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Abstract

Pea (Pisum sativum L.) is an important cool season food legume for sustainable food production and human nutrition due to its nitrogen
fixation capabilities and nutrient-dense seed. However, minimal breeding research has been conducted to improve the nutritional quality
of the seed for biofortification, and most genomic-assisted breeding studies utilize small populations with few single nucleotide polymor-
phisms (SNPs). Genomic resources for pea have lagged behind those of other grain crops, but the recent release of the Pea Single Plant
Plus Collection (PSPPC) and the pea reference genome provide new tools to study nutritional traits for biofortification. Calcium, phospho-
rus, potassium, iron, zinc, and phytic acid concentrations were measured in a study population of 299 different accessions grown under
greenhouse conditions. Broad phenotypic variation was detected for all parameters except phytic acid. Calcium exhibited moderate
broad-sense heritability (H2) estimates, at 50%, while all other minerals exhibited low heritability. Of the accessions used, 267 were
previously genotyped in the PSPPC release by the USDA, and we mapped the genotyping data to the pea reference genome for the
first time. This study generated 54,344 high-quality SNPs used to investigate the population structure of the PSPPC and perform a
genome-wide association study to identify genomic loci associated with mineral concentrations in mature pea seed. Overall, we were able
to identify multiple significant SNPs and candidate genes for iron, phosphorus, and zinc. These results can be used for genetic improve-
ment in pea for nutritional traits and biofortification, and the candidate genes provide insight into mineral metabolism.
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Introduction
In the past few decades, the plant breeding field has primarily
focused on increasing yield in the staple cereal crops rice (Oryza
sativa L.), wheat (Triticum aestivum L.), and maize (Zea mays L.),
which now account for most calories consumed worldwide (FAO
2004). While cereals are good sources of carbohydrates, they have
inadequate protein and micronutrient levels to sustain a healthy
diet, which may contribute to micronutrient deficiencies termed
“hidden hunger” (Pingali 2012). Biofortification is a strategy to in-
crease the nutritional quality of food crops through agronomic
practices, conventional plant breeding, and biotechnological
approaches (Welch and Graham 2004; Foyer et al. 2016). Several
successful vitamin and micronutrient biofortified varieties have
been developed and released for common bean (Phaseolus vulgaris
L.), cassava (Manihot esculenta L.), cowpea (Vigna unguiculata L.),
lentil (Lens culinaris L.), maize, pearl millet (Pennisetum glaucum L.),
sorghum (Sorghum bicolor L.), sweet potato (Ipomoea batatas L.),
and wheat, with the most notable release being pro-vitamin
A Golden rice (Ye et al. 2000; Saltzman et al. 2013). However,
minimal plant breeding or biofortification research has been ded-
icated to pea (Pisum sativum L.) despite its potential to alleviate
hidden hunger.

Pea is a cool-season crop grown primarily to benefit soil

health, nitrogen-fixing capabilities, nutrient-dense seed, and af-

fordability for consumers (Amarakoon et al. 2012; Foyer et al.

2016; Stagnari et al. 2017). Pea provides superior amounts of pro-

tein than cereals and has a greater protein concentration than

chickpea (Cicer arietinum L.) and cowpea (Iqbal et al. 2006). In addi-

tion, pea is rich in prebiotic carbohydrates, fiber, and micronu-

trients, especially iron (Fe) and zinc (Zn), making it an ideal

candidate for biofortification. Pea breeding efforts have lagged

behind those for cereals, so the potential for increasing nutri-

tional concentrations in pea seed is largely unexplored

(Amarakoon et al. 2012; Foyer et al. 2016; Rehman et al. 2019) . A

few studies investigating nutritional variation and the underlying

genetic mechanisms have been reported in pea. Still, these stud-

ies have utilized small populations, were conducted before the

release of the pea reference genome, and offer little insight into

candidate genes involved in mineral concentration in the seed

(Diapari et al. 2015; Ma et al. 2017; Gali et al. 2018, 2019;

Dissanayaka et al. 2020; Jha et al. 2020). Pea is also low in phytic

acid (IP6), an antinutrient that decreases micronutrient bioavail-

ability to humans (Raboy 2003). Low phytic acid (lpa) mutants

have been created in pea (Raboy et al. 2000; Warkentin et al. 2012),
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but whether traditional breeding efforts can affect IP6 concentra-
tions remains to be investigated. Thus, genomic studies in larger,
diverse populations could evaluate the feasibility of biofortifica-
tion in pea.

In 2019, Kreplak et al. published the first sequence of the pea
genome. The genome (2n¼ 14) is 4.45 Gb in size and largely repeti-
tive, both of which contribute to the lack of genomic resources
for pea (Kreplak et al. 2019). Pea is a self-pollinating species,
resulting in high degrees of inbreeding and a lack of genetic diver-
sity compared to other crops, such as maize or wheat. The USDA
Pea Single Plant Plus Collection (PSPPC) was assembled by
Holdsworth et al. in 2017 and specifically designed to capture ge-
netic diversity in pea for genomic-assisted breeding. The PSPPC
comprises 431 accessions of pea that have been genotyped
through genotype by sequencing (GBS), and Holdsworth et al.
(2017) also genotyped 25 accessions of Pisum fulvum, a relative of
P. sativum, that can be used in diversity analysis (n¼ 456). The col-
lection constitutes multiple subpopulations (P. sativum subsp. ela-
tius, P. sativum subsp. abyssinicum, and P. sativum subsp. sativum),
as well as accessions from Central Asia, representing a novel
source of alleles (Holdsworth et al. 2017). To our knowledge, no
genome-wide association studies (GWAS) for nutritional traits
have explicitly used the PSPPC at the time of this publication;
thus, the potential for the PSPPC in biofortification research has
not been explored. A GWAS makes statistical associations be-
tween a phenotype and single nucleotide polymorphisms (SNPs)
present in the study population to identify genomic regions and
genes associated with the trait of interest (Huang and Han 2014).
As the PSPPC was designed to encompass the genetic diversity of
pea and is a large collection of pea germplasm available for pub-
lic use, the PSPPC is ideal for GWAS to investigate the genetic ba-
sis of seed nutrients concentrations in pea.

By phenotyping seed mineral concentrations in the PSPPC and
combining the results with the GBS data, genetic variation can be
analyzed to aid in biofortification research for pea. In addition,
alignment of the PSPPC GBS data to the reference genome and
provision of the assembled variant call format (VCF) and HapMap
files allows researchers to perform GWAS and identify associated
genomic loci using the publicly available annotation. Here, we
identified significant SNPs and candidate genes associated with
mineral concentration. These results can be used to understand
mineral metabolism and accumulation in the seed. Overall, this
study aims to evaluate the genetic diversity and biofortification
potential of pea and identify genomic loci related to nutrient con-
centrations in mature pea seeds that could be used to breed bio-
fortified pea varieties.

Materials and methods
Plant material and growth conditions
A total of 299 P. sativum accessions comprised 267 genotyped
PSPPC accessions, 29 nongenotyped accessions, commercial cul-
tivars Cameor, Hampton, and CDC Bronco were planted in a com-
plete randomized design with three replicates at the Clemson
University Greenhouse Complex, Clemson, SC, USA. Two plants
per accession were planted in 600 pots and grown in potting soil
(SunGro Professional Growing Mix SKU: SUGR2375003; pH 6.4)
under conditions of 16 hours day and temperatures of 20–22/18�C
day/night. All pots were watered to 70–80% pot capacity. Plants
were not inoculated with rhizobia, as they were supplied with ad-
equate nitrogen, and nitrogen fixation was not necessary. A week
after planting, all plants were given 2.84 g of osmocote (14-14-14);
an additional starter of Peter’s Professional 20-20-20 fertilizer

was given 5 days later. Plants were continuously fertilized with
Peter’s Professional fertilizer every 2 weeks until they were physi-
ologically mature, approximately 90 days after planting, with the
mature seed then harvested.

Mineral analysis
The harvested mature seeds were ground into a fine powder us-
ing a KitchenAid coffee bean grinder and stored at 4�C until ana-
lyzed. To prepare samples for analysis, 200 mg of seed were
digested overnight in 4 mL of concentrated nitric acid (70%
HNO3). The seed samples were then heated to 150�C for 2 hours,
with 4 mL of hydrochloric acid (70% HCl), then added to the solu-
tion and heated for an additional 1 hour. The digested solution
was then filtered through Whatman paper (20–25 mm) and diluted
to 10 mL with deionized H2O. Mineral concentrations of Ca, P, K,
Fe, and Zn were determined by inductively coupled plasma emis-
sion spectrometry (ICP-OES; ICP-6500 Duo, Thermo Fisher
Scientific, Pittsburg, PA, USA). Standards made from a 1000 mg
L�1 stock solution were serially diluted to produce calibration
curves from 0.5 to 5.0 mg L�1. Measurements using this method
were validated using lentil and peach as standard references.
Moisture content was analyzed from a random subsample of 28
samples for each replicate, with data averaged to obtain the
moisture content for the specific replicate.

Phytic acid (IP6) analysis
Seed samples were prepared using the modified IP6 extraction
from Talamond et al. (2000) and Thavarajah et al. (2009). A 100-
mg sample of finely ground seed was weighed into a 15-mL coni-
cal tube (17 6 120 mm) with a fitted cap. Then 10 mL of 0.5 M HCl
were added to the tube, which was submerged into boiling water
(�100�C) for 5 minutes. The solution was centrifuged for
3 minutes, and the supernatant was transferred into a separate
tube. The IP6 was demultiplexed with the addition of 1.5 mL of
12 M HCl. High-performance liquid chromatography with a con-
ductivity detector was used for IP6 analysis (ICS-5000 Dionex,
Sunnyvale, CA, USA). The IP6 was separated with an Omnipac
Pax-100 guard column (8 mm) and quantified by conductivity de-
tection. The solvents used for gradient elution were 130 mM so-
dium hydroxide (A), deionized water-isopropanol (50:50, v/v) (B),
and water (C). The flow rate of the gradient elution was 1.0 mL
min�1 with a total run time of 10 minutes. Retention time and
peak area were used to quantify the IP6 in the seed samples. IP6
standards from 10 to 500 mg L�1 were used for calibration curves,
with the detection limit set at 5 mg L�1. The error tolerance was
<0.1% for all laboratory samples. The IP6 phosphorus concentra-
tion was calculated using the weight ratio of P atoms per mole-
cule of IP6 (1:3.56).

Phenotypic and statistical analysis
The distributions of mineral concentration for each accession
were visualized using JMP Pro 14 software (SAS Institute Inc.,
Cary, NC, USA), and accessions containing outliers in one or
more replicates were identified as 1.5 times the interquartile
range above the upper quartile and below the lower quartile and
excluded from further analysis. In addition, outliers were defined
as accessions with mean values greater than three standard devi-
ations away from the population mean and excluded from the fi-
nal dataset (Supplementary File S1). After outliers were removed,
broad-sense (H2) heritability estimates for each mineral were
obtained in JMP by determining the ratio of variance due to acces-
sions divided by the total variance for the phenotype (VG/VP). For
correlation analysis, accessions with missing data in one or more
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minerals were excluded, and Pearson’s r estimates were calcu-
lated in Python and assigned to correlation coefficients (q). IP6
was excluded from correlation analysis as it forced the exclusion
of numerous accessions that negatively affected the analysis.

Genotyping and data processing
The PSPPC and P. fulvum (n¼ 456) accessions were previously gen-
otyped by Holdsworth et al. (2017), using the GBS method de-
scribed in Elshire et al. (2011). All raw sequencing reads were
retrieved from the National Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov/bioproject/379298). The raw
reads were aligned to the current pea reference genome (https://
urgi.versailles.inra.fr/Species/Pisum) using the Burrow-Wheeler
aligner (Li and Durbin 2010), with a mean accuracy of 99% of
each read aligned. SNPs were called using the current version of
the Genome Analysis Toolkit (GATK) (https://gatk.broadinstitute.
org/) and hard filtered for quality, missing data, and minor allele
frequency (>0.05) using GATK and BCFtools, prior to genomic
analysis. Beagle version 5.1 was used to impute missing genotype
data in the VCF file assembled from GATK. The final VCF file was
converted into the HapMap format using Tassel version 5.2.52.

Population structure and GWAS
Using the final imputed and filtered VCF file, admixture of the
PSPPCþP. fulvum population was estimated using ADMIXTURE
(Alexander and Lange 2011) and graphed using R. ADMIXTURE
produces a Q matrix containing estimates of ancestry for each in-
dividual tested. The corresponding Q matrix with the lowest
cross-validation error was chosen as the most representative of
the study population, which was at K¼ 11, corresponding to 11
distinct subpopulations. The species information was obtained
from supplementary information from Holdsworth et al. (2017)
and assigned to the corresponding accession in the Q matrix.
Accessions with unavailable species information were annotated
as P. sativum in this study for both admixture analysis and princi-
pal components analysis (PCA). The Q matrix was then sorted by
the ancestry coefficients for each subpopulation, assigning indi-
viduals with coefficients >50% to the corresponding subpopula-
tion (Boatwright et al. 2021). Principal components (PCs) were
calculated during analysis with GAPIT (Wang and Zhang 2020);
the first two PCs were graphed using R and assigned a color based
on available species information.

In addition, analysis of variance (ANOVA) testing was con-
ducted to determine if there were any batch effects associated
with the date of sample digestion or the date of analysis
(Supplementary File S2). If significant effects were observed, best
linear unbiased predictors (BLUPs) were calculated to incorporate
each source of variation for each nutritional trait to be used as
the phenotype instead of the mean. The BLUP models were calcu-
lated using the lme4 package in R (Bates et al. 2015) and were fit
for each accession using the following form:

y ¼ ð1jTaxaÞ þ ð1jReplicateÞ þ ð1jDateofdigestionÞ
þ ð1jDateofanalysisÞ

where y is the observed mean and Taxa, Replicate, Date of diges-
tion, Date of analysis were included as random effects.

GAPIT was used to perform a GWAS on mineral and IP6 con-
centrations of mature pea seed using the HapMap file. The de-
fault GAPIT parameters were used, as well as a model selection
with Bayesian Information Criterion (BIC), which determines the
degree of population structure that should be accounted for in a
model to avoid overfitting. The BIC analysis determined that the

inclusion of PCs was not necessary for any of the models. A
mixed linear model with a kinship matrix was selected for analy-
sis to account for population stratification. The mixed linear
models were fit using the following form:

y ¼ Xbþ Zuþ e

where y is a vector of observed phenotypes; b is an unknown vec-
tor containing fixed effects that account for the genetic marker,
population structure (Q), and intercept; u is an unknown vector
of random additive effects from background QTLs and individu-
als; X and Z are the known design matrices, and e is the unob-
served vector of residuals according to the GAPIT user manual.

The Bayesian-information and Linkage-disequilibrium
Iteratively Nested Keyway (BLINK) method was also utilized for
GWAS of the nutritional traits, as it has high statistical power
and does not assume that causal genes are distributed normally
across the genome, which can lead to false positives and exclu-
sion of causal genes (Huang et al. 2019). BLINK uses BIC to exclude
markers based on linkage disequilibrium (LD) so that only the
most significant markers are reported (Huang et al. 2019). The
BLINK models were fit using the following form:

y ¼ si þ Sþ e

where y is a vector of observed phenotypes; si is a testing marker;
S is a pseudo quantitative trait nucleotide (QTN), and e is the
unobserved vector of residuals according to the GAPIT user man-
ual. Analysis was also conducted using multiple loci mixed mod-
els (MLMMs) and compressed mixed linear models (CMLMs)
(Supplementary File S2). A Bonferroni correction was used to
avoid false positives and identify significant SNPs (a¼ 0.05) for
each trait. The Bonferroni correction was calculated as
�log10(0.05/n), where n equals the number of SNPs used in the
GWAS for each mineral.

Linkage disequilibrium and identification of
candidate genes
LD decay was estimated for each chromosome using PopLDdecay
(Zhang et al. 2019) using MAF¼ 0.05 (Supplementary File S2), and
the LD of significant SNPs was estimated using Plink 1.90 b with
an LD window of 1000 kb. Genes in local LD with each significant
SNP were identified using custom Python scripts and considered
to be candidate genes for mineral concentration in mature pea
seed. Identification of gene function was obtained using PulseDB
of the P. sativum v1a genome (https://www.pulsedb.org/jbrowses)
or through the National Center of Biotechnology Information
(NCBI) BLAST tool with Medicago truncatula and Glycine max as the
reference organisms.

Data availability
All scripts, data, and the VCF and HapMap used for this project
are available at https://github.com/selizpowers/GWAS. All raw
GBS data for the PSPPC are accessible at https://www.ncbi.nlm.
nih.gov/bioproject/PRJNA379298.

Supplementary material is available at G3 online.

Results
Mineral analysis of P. sativum accessions
The phenotypic variation of mineral and IP6 concentrations is
broad across all accessions (Table 1) (Figure 1, A, C, F, J, and O).
Pea also provides a good amount of the recommended daily
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allowance (RDA) for all minerals (32–76%) except Ca (5%). Broad-

sense (H2) heritability estimates are low for most minerals, ex-

cept for Ca (50%) (Table 1). In addition, analysis using Pearson’s

correlation coefficient (q) reveals low to moderate correlations

among various nutrients, with the strongest (q> 0.5) correlation

noted between Fe and Zn concentrations (q¼ 0.58). A moderate

correlation (0.3 < q< 0.5) was observed between P and K

(q¼ 0.38).

Population structure analysis of PSPPC1P. fulvum
collection and study population
To determine population structure in the GWAS, as well as

compare results to the previous de novo assembly of the

PSPPC, admixture analysis, and PCA were performed on the

Table 1 Ranges, means, recommended daily allowance
percentage (%RDA), and broad-sense heritability (H2) estimates of
mature pea seed concentrations of each nutrient for all
accessions

Mineral Range (mg/g) Mean (mg/g)a RDAb (%) H2 (%)

P (n¼ 268) 3,973.8–6,623.8 5,269.4 6 29.67 75 23
K (n¼ 279) 9,375.1–15,809.2 12,286.6 6 71.44 36–47 15
Fe (n¼ 247) 30.7–88.4 58 6 0.69 32–73 30
Zn (n¼ 269) 22–52.4 37.6 6 0.34 34–48 28
Ca (n¼ 245) 223.5–1,038.4 558.46 6 10.4 5 50
IP6 (n¼ 184) 9.7–13.8 11.71 6 0.05 — —

a Mean concentration presented for three replicates 6 standard error.
b %RDA based on mean mineral concentration for males and females ages

31–50 according to NIH guidelines (https://ods.od.nih.gov/HealthInformation/
Dietary_Reference_Intakes.aspx).

Figure 1 Distribution and correlations of minerals in mature pea seed (n¼ 222). The distributions of mean concentrations for P (A), K (C), Fe (F), Zn (J),
and Ca (O) are depicted in each histogram. The scatter plots show Pearson coefficients (q) between minerals: P vs K (B), P vs Fe (D), P vs Zn (G), P vs Ca
(K), K vs Fe (E), K vs Zn (H), K vs Ca (L), Fe vs Zn (I), Fe vs Ca (M), and Zn vs Ca (N). The blue shaded regions on the scatterplots represent the 95%
confidence intervals for each correlation. Accessions missing data for one or more minerals were excluded.
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reference-based alignment of the PSPPC population as well as the

study population (Figures 2 and 3). The first two PCs measured in

GAPIT each account for 11.28 and 1.89% of the variation, respec-

tively (Figure 2A) with the first PC accounting for less variation

than the estimate reported in Holdsworth et al. (2017). In addition,

most of the accessions appearing in the PSPPC and the study pop-

ulation appear to cluster in the same area across PC1 and PC2

(OSU, P. sativum, P. sativum abyssinicum, USDA-ARS, and P. sativum

subsp. sativum–Primary), while the accessions assigned to P. sati-

vum–Central Asia and P. sativum subsp. elatius appear to exhibit

some population differentiation based on their separation from

the main breeding germplasm (Figure 2, A and B). The wild spe-

cies P. fulvum is the most different from the other species, form-

ing a single separate cluster (Figure 2A). These results are

supported by the previous report from Holdsworth et al. (2017).

Analysis of population admixture, however, identified 11 ances-

tral subpopulations within the PSPPC (Figure 3). Finally, despite P.

sativum being a highly inbred species, certain accessions within

the PSPPC have diverse ancestral backgrounds based upon sub-

population admixture (Figure 3).

GWAS of mineral and IP6 concentrations in
mature P. sativum seed
To identify SNPs associated with nutritional traits in mature pea

seed, GWAS was performed for several minerals and IP6. Only

267 accessions from the study population (n¼ 299) were geno-

typed, so the GWAS population for each mineral was as follows: P

(n¼ 247), Ca (n¼ 229), K (n¼ 257), Zn (n¼ 248), Fe (n¼ 225), and IP6

(n¼ 175). Phenotypes considered outliers were removed from the

GWAS, as were any accessions that did not have available GBS

data, resulting in the different population sizes between miner-
als. All GBS data for the PSPPCþP.fulvum (n¼ 456) were used to
make both the final VCF and HapMap files to call the maximum
number of SNPs. In total, 319,141 SNPs were generated, of which
54,344 high-quality biallelic SNPs were used for the GWAS. A
mixed linear model, as well as a BLINK model, was used to map
BLUPs of each trait to the P. sativum v1a genome. The LD of each
chromosome decayed rapidly, which is supported by previous
studies in pea (Gali et al. 2019; Beji et al. 2020). For SNPs, LD was
considered to decay at r2<0.1, and local LD for the significant
SNPs of each trait was estimated to be 220, 304, and 211 kb for Fe,

Figure 2 Principal component analysis (PCA) of the PSPPC and the accessions used for GWAS. (A) PCA plot for PSPPCþP. fulvum population (n¼ 456),
with each colored dot corresponding to a different subpopulation of PSPPCþP. fulvum. (B) PCA plot showing the subpopulations of the accessions used
in the GWAS for nutrient concentration (n¼ 267). Accessions from the OSU and P. fulvum subpopulations were not included in the study population.
Accessions with unavailable population information were labeled as P. sativum.

Figure 3 Genome-wide, population admixture analysis of the PSPPCþP.
fulvum population. The individuals are shown as vertical bars along the
x-axis and have been given a unique color(s) based on the proportion of
estimated ancestry (y-axis) for each distinct ancestral population
(K¼ 11). Accessions with unavailable population information were
labeled as P. sativum.
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P, and Zn, respectively. Significant SNPs were identified from the
BLINK model for Fe, P, and Zn across all chromosomes (Figure 4),
with Fe and Zn significant SNPs present on chromosome 5 and P
exhibiting significant SNPs on chromosome 3. These SNPs were
in local LD with multiple candidate genes (Table 2).

Discussion
Pea is an important crop for both sustainable agriculture and hu-
man nutrition, as it improves soil health, fixes nitrogen from the
atmosphere, and produces a nutrient-dense staple that is afford-
able for consumers of all socioeconomic status (Amarakoon et al.
2012; Foyer et al. 2016; Stagnari et al. 2017). Pea is high in Fe and
Zn, representing two of the most common micronutrient

deficiencies worldwide (Bailey et al. 2015). Biofortification is a
plant breeding strategy employed in pea to select and breed vari-
eties with increased nutritional value to alleviate hidden hunger;
however, genomic resources required for nutritional breeding
have lagged in pea compared to other crops. The recent release of
the P. sativum reference genome (Kreplak et al. 2019) and the de-
velopment of the PSPPC (Holdsworth et al. 2017) present exciting
new opportunities to address nutritional breeding objectives in
pea breeding programs around the world.

The pea accessions used in the study population have broad
ranges of concentrations for all minerals, with little variability in
IP6 (Table 1). All ranges and means are like the findings in previ-
ous pea research; however, accessions in the PSPPC have some of
the highest Fe concentrations reported (Amarakoon et al. 2012;
Ray et al. 2014; Diapari et al. 2015; Bangar et al. 2017). Accessions
PI_272171, PI_505144, and PI_274307 have the highest mean Fe
concentrations at 88.4, 87.7, and 87.6 mg/g, respectively
(Supplementary File S1). Accession PI_272171 also has one of the
highest Zn concentrations (49.3 mg/g), demonstrating the strong
correlation between Fe and Zn (Figure 1I). Positive correlations
have been observed for seed Fe, and Zn concentrations in rice
and wheat (Sperotto et al. 2010; Morgounov et al. 2007), and posi-
tive correlations between bioaccessible Fe and Zn in cowpea have
also been observed (Coelho et al. 2021). As the pea accessions in
the study are low in IP6 (Table 1) (Amarakoon et al. 2012), these
results suggest that the Fe and Zn in pea are bioavailable but will
need to be confirmed in separate experiments. In addition, Fe (H2

¼ 30%) has the second-highest heritability estimate among min-
erals after Ca (H2 ¼ 50%) (Table 1), so selecting for increased Fe
concentration in the seed may positively improve Zn concentra-
tion. The moderate heritability of Ca means that trait improve-
ment could be possible using the high Ca accessions, as the study
population can only provide an estimated 5% of the RDA of
1000 mg d�1. Moderate correlations are noted between P and K
(Figure 1B), and these interactions have been reviewed in previ-
ous research (Xia and Xiong 1991; Blair et al. 2013). All other min-
erals and IP6 have low heritability, suggesting these traits are
predominately influenced by the growing environment rather
than genetic factors.

In terms of pea biofortification, these results suggest that
breeding for increased mineral concentration cannot be accom-
plished by phenotyping the seed concentration alone, especially
as narrow-sense heritability has been reported to be lower than
broad-sense heritability estimates (Banerjee et al. 2012; Messiaen
et al. 2012). Furthermore, this study was conducted under green-
house conditions, which is a controlled environment, which also
indicates heritability estimates may be even lower for these min-
erals under field conditions, where the environment is variable.
Another limitation of this experiment is that it utilized three rep-
licates with two plants for each accession; typically, a GWAS
would be conducted on phenotypic data gathered from 4 to 6 field
trials, with multiple replicates and plants. Thus, further analysis
across different environments and field seasons is necessary to
evaluate this study population’s biofortification potential accu-
rately. Quantifying alternative phenotypes, such as nutrient up-
take from the soil and subsequent remobilization to the mature
seed, may improve nutritional quality and provide additional bio-
fortification targets that may be more successful in breeding pro-
grams (White and Broadley 2005; Ariza-Nieto et al. 2007; Rehman
et al. 2019).

The PSPPC is a collection of pea germplasm specifically assem-
bled and genotyped to represent the genetic diversity within P.
sativum as a source of novel alleles for breeding programs

Figure 4 Manhattan plots for Fe, P, and Zn from the BLINK model.
Significant SNPs for Fe (A), P (B), and Zn (C) were identified across the pea
genome. The �log10 P-values (y-axis) are plotted against the position of
each chromosome (x-axis), where each circle represents an SNP.
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(Holdsworth et al. 2017). The PCA of the PSPPC (Figure 2A) is con-
sistent with the PCA reported in Holdsworth et al. (2017), with all
germplasm apart from P. fulvum, P. sativum–Central Asia, and
P. sativum subsp. elatius clustering together across the first two
PCs. Further analysis also showed that P. sativum—Central Asia
separates further from the breeding germplasm when plotting
PC1 against PC3 (Supplementary File S2). Overall, the PCA plots
indicate that P. sativum–Central Asia and P. sativum subsp. elatius
accessions are the most divergent from the other accessions in
the diversity panel; P. sativum–Central Asia appears to have little
within group diversity while P. sativum subsp. elatius is a diverse
subpopulation (Figure 2, A and B, Supplementary File S2). In addi-
tion, the admixture analysis (Figure 3) revealed that the PSPPC
has 11 distinct subpopulations with diverse ancestral back-
grounds and that there is substantial within-group diversity
among the subpopulations. While ancestral and genetic variation
exist in the PSPPC, the addition of more diverse accessions could
improve the breeding and association mapping potential of the
PSPPC.

The PSPPC is also intended to be used as germplasm to im-
prove trait mapping and genomic-assisted breeding in pea
(Holdsworth et al. 2017). At the time of the PSPPC publication, the
P. sativum reference genome was unavailable, thus all GBS data
were utilized in a de novo assembly. As GBS data produce short
reads, de novo assembly cannot scaffold across the large, highly
repetitive sequences of pea, resulting in gaps, missing data, and
an incomplete assembly that is not truly representative of the ge-
nome (Liao et al. 2019). This study is the first to align the PSPPC
GBS data to the reference genome to produce a robust GWAS in
pea. This study is also significant in pea nutritional research, as it
has the largest study population used in any GWAS related to

nutritional traits with the largest number of high-quality SNPs
(Gali et al. 2019; Dissanayaka et al. 2020; Jha et al. 2020). Both the
VCF and HapMap files can be used by other pea researchers, and
the addition of SNPs from other genotyped lines will greatly im-
prove GWAS resolution and accuracy in pea research.

Using GWAS with a BLINK model, we were able to identify six
significant SNPs for Fe on chromosomes 2, 5, 6, and 7; two signifi-
cant SNPs for P located on chromosome 3; and five significant
SNPs for Zn on chromosomes 3, 5, and 6 (Figure 4). In addition, a
peak on chromosomes 1 and 3 was also identified for Ca, and K
concentration, respectively, and significant SNPs would likely be
identified in that chromosomal region if more samples were in-
cluded to increase statistical power (Supplementary File S2).
Multiple candidate genes were identified in local LD with the
most significant SNP (P< 9.2� 10�7) for Fe, P, and Zn (Table 2). Of
the 10 candidate genes associated with SNP S5LG3_65230721 for
Fe, Psat5g034720 was identified as an ATP-binding cassette 1
(ABC1) family mRNA, which is a gene family that’s involvement
has been observed in the assembly of Fe-S clusters and iron ho-
meostasis in Arabidopsis (Arabidopsis thaliana) (Moller et al. 2001;
Xu and Moller 2004; Xu et al. 2005; Li and Lan 2017). Another
study in Arabidopsis found that mutants that lacked two ABC1
protein kinases accumulated increased amounts of ferritin and
superoxides across tissues and demonstrated reduced tolerance
for oxidative stress, providing further evidence for the roles of the
ABC1 gene family in relation to iron metabolism and stress re-
sponse (Manara et al. 2014). Of the five candidate genes identified
for Zn, Psat5g070480 was also identified as a transmembrane ABC
transporter in LD with SNP S5LG3_128102170. ABC transporters
have been implicated in Zn homeostasis based on gene ontology
analysis in Arabidopsis (Hall and Williams 2003; Broadley et al.

Table 2 Candidate genes in local LD with the most significant SNPs for mineral seed concentration identified through GWAS

SNP_GROUP P-value LD block Mineral CHR SNP_POS GENE_ID INFO

S5LG3_65230721 1.9e-27 65010721–65450721 Fe 5 65230721 Psat5g034720 ABC1 family mRNA
— — — — — — Psat5g034760 GAGA binding protein-like

famly mRNA
— — — — — — Psat5g034800 Inorganic pyrophosphatase 2a
— — — — — — Psat5g034840 Protein phosphatase 2 C
— — — — — — Psat5g034880 eIF2A
— — — — — — Psat5g034920 Twin BRCT domain
— — — — — — Psat5g034960 Dicer dimerisation domain
— — — — — — Psat5g035000 Pentotricopeptide repeat-

containing protein
— — — — — — Psat5g035040 Unknown
— — — — — — Psat5g035080 Carbon-nitrogen hydrolase
S3LG5_44073760 4.3e-10 43769760–44377760 P 3 44073760 Psat3g019520 WRKY DNA-binding domain
— — — — — — Psat3g019560 Unknown
— — — — — — Psat3g019600 PAPA-1 like conserved region
— — — — — — Psat3g019640 CP12 domain
— — — — — — Psat3g019680 PPR repeat family
— — — — — — Psat3g019720 Serine carboxypeptidase
— — — — — — Psat3g019760 Fact complex subunit

(SPT16/CDC68)
— — — — — — Psat3g019800 Prolyl oligopeptidase family
— — — — — — Psat3g019840 GDSL/SGNH-like Acyl-Esterase

family found in Pmr5
and Cas1p

— — — — — — Psat3g019880 SET domain
S5LG3_128102170 1.5e-11 127891170–128313170 Zn 5 128102170 Psat5g070360 COP1 interacting protein 7a
— — — — — — Psat5g070400 SET domain
— — — — — — Psat5g070440 Peptidase family C78
— — — — — — Psat5g070480 ABC transporter

transmembrane region
— — — — — — Psat5g070520 Unknown

a Gene INFO was obtained through BLAST with Medicago truncatulata to infer gene function
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2007). An additional ten candidate genes were identified in local
LD with SNP S3LG5_44073760 related to P seed concentration.
The gene Psat3g019520 corresponds to a WRKY DNA-binding do-
main, and WRKY transcription factors are well characterized in
their involvement in plant stress response (Bakshi and Oelmüller
2014; Jiang et al. 2017). A study in rice found that overexpression
of OsWRKY74 increased root and shoot biomass, as well as P con-
centration in rice grown under P deficient conditions, implicating
roles of WRKY transcription factors in modulating P uptake and
translocation from the soil (Dai et al. 2016). Another study in
Arabidopsis found that AtWRKY42 is involved in P homeostasis
by regulating the expression of PHO1 and PHT1 in response P
availability in the soil (Su et al. 2015). More studies are necessary
to elucidate the role of these candidate genes on mineral seed
concentration, such as those generating knock-out mutants for
these candidate genes to determine their effects on nutrient me-
tabolism and to observe how mineral concentration changes in
their absence.

Conclusions
In summary, this study shows significant variation in pea in min-
eral concentrations but minimal variation for IP6. Mineral con-
centrations appear to be predominately influenced by
environmental factors, except Ca, which shows moderate H2 esti-
mates. These findings suggest alternative phenotypes besides
seed concentration should be considered for biofortification re-
search in pea, such as those that consider mineral uptake, mobili-
zation, and accumulation of final mineral concentration. In
addition, the PSPPC is genetically diverse and a valuable resource
for genomic research in pea, as it has been previously genotyped, is
publicly available, and incorporates novel alleles, which is useful to
investigate the genetic basis of many agronomic and nutritional
traits. Finally, candidate genes for Fe, P, and Zn concentration have
been identified through GWAS, and their roles could be further
characterized through additional molecular studies via knockouts
or gene overexpression experiments. Overall, this research contrib-
utes to our understanding of nutritional traits and the future of
biofortification and genomic research in pea.
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Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M,

Yessimbekova M, et al. 2007. Iron and zinc grain density in com-

mon wheat grown in Central Asia. Euphytica. 155:193–203. doi:

10.1007/s10681-006-9321-2.

Pingali PL. 2012. Green revolution: impacts, limits, and the path

ahead. Proc Natl Acad Sci USA. 109:12302–12308. doi:

10.1073/pnas.0912953109.

Raboy V. 2003. myo-Inositol-1,2,3,4,5,6-hexakisphosphate.

Phytochemistry. 64:1033–1043. doi:10.1016/S0031-9422(03)

00446-1.

Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, et al. 2000.

Origin and seed phenotype of maize low phytic acid 1-1 and low

phytic acid 2-1. Plant Physiol. 124:355–368. doi:

10.1104/pp.124.1.355.

Ray H, Bett K, Tar’an B, Vandenberg A, Thavarajah D, et al. 2014.

Mineral micronutrient content of cultivars of pea, chickpea, com-

mon bean, and lentil grown in saskatchewan, Canada. Crop Sci.

54:1698–1708. doi:10.2135/cropsci2013.08.0568.

Rehman HM, Cooper JW, Lam H-M, Yang SH. 2019. Legume biofortifi-

cation is an underexploited strategy for combatting hidden hun-

ger. Plant Cell Environ. 42:52–70. doi:10.1111/pce.13368.

Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, et al. 2013.

Biofortification: progress toward a more nourishing future. Glob

Food Sec. 2:9–17. doi:10.1016/j.gfs.2012.12.003.

Sperotto R, Boff T, Duarte G, Santos L, Grusak M, et al. 2010.

Identification of putative target genes to manipulate Fe and Zn

concentrations in rice grains. J Plant Physiol. 167:1500–1506. doi:

10.1016/j.jplph.2010.05.003.

Stagnari F, Maggio A, Galieni A, Pisante M. 2017. Multiple benefits of

legumes for agriculture sustainability: an overview. Chem Biol

Technol Agric. 4:2.doi:10.1186/s40538-016-0085-1.

Su T, Xu Q, Zhang FC, Chen Y, Li LQ, et al. 2015. WRKY42 modulates

phosphate homeostasis through regulating phosphate transloca-

tion and acquisition in Arabidopsis. Plant Physiol. 167:1579–1591.

doi:10.1104/pp.114.253799.

Talamond P, Doulbeau S, Rochette I, Guyot JP. 2000. Anion exchange

high-performance liquid chromatography with conductivity de-

tection for the analysis of phytic acid in food. J Chromatogr A.

871:7–12. doi:10.1016/S0021-9673(99)01226-1 (2000).

Thavarajah P, Thavarajah D, Vandenberg A. 2009. Low phytic acid

lentils (Lens culinaris L.): a potential solution for increased micro-

nutrient bioavailability. J Agric Food Chem. 57:9044–9049. doi:

10.1021/jf901636p.

Wang J, Zhang Z. 2020. Gapit version 3: Boosting power and accuracy

for genomic association and prediction. Bioinformatics.

[Preprint]. doi:10.1101/2020.11.29.403170.

Warkentin TD, Delgerjav O, Arganosa G, Rehman AU, Bett KE, et al.

2012. Development and characterization of low-phytate pea.

Crop Sci. 52:74–78. doi:10.2135/cropsci2011.05.0285.

Welch RM, Graham RD. 2004. Breeding for micronutrients in staple

food crops from a human nutrition perspective. J Exp Bot. 55:

353–364. doi:10.1093/jxb/erh064.

White P, Broadley M. 2005. Biofortifying crops with essential mineral

elements. Trends Plant Sci. 10:586–593. doi:10.1016/j.tplants.

2005.10.001.

Xia M, Xiong F. 1991. Interaction of molybdenum, phosphorus and

potassium on yield in Vicia faba. J Agric Sci. 117:85–89. doi:

10.1017/S0021859600079004.

S. Powers, J. L. Boatwright, and D. Thavarajah | 9



Xu XM, Adams S, Chua NH, Moller SG. 2005. AtNAP1 represents an

atypical SufB protein in Arabidopsis plastids. J Biol Chem. 280:

6648–6654. doi:10.1074/jbc.M413082200.

Xu XM, Moller SG. 2004. AtNAP7 is a plastidic SufC-like ATP-binding

cassette/ATPase essential for Arabidopsis embryogenesis. Proc

Natl Acad Sci USA. 101:9143–9148. doi:10.1073/pnas.0400799101.
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