bEffect for the immune checkpoint target from preclinical/clinical data as of June 2022. cFood and Drug Administration approved. dInvestigational.

AGEN ¼ Agenus; AMG ¼ Amgen; AO ¼ Arch Oncology; APX ¼ Apexigen; APC ¼ antigen-presenting cell; BGB-A ¼ BeiGene; BMS ¼ Bristol Myers Squibb; CC ¼ Celgene; CTLA-4 ¼ cytotoxic T-lymphocyte
associated protein 4; CX ¼ CytomX; DC¼ dendritic cell; ICAM ¼ intracellular adhesion molecule; ICI ¼ immune checkpoint inhibitor; IFN ¼ interferon; IL ¼ interleukin; JNJ¼ Johnson & Johnson; KY¼ Kymab;
MMP ¼ matrix metalloproteinase; NK ¼ natural killer; oxLDL ¼ oxidized low-density lipoprotein; PD-1 ¼ programmed cell death protein 1; PD-L1 ¼ programmed cell death ligand 1; REGN ¼ Regeneron
Pharmaceuticals; SIRP ¼ signal regulatory protein; SRF ¼ Surface Oncology; Sym ¼ Symphogen; Th1 ¼ T helper 1; TNF ¼ tumor necrosis factor; Treg ¼ regulatory T; VCAM ¼ vascular cell adhesion molecule;
VSMC ¼ vascular smooth muscle cell.
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� Not all ICIs will accelerate atherosclerosis and
some may reduce atherosclerosis.

CLINICAL IMPLICATIONS OF ICI THERAPY

AND ATHEROSCLEROTIC CV EVENTS

There are limited clinical data on the effects of
FDA-approved ICI therapies on atherosclerotic le-
sions and on the incidence of atherosclerosis-
related CV events. Initially, data were from case
reports and small cohort observational studies.67-73

In 2017, Tomita et al67 reported the first case of
acute coronary syndrome as a possible ICI-related
irAEs in a lung cancer patient receiving nivolumab
who was concomitantly diagnosed with acute oc-
clusion of the right coronary artery and ICI-induced
interstitial pneumonia.67 In contrast to this finding,
Gelsomino et al68 published an observational series
of 11 patients also receiving nivolumab over
8 weeks and showed that 3 (27.3%) patients had a
significant improvement in atherosclerotic plaque
burden and 7 (63.6%) had no significant changes,
while only 1 (9.1%) patient showed a modest wors-
ening of atherosclerotic lesions.68 A follow-up
report was published on 1 of the 3 patients who
showed improvement but subsequently had a can-
cer relapse with new complicated aortic plaques
seen in diagnostic imaging. After rechallenging with
the anti-PD-L1 antibody atezolizumab, the patient
had a further reduction and nearly complete reso-
lution of the aortic plaques seen at relapse.74

However, Kwan et al69 reported accelerated
atherosclerosis in a patient who developed 2 non–
ST-segment elevation MIs during pembrolizumab
treatment with repeat coronary angiography
showing a rapid progression of the left circumflex
stenosis (from 50% to 95%) within 2 months.69

Additionally, an autopsy study of 11 cancer pa-
tients treated with an ICI compared with 11 control
subjects showed no significant differences in the
atherosclerotic burden between the 2 groups, but
immune checkpoint inhibition was associated with a
markedly increased ratio of CD3þ T cells to CD68þ

macrophages.75

Recently, several studies have investigated the
association between ICI therapy, atherosclerosis, and
rates of ASCVD, as summarized in Table 3. Initial
small retrospective studies with shorter follow-ups
showed no increase in ASCVD with ICI ther-
apy.68,71,75 Additionally, a large pharmacovigilance
study using VigiBase, the World Health Organiza-
tion’s global database of suspected novel adverse
drug effects, reported the incidence of MI to be 0.53%
and cerebral arterial ischemia to be 0.62% in ICI-
treated patients. These rates were not higher than
those reported in the full World Health Organization
global health data collections.11 Subsequently, a few
larger retrospective studies and meta-analyses also
found low rates of ASCVD post-ICI.76-78

Conversely, other larger single-center retrospective
studies and meta-analyses have increasingly shown a
higher incidence of atherosclerosis-related CV events
in patients receiving ICI therapy.12,30-32,72,79-81

For example, a meta-analysis of 63 randomized tri-
als including 32,518 ICI-treated patients showed an
incidence of MI and cerebral ischemia per 1,000
patients of 7.4 (95% CI: 6.0-9.1) and 8.8 (95%
CI: 7.2-10.7), respectively. The study also found that
ICIs significantly increased the risk of MI (OR: 1.51)
and cerebral arterial ischemia (OR: 1.56) compared
with control subjects.81 Laenens et al12 also studied
672 ICI-treated patients over a median follow-up of
13 months and found a 10.3% incidence of CV
events (including MI, heart failure, and cerebral
ischemia) with an overall mortality of 54.9% and a
CV death rate of 1.9%.

In a retrospective matched cohort study, Drobni
et al31 reported an incidence of 4.2% of a combined
endpoint of MI, coronary revascularization, and
ischemic stroke in 2,842 patients. The incidence of
atherosclerotic CV events (including MI, coronary
revascularization, and ischemic stroke) was 3 times
higher after starting an ICI (HR: 3.3; 95 CI: 2.0-5.5;
P < 0.001). In a case crossover study, atheroscle-
rotic CV events increased from 1.37 to 6.55 per 100
person-years at 2 years (adjusted HR: 4.8; 95 CI: 3.5-
6.5; P < 0.001). In this study, combination ICI use
was not associated with a higher rate of athero-
sclerotic CV events; however, only 6.9% of the pa-
tients were treated with dual ICI therapy.
Interestingly, this study showed that the incidence
of other irAEs or the presence of conventional risk
factors such as age, sex, body mass index, baseline
diabetes, prior CV events, or cancer had no signifi-
cant impact on the risk for an atherosclerotic CV
event.31 This suggests that other pathophysiological
factors potentially related to inflammation and im-
mune activation may mediate the effects of ICIs on
plaque lesions and the development of ICI-related
atherosclerotic CV events.

KEY POINTS.

� Increasing clinical data suggest the association
between ICI therapy and ASCVD, potentially
mediated by an accelerated progression of
atherosclerosis.



TABLE 3 Summary of Clinical Studies of ICI Therapy and Atherosclerotic CV Events

First Author (Year) Study Sample Design/Findings Main ICI Effect

Hu et al
(2017)76

Meta-analysis
(22 studies)

4,828 1.0% incidence of MI (95% CI: 0%-3.8%) and 2.0% of stroke
(95% CI: 0%-13.0%)

Y ASCVD rate

Gelsomino et al
(2018)68

Single-center
observational

38 29% (n ¼ 11) patients with plaques; 27.3% decreased, 63.6% had
no changes, 9.1% had plaque progression post-ICIs

Y Plaque burden

Salem et al
(2018)11

Multicenter registry
(Vigibase)

31,321 irAEs Incidence of MI was 0.53%, and cerebral arterial ischemia was
0.62%, similar to non-ICI patients.

Y ASCVD rate

Newman et al
(2019)75

Single center
Comparative

22 Autopsy-based: no difference in plaque burden between
matched control subjects and post-ICI patients but higher
ratio of CD3þ T cells to CD68þ macrophages in post-ICI
plaques

¼ Plaque burden
[ CD3þ/CD68þ

Nichetti et al
(2020)156

Post hoc prospective
observational

217 6.5% incidence of acute vascular events (2 ACS, 9 strokes,
3 visceral arterial thromboses) within 16 mo

[ ASCVD rate

Chitturi et al
(2019)71

Single center
Retrospective

252 135 post-ICI: 37.8% incidence of CV irAEs; no increase in MACE
(CV death, MI, stroke, or HF hospitalization) post-ICIs within
6 mo (HR: 1.2; 95% CI: 0.6-2.4; P ¼ 0.66); pretreatment or
combined ICI and VEGFIs or TKIs had an increased risk of
MACE (HR: 2.15; 95% CI: 1.05-4.37; P ¼ 0.04)

No increase ASCVD

Wang et al
(2019)32

Meta-analysis
(125 studies)

20,128 9.8% incidence of treatment-related deaths due to CV irAEs,
including MI, HF, and CM

[ ASCVD rate

Bar et al
(2019)72

Single center
Retrospective

1,215 Single cohort: acute vascular events within 6 mo post-ICIs: 2.6%
(95% CI: 1.8%-3.6%); event rate was 5.2% (95% CI: 2.8%-
9.2%); acute vascular events incidence higher within 6 mo
(OR: 3.49; 95% CI: 1.45-8.41; P ¼ 0.002).

1% of cases were MI or ischemic stroke. OS worse in post-ICI
patients with acute vascular events (3 mo vs 14 mo; HR: 3.01;
95% CI: 2.07-4.39; P < 0.0001).

[ ASCVD

Drobni et al
(2020)31

Single center
Retrospective

5,684 Matched cohort, case crossover, and imaging study: higher risk
of acute vascular events in ICIs (HR: 3.3; 95% CI: 2.0-5.5;
P < 0.001)

Case crossover: higher incidence of acute vascular events at 2
years after ICIs vs 2 years before ICIs (adjusted HR: 4.8; 95%
CI: 3.6-6.5; P < 0.001)

Imaging: Higher aortic plaque progression rate (2.1%/y before
ICIs to 6.7%/y after ICIs)

[ Plaque
[ ASCVD

Oren et al
(2020)79

Single center
Retrospective

3,326 Rate of MI was 213 (7%) and stroke was 227 (7%) patients [ ASCVD rate

Nso et al
(2020)77

Meta-analysis
(26 studies)

4,622 0.4% incidence of MI (95% CI: 0.1%-0.8%) Y ASCVD rate

Solinas et al
(2020)78

Meta-analysis
(68 studies)

20,273 Incidence of arterial thromboembolism 1.1% (95% CI: 0.5%-
2.1%), stroke 1.1% (95% CI: 0.65%-1.45%), and MI 0.7%
(95% CI: 0.15%-1.15%)

Y ASCVD rate

Dolladille et al
(2021)81

Meta-analysis
(63 studies)

32,528 Incidence of MI was 7.4 (95% CI: 6.0-9.1) and cerebral ischemia
was 8.8 (95% CI: 7.2-10.7) per 1,000 patients; ICIs
significantly increased the risk of MI (OR: 1.51) and cerebral
arterial ischemia (OR: 1.56) compared with control subjects

[ ASCVD rate

D’Souza et al
(2021)80

Multicenter registry
(Danish)

1,100 9.7% increased risk of CV irAEs (myocarditis, HF, arrhythmias,
pericarditis, or CV death in 6 y

[ ASCVD rate

Laenens et al
(2022)12

Single center
Retrospective

672 Matched cohort: 10.3% incidence of CV irAEs (MI, HF, and
cerebral ischemia) with an overall mortality of 54.9% and a
CV death rate of 1.9% over 13 mo

[ ASCVD rate

ACS ¼ acute coronary syndrome; ASCVD ¼ atherosclerotic cardiovascular disease; CM ¼ cardiomyopathy; CV ¼ cardiovascular; HF ¼ heart failure; ICI ¼ immune checkpoint inhibitor; irAE ¼ immune-related
adverse event; MACE ¼ major cardiovascular events; MI ¼ myocardial infarction; OS ¼ overall survival; TIA ¼ transient ischemic attack; TKI ¼ tyrosine kinase inhibitor; VEGFI ¼ vascular endothelial growth
factor inhibitor.
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� Large cohort prospective studies and clinical trials
are warranted to further study the clinical impli-
cations of ICI-associated ASCVD.

IMAGING INSIGHTS INTO ATHEROSCLEROSIS

WITH ICIs

The progression of atherosclerotic plaque is a robust
predictor of CV events and an established outcome
measure for randomized clinical trials.82-84 The first
description of the potential effect of ICI therapy on
human atherosclerotic plaques using imaging was
based on contrast-enhanced CT scans at baseline and
a minimum of 8 weeks, with mainly no change or
resolution of the atherosclerotic lesions post-ICI.68,74

In contrast, an imaging study cohort by Drobni et al31

followed 40 patients with melanoma and used con-
ventional CT imaging at 3 time points to assess the
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effect of ICIs on atherosclerotic plaque burden. This
study demonstrated a greater progression rate of total
and NCP volume after ICI therapy. Specifically,
thoracic plaque burden increased from 2.1% per year
to 6.7% per year (P ¼ 0.02) before and after the
initiation of ICI therapy, providing biological support
to the clinical observations of increased atheroscle-
rotic events in the study.31

In addition, functional imaging studies can pro-
vide valuable insights into molecular and metabolic
processes underlying the pathophysiology of
atherosclerotic plaque progression during ICI ther-
apy. For instance, increased systemic low-grade
arterial wall inflammation is critical in developing
coronary atherosclerotic lesions and can relate to
high-risk plaque morphology.37,39 Studies imple-
menting 18F-FDG PET–CT provide the opportunity to
evaluate the effects of ICI therapy on vascular
inflammation and plaque progression in these pa-
tients. Calabretta et al85 used 18F-FDG PET–CT to
quantify atherosclerotic inflammatory activity in
twenty patients with melanoma undergoing ICI
treatment over a 4-month period. FDG uptake
significantly increased in noncalcified and mildly
calcified segments, indicating increased atheroscle-
rotic inflammatory activity in these early lesions
after ICI therapy. These findings suggest that ICI
therapy may influence local innate immune cells
and aggravate inflammation, particularly in early
noncalcified and mildly calcified atherosclerotic le-
sions and not in advanced calcified ones.85 In
contrast, Poels et al57 investigated the effects of
short-term ICI therapy on vascular inflammation in
the thoracic aorta and carotid arteries using a
combination of 18F-FDG PET–CT and immunological
techniques in 10 melanoma patients post-ICI. In this
prospective study, combination ICI therapy with
anti-CTLA-4 and anti-PD-1 antibodies did not affect
systemic or myeloid-driven vascular inflammation
in patients, measured 6 weeks after initiation, or in
a complementary hyperlipidemic mouse model.
Interestingly, in hyperlipidemic mice, there was a
progression toward a T cell–mediated inflammatory
phenotype with an increased presence of CD4þ and
CD8þ T cells. Although plaque size was unaffected,
plaques were characterized by a 2.7-fold increase of
CD8þ T cells and a 3.9-fold increase in necrotic core
size. Also, there was evidence of endothelial acti-
vation with a 2.2-fold and 1.6-fold increase,
respectively, in vascular cell adhesion molecule-1
and intercellular adhesion molecule-1.57

Together, these studies demonstrate that ICI ther-
apy may trigger low-grade inflammation of the arte-
rial wall and may mainly affect vulnerable NCP,
which is traditionally related to a higher risk for
rupture. Consequently, this progression of athero-
sclerosis in ICI-treated patients may contribute to the
increased occurrence of acute CV events in these
patients.

NOVEL DIRECTIONS FOR IMAGING

ICI-ASSOCIATED ATHEROSCLEROSIS

As studies continue to demonstrate significant
atherosclerotic risk in patients receiving ICIs, effort
must be taken to integrate conventional and novel
imaging approaches to identify and monitor athero-
sclerosis in this high-risk population. At a basic level,
conventional CT imaging that is part of standard
cancer care can be instrumental in longitudinally
evaluating atherosclerotic plaque progression in ICI-
treated patients.86 In addition, coronary CT angiog-
raphy could be implemented in future studies to
assess high-risk plaque features.

Furthermore, recent molecular imaging studies
have used labeled antibodies as immune-PET tracers
to detect additional features of vulnerable athero-
sclerotic lesions.87,88 Immune checkpoints are
attractive imaging targets to detect inflammatory and
immune markers within the plaque microenviron-
ment, and translational and human studies have
tested immune-PET tracers with molecules such as
CD40-CD40L, CD80/86-CD28, and CD47.61,89-92 For
example, Poels et al showed the feasibility of imaging
plaques in a mouse model of atherosclerosis using
[89Zr]Zr-labeled monoclonal antibody against CD40,
a co-stimulatory molecule highly expressed on acti-
vated macrophages as well as on B cells and activated
endothelial and smooth muscle cells.93 Interestingly,
this approach can be valuable in human studies by
labeling the anti-human CD40 monoclonal antibody,
iscalimab, which is currently being tested in clinical
trials for other chronic autoimmune conditions
(NCT03905525, NCT03656562, NCT04129528).94

Similarly, the feasibility of imaging the dyad CD80/
CD86, a co-stimulatory checkpoint molecule in mac-
rophages inside vulnerable plaques, was initially
tested in ApoE-/- mice using the PET tracer [11C]AM7.
While there was signal uptake in atherosclerotic le-
sions, its applicability was limited due to high back-
ground signals.91 In a subsequent study, belatacept, a
CTLA-4 fusion protein that binds to CD80/86, was
radiolabeled with indium-111 and showed increased
signal uptake in ApoE-/- mice and human carotid
specimens, which correlated with the infiltration by
immune cells into the plaques.92 Additionally, Flores
et al65 conducted a study using immune-PET tracers
for CD47 and showed that its inhibition down-

https://www.clinicaltrials.gov/ct2/show/NCT03905525
https://www.clinicaltrials.gov/ct2/show/NCT03656562
https://www.clinicaltrials.gov/ct2/show/NCT04129528


FIGURE 1 Management Considerations in ICI-Associated Atherosclerosis

Management strategies for immune checkpoint inhibitors (ICI)–treated patients can include monitoring of atherosclerotic burden pre- and post-ICI therapy with serum

and imaging biomarkers, and implementation of tailored interventions. Created with BioRender. CT ¼ computed tomography; CCTA ¼ coronary computer tomography

angiography; FDA ¼ Food and Drug Administration; hsCRP ¼ high sensitivity C-reactive protein; IL ¼ interleukin; MCP ¼ monocyte chemoattractant protein;

MRI ¼ magnetic resonance imaging; Ox LDL ¼ oxidized low density lipoprotein; PD-1 ¼ programmed cell death protein 1; PD-L1 ¼ programmed cell death ligand 1;

sCD ¼ serum cluster differentiation; PET ¼ positron emission tomography; TNF ¼ tumor necrosis factor; VCAM ¼ vascular cell adhesion molecule.
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regulated genes implicated in the macrophage
response to IL-1 and IFN-g, which led to a significant
reduction in atherosclerotic inflammation in a mouse
model of atherosclerosis.65 As detailed previously,
CD47 inhibitor therapies have been used in various
clinical trials to increase tumor cell recognition and
phagocytosis by macrophages. For instance, magro-
limab, the first-in-class anti-CD47 antibody, is being
tested in ongoing clinical trials of hematological and
solid malignancies.61,63 Interestingly, an analysis of 13
non-Hodgkin’s lymphoma trial patients using 18F-
FDG PET–CT after 9 weeks of magrolimab treatment
showed a reduction of FDG signal uptake in the most
diseased carotid artery segments, implying that CD47
inhibition may reduce vascular inflammation.61

KEY POINTS.

� ICI therapy is associated with the progression of
total and noncalcified atherosclerotic lesions in
studies using conventional CT imaging.

� 18F-FDG PET–CT studies showed increased inflam-
matory activity in noncalcified and mildly calcified
atherosclerotic lesions in ICI-treated patients.

� Studies using novel molecular imaging studies us-
ing labeled antibodies as immune-PET tracers may
help detect vulnerable atherosclerotic lesions in
the context of ICI therapy.

MANAGEMENT CONSIDERATIONS IN

ICI-ASSOCIATED ATHEROSCLEROSIS

THE ROLE OF CV RISK STRATIFICATION. Increased
awareness of ICI-associated CVD and risk stratification
strategies is an important first step in identifying in-
dividuals that may benefit most from preventive
measures (Figure 1). The effect of traditional CV risk
factors on ICI-associated atherosclerotic CV events is
unknown. Studies have shown conflicting data,
with some describing a higher risk of CV events in
patients with hypertension, dyslipidemia, prior CVD,
or subclinical atherosclerosis.72 In contrast, other
studies found no significant correlation between
ICI-associated CV events and factors such as
age, sex, diabetes, prior CVD, hyperlipidemia, or to-
bacco use.31,95

Mechanistic studies on the effects of ICIs on
atherosclerosis should evaluate traditional CV risk
markers (such as lipid fractions, hemoglobin A1c)
alongside prespecified biological factors potentially
affected by ICI therapy such as markers of immune
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regulation (PD-1, PD-L1), immune cell activation
(sCD163, sCD14), and inflammation (interleukins, C-
reactive protein, vascular cell adhesion molecule).
Multimodal sequencing approaches analyzing circu-
lating immune cells and specific cell subsets on a
single cell level will be valuable in phenotyping the
immune microenvironment of atherosclerotic le-
sions.26,45,47 In turn, the characterization of proa-
therogenic immune responses may help to identify
novel pharmacological targets, thereby reducing CV
risk through preventive pharmacological strategies.
Therefore, cardio-oncology registries combining data
on CV risk factors (eg, age, diabetes, hypertension),
ICI treatment characteristics (eg, type/combination of
ICI, doses, cancer progression, development of irAEs),
measurement of serum biomarkers, and morpholog-
ical and functional imaging studies could aid in a
comprehensive and longitudinal risk assessment of
ICI-treated patients.
THE ROLE OF PREVENTIVE PHARMACOLOGICAL

STRATEGIES. A retrospective analysis from Drobni
et al31 suggested that the effect of atherosclerotic
plaque progression after ICI therapy may be modifi-
able by statin and corticosteroid use. Specifically,
compared with those not on statins, those on statins
after ICI therapy had a reduced annual rate of the
progression of total atherosclerotic plaque volume
(5.2% vs 8.3%; P ¼ 0.04) and noncalcified plaque
volume (3.1% vs 7.0%; P ¼ 0.04).31 Notably, there was
no association between statin use and CV events in
the study, but this could be confounded as patients
on a statin had a higher baseline CV risk profile.
However, in a subsequent large study among 2,757
ICI-treated patients, 35% were on a statin at the time
of starting ICI therapy, and statin therapy was asso-
ciated with a more than 2-fold higher risk for myop-
athy, another potentially serious ICI toxicity.96 Given
that most patients are prescribed a statin for dyslipi-
demia, and there is an increased risk of atheroscle-
rosis associated with ICI therapy, large clinical
studies are needed to further evaluate the efficacy
and, importantly, the safety of statins in this context.
In addition, the indication for a statin and the possi-
bility of alternative nonstatin therapies such as pro-
protein convertase subtilisin/kexine type 9 (PCSK9)
inhibitors, icosapent ethyl, bempedoic acid, and
ezetimibe should also be considered in ICI-treated
patients. PCSK9 inhibitors are a class of monoclonal
antibodies that reduce serum low-density lipoprotein
and atherosclerotic events in higher-risk patients.
While less is known about the additional effects of
this drug class, recent data suggest that PCSK9 inhi-
bition does not affect cancer incidence in clinical
trials.97,98 Furthermore, a study by Liu et al99 showed
that PCSK9 inhibition potentiated ICI therapy
through a mechanism independent of its function as a
critical cholesterol regulator. Specifically, its effect
caused a significant increase in the expression of
major histocompatibility protein class I, which
enhanced intratumoral cytotoxic T cell infiltration.99

In summary, recent studies have indicated a syner-
gistic effect when ICI therapies are concomitantly used
with statins and PCSK9 inhibitors through enhanced
antigen presentation, promoting anti-tumor cytotoxic
T cells, and the expression of co-inhibitory molecules,
such as PD-1, LAG-3, and TIM-3.99-106 Therefore,
additional studies are needed to understand the po-
tential of using lipid-lowering therapies such as statins
and PCSK9 inhibitors to enhance ICI efficacy and treat
ICI-related atherosclerosis.

Last, among patients receiving ICI therapy, there
was a lower annual rate of plaque progression among
those on corticosteroids compared with those not on
corticosteroids (3.5% vs 6.9%, P ¼ 0.04).31 While these
findings could be related to the anti-inflammatory ef-
fect of corticosteroids, the results may be confounded
by the indication for corticosteroid use and subse-
quent discontinuation of the ICI therapy. Moreover,
the potential adverse effects of steroids and other anti-
inflammatory or immunomodulatory drugs on cancer
treatment efficacy may limit their use as an interven-
tion in ICI-treated patients. These findings highlight
the complex interplay between immune activation,
inflammation, and cholesterol metabolism linked to
ICI efficacy and ICI-associated atherosclerosis. Future
studies are needed to understand the effect of con-
ventional and novel CV therapies for atherosclerotic
risk reduction in ICI-treated patients.

KEY POINTS.

� The effect of ICIs on atherosclerosis may be het-
erogeneous, and careful consideration is needed
regarding the risk stratification, surveillance, and
treatment strategies in ICI-treated patients.

� A comprehensive mechanistic understanding of
the effect of ICIs on atherosclerosis is needed to
determine the timing and need for CV preventive
and treatment interventions.

� The effectiveness and safety of statins, PCSK9 in-
hibitors, and other therapies for ICI-associated
atherosclerosis should be explored in trans-
lational and clinical studies specific to this complex
patient population.

SEX-SPECIFIC CONSIDERATIONS IN

ICI-ASSOCIATED ATHEROSCLEROSIS

There are data to suggest that the effect of ICI on
atherosclerosis may be sex-specific. Broadly, there is
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known sexual dimorphism in the prevalence, risk
profile, and prognosis of atherosclerosis. However,
relatively limited data address sex-specific de-
terminants as independent variables in inflammation
and immune dysregulation related to atheroscle-
rosis.107 Studies have shown sex differences in
circulating CVD protein biomarkers associated with
pathways implicated in inflammation, adiposity,
fibrosis, and platelet homeostasis.108 In addition, ev-
idence from cardiac imaging studies demonstrates
unique differences in atherosclerotic plaques be-
tween men and women. A study by Kim et al109

showed that, despite similar luminal narrowing and
plaque burden between women and men, the
composition and frequencies of high-risk plaque
characteristics were lower in women.

There are also sex-based differences in the onset,
outcomes, and risk of cardiotoxicity associated with
several cancer therapies.110 However, sex-specific
differences in ICI efficacy and the development of
irAEs are still not completely understood.110-112 Few
studies have shown an increased risk in women or no
difference between the sexes.113,114 Similarly, data on
cardiac-related irAEs are based on retrospective
studies limited by an imbalance in the number of fe-
male participants. For example, Zamami et al115

analyzed 107 ICI-treated patients registered in the
U.S. Food and Drug Administration Adverse Event
Reporting System and found that female patients
were 1.92 times more likely to develop ICI myocarditis
compared with men (OR: 1.92; 95 CI: 1.24-2.97;
P ¼ 0.004). In contrast, other retrospective studies
found a 60% to 70% occurrence of ICI-related
myocarditis in men.11,14,116 While these descriptive
clinical studies do not necessarily indicate an associ-
ation between sex and a higher risk of ICI myocarditis,
a recent study with the Ctla4þ/� Pdcd1-/-mouse model,
which simulates dual anti-CTLA-4 and anti-PD-1
immunotherapy, showed that 50% of these mice
died by 3 months with features of myocarditis and
female mice were affected at a higher frequency.117

Sex-based differences specific to ICI-related
atherosclerosis have not been elucidated. Of the few
studies of ICI-associated atherosclerotic-CV events,
Bar et al72 found that the male sex conveyed a 2.43-
fold increase in the odds of developing acute
vascular events when compared with the female sex
(95 CI: 1.04-5.68), but the sample size was small
(n ¼ 31) and only 23% were women. In larger retro-
spective studies, these ICI-related atherosclerotic
events were reported with higher frequency in men;
however, the under-representation of women and the
lack of stratified analysis by sex were common
limitations.32,71,73,76,78,79. The study by Drobni et al31
consisted of 43% women and reported HRs with
respect to ICI therapy for the composite CV outcome
within the matched cohort study. Stratified by
subgroups, an increased HR in women of 6.0
compared with an HR in men of 3.93 was observed;
however, the difference was of borderline signifi-
cance (P ¼ 0.087).31

Sex differences in ICI therapy, atherosclerosis, and
CV adverse events could be related to genetic and
hormonal factors. There are differences in immunity
and inflammation between the male and female sex,
and women are known to have a higher incidence of
autoimmune disorders. Genetically, the X chromo-
some encodes many immune function genes related
to cytokine signaling pathways and immune cell
activation such as ILR-2G, ILR-3, toll-like receptor 7,
and CD40L. Furthermore, genes related to B and
cytotoxic T cell responses are overexpressed in
women, which may result in a stronger immunity but
may also lead to an increased risk of irAEs in
women.118 Hormones such as estradiol and proges-
terone are known to influence immune responses
through increased expression of PD-1, IL-4, and the
production of B and T cells CD4, while male andro-
gens have an anti-inflammatory effect. Furthermore,
preclinical studies suggested estrogen-mediated
immunomodulation of the PD-1/PD-L1 pathway, thus
regulating immune responses.119,120

Knowledge gaps remain in our understanding of
the sex-specific effects of ICI therapy on atheroscle-
rosis, and additional studies on its underlying
mechanistic basis are needed. There are ongoing ef-
forts to investigate gender differences related to ICI
irAEs such as the prospective observational studies
G-DEFINER (Gender Difference in sidE eFfects of
immuNotherapy: a possible clue to optimize
cancEr Treatment) and JOCARDITE (Joint Use of
Database to Identify Risk Factors of Cardiovascular
Toxicity Induced by Immune Checkpoint Inhibitors)
(NCT04294771). Focusing on sex-based differences in
ICI-associated cardiotoxicities including atheroscle-
rosis can help develop tailored preventive and ther-
apeutic cardioprotective strategies in women.

KEY POINTS.

� Sex-specific differences in the effect of ICI therapy
and irAEs such as atherosclerosis may be related to
genetic, hormonal, inflammatory, and immune-
related factors that remain to be studied.

CONCLUSIONS

ICIs have changed oncology, and their implementa-
tion has provided an expanded window into CV

https://www.clinicaltrials.gov/ct2/show/NCT04294771
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biology and contributed to the exponential growth of
the field of cardio-oncology in the last decade.121 The
application of ICIs has also created clinical challenges
for those patients who develop ICI-related car-
diotoxicities. However, we are just beginning to un-
derstand the spectrum of atherosclerotic-related
events and aggravated atherosclerosis due to ICI
therapy. On a clinical level, more extensive longi-
tudinal studies, and the inclusion of patients in
systematic cardio-oncology registries are crucial to
better understanding the link between ICI use and
atherosclerosis. This will also help inform optimal
atherosclerotic risk management, CVD surveillance,
and therapeutic interventions in ICI-treated patients
and long-term cancer survivors. On a basic and
translational level, many questions remain about the
mechanistic basis of ICI-associated atherosclerosis
and how to define predictive biomarkers, improve
diagnostic strategies, and develop effective treat-
ments. Tools from immunology, genomics, bioin-
formatics, and imaging can help us better
characterize the effects of ICI therapies on athero-
genesis and the mechanisms involved in the pro-
gression of atherosclerotic lesions because of these
therapies.

To date, evidence on the effects of ICI therapy on
atherosclerotic CVD from clinical trials are scarce. In
the future, routine assessment and systematic
reporting of cardiac adverse events during and after
novel cancer therapies should be implemented in
oncology trials. Cardio-oncologists will continue to
play an essential role in managing acute cardiotox-
icity and reducing the risk of long-term sequelae in
ICI-treated patients. This unique patient population
can benefit from integrating current and novel imag-
ing and pharmacotherapeutic strategies to mitigate
risk and improve overall outcomes. Longer-term
steps include broadening collaborations among
cardio-oncologists, imagers, oncologists, and phar-
maceutical partners to expand clinical research
efforts based on innovative basic and translational
experimental insights. These and other steps are
needed to improve CV outcomes among cancer pa-
tients treated with ICI therapy.
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