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Abstract

Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited.
There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results
from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this
response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the
factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their
implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and
neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the
neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential

modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.
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Introduction

Stroke is a debilitating disease condition defined as either an
interruption of blood supply to the brain due to a clot or em-
bolism, or the rupture of a blood vessel in the brain, which
then leads to neurological impairments [1]. It remains the 3rd
leading cause of death worldwide, with nearly 15 million peo-
ple being affected every year [2], while in the USA, it is the
number 5 killer, killing nearly 140,000 people every year
(https://www.cdc.gov/stroke/facts.htm). Currently, the
treatment for ischemic stroke is to administer a thrombolytic
agent such as tissue Plasminogen Activator (tPA) or to per-
form a surgical thrombectomy procedure to mechanically
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remove the blood clot (thrombus) [3]. However, the optimal
time window for these treatments is very small and survivors
often exhibit a high degree of morbidity, as well as limited
functional recovery [4]. New modes of therapy are therefore
urgently needed, especially ones that can be administered after
longer periods following stroke onset, that can lead to better
functional recovery and reduced morbidity. To this end, post-
stroke brain repair processes are of particular research interest.
Here, in this review, we discuss stroke-induced neurogenesis
as a potential target for therapeutic intervention, as it repre-
sents a major repair mechanism that by itself falls short in
achieving full recovery in surviving patients, and presumably
could be modulated to achieve better outcomes. A detailed
understanding of this phenomenon is needed to guide future
research and the development of effective intervention
strategies.

Neurogenesis in the Post-stroke Brain

Neurogenesis, or the birth of new neurons, is known to be
induced in response to ischemic stroke, in the infarct and
surrounding areas. Neural stem cells originating from the
sub-ventricular zone (SVZ) and the sub-granular zone of the
dentate gyrus are considered to give rise to these new neurons
[5-7]. This is thought to be a key process in post-stroke
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recovery and repair of the damaged brain region [§-10]. In
general, this involves the migration of neural stem cells to the
infarct and peri-infarct region, followed by their differentia-
tion into functional neurons [11-13]. This process is schemat-
ically depicted in Fig. 1, based on information derived from
research in rodents and other model systems. An important
factor to consider in post-stroke functional recovery is the
ultimate survival of these newborn neurons. Several studies
have reported their reduced survivability possibly due to their
microenvironment lacking trophic factors as well as chronic
inflammatory responses [14-16]. Acute neuroinflammation,
however, has been reported to promote neurogenesis and
may be promoting neuronal survival as well [17, 18]. In addi-
tion, age remains a prominent factor affecting neurogenesis.
The rate of neurogenesis steadily declines with rising age,
with stroke increasing the sharpness of that decline [8, 19,
20]. Notably, Darsalia and collaborators [8] reported that
striatal neurogenesis after stroke is similar in young and aged
mice, while hippocampal neurogenesis is impaired in aged
animals compared with the young animals. This raises the
possibility of differential region-specific regulation mecha-
nisms and multiple modulatory opportunities if the mecha-
nisms could be harnessed.

Factors Governing Neurogenesis
The process of neurogenesis can generally be categorized into

three stages: (1) neural stem cell proliferation, (2) migration of
neuroblasts and immature neurons, and (3) differentiation into

a

mature neurons and neurite extension, finally leading to syn-
aptogenesis and stabilization of the synapses. There are a
number of molecules that affect one or more of these stages,
and they differ between embryonic neurogenesis and adult
neurogenesis [21-23]. We will focus on some that have been
identified as important for stroke-induced neurogenesis.
Ruan and collaborator in a recent review [24] mention
Fibroblast growth factor-2 (FGF-2) [25, 26], Insulin-like
Growth Factor-1 (IGF-1) [27, 28], Brain-Derived
Neurotrophic Factor (BDNF) [29-31], and Vascular
Endothelial Growth Factor (VEGF) [32] as factors that direct-
ly affect neural stem cell proliferation, while identifying
Stromal-derived factor (SDF-1), Monocyte Chemoattractant
Protein (MCP-1), and Matrix metalloproteinases (MMP) 2,
3, and 9 as factors influencing neuroblast migration [33-36].
SDF-1 and MCP-1 are both chemokines that form part of the
inflammatory response to the ischemic injury [37, 38], where-
as MMPs are matrix metalloproteinases involved in remodel-
ing of the extracellular matrix [35]. Remodeling of the matrix
often occurs to allow reparative processes like angiogenesis to
take place [39]. In this case, however, the remodeling may be
taking place in part to allow the migrating neuroblasts to pass
through. In addition, proteolysis of matrix proteins such as
perlecan has been implicated in promoting neurogenesis in
post-stroke brains [40]. Its c-terminal domain V (DV) is
thought to be the active component leading to neurogenesis
as well as angiogenesis at the infarct and peri-infarct area [41,
42]. Using neurospheres and fetal cortical neurons in vitro,
Trout and colleagues [42] showed that perlecan DV also pro-
moted differentiation into mature neurons as well as neurite
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Fig. 1 Schematic representation of adult neurogenesis in rodents. a
Healthy brains: Neural stem cells proliferate from the SVZ and SGZ
form neuroblasts that migrate to the olfactory bulb and local
parenchyma. b Stroke brains: There is pronounced loss of striatal and
cortical neurons, giving rise to increased proliferation of progenitors.
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The neuroblasts formed before and after the stroke migrate to the site of
injury, influenced by chemokines and cytokines secreted by resident and
activated microglia, reactive astrocytes, etc. The neuroblasts then
differentiate into newborn neurons coupled with angiogenesis at the site
of injury, giving rise to mature neurons
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extension. In this way, the MMPs may be serving a dual
function.

Neuroinflammation and Neurogenesis

For the most part, the dogma is that neuroinflammation and
neurogenesis are inversely related. Factors like Sirtuin 7,
Glucagon-Like Peptide-1, and Nei like DNA Glycosylase 1
enhance neurogenesis by suppressing neuroinflammation
[43—45]. Inhibition of Glycogen Synthase Kinase-3 (GSK-3)
has also been shown to increase neurogenesis, while reducing
neuroinflammation, implicating Wnt signaling in the process
[46-48]. However, depending on the timing, duration, and the
profile of cytokines and chemokines released, neurogenesis
could be positively impacted [17, 18, 49-51].

An example of how the duration of inflammation can be an
important factor is seen by the effect of interleukin-6 (IL-6) on
neurogenesis. Short-term treatment of neural stem cells with a
hyperactive fusion IL-6 protein induces neurogenesis in vitro
[49], while chronic astrocytic IL-6 transgene expression led to
reduced neurogenesis in the dentate gyrus of the transgenic
mice [20]. Similarly, interleukin 1oc (IL-1¢¢) and interleukin-
13 (IL-1P) follow an out of phase expression pattern in re-
sponse to ischemia, where IL-1x expression occurs early fol-
lowing ischemia whereas IL-1§ is expressed much later and
coincides with reduced IL-1c production, indicating that the
two cytokines likely have different roles during the post-
stroke neuroinflammatory response [52, 53]. Indeed, IL-1c
is reported to be neurogenic [17] and gliogenic [54], while
IL-13 is primarily thought to induce neural death and clear-
ance of dead cells and debris [55-57]. One of the ways
interleukin-1 (IL-1) potentially regulates neurogenesis is by
driving the expression of pentraxin 3 (PTX-3). This protein
is a known biomarker for cerebrovascular diseases and plays a
key role in maintaining blood-brain barrier (BBB) integrity.
While one study identified IL-1 as a driving regulator of PTX-
3 [58], a second follow-up study reported the neurogenic abil-
ity of PTX-3, inducing IL-13-dependent proliferation in
neurospheres [59]. In the latter study, PTX3 knockout mice
also exhibited reduced proliferating stem cell population in the
dentate gyrus after MCAO, further supporting the idea that
PTX-3 induces neurogenesis.

Among the various cells involved in mediating inflamma-
tion in the brain, microglia are of particular interest as a cell
type that can infer both neuroprotection and neuronal death.
How they affect neurogenesis has been a major focus of many
studies. Microglia have been reported to produce trophic fac-
tors to guide and support neural stem cell migration and dif-
ferentiation, but also, on other occasions, produce cytokines
that hamper cell survival [60—-64]. When microglia in the brain
were nearly completely depleted by administration of the
Colony-stimulating factor 1 receptor (CSFIR) antagonist

PLX3397, the resulting mice exhibited approximately 60%
increase in infarct size after MCAO [65], indicating the largely
neuroprotective role played by microglia. In a quiescent and
ramified state, microglia tend to secrete trophic factors that
support surrounding neurons, whereas in a more activated
(ameboid) state, they tend to eliminate neurons. The CX3C
Receptor 1, expressed by microglia, has been shown to play a
key role in the modulation of these characteristics. Its inhibi-
tion leads to reduced hippocampal neurogenesis leaving the
olfactory bulb unchanged [66, 67].

In addition to microglia, astrocytes have also been shown
to influence neurogenesis, particularly reactive astrocytes [68,
69]. Traditionally, they were thought to contribute more to
neuronal apoptosis than neuronal survival in the ischemic
brain [70]. However, recent studies have informed more about
their robust neurogenic properties. In addition to secreting
growth and other factors to strengthen synapses, some astro-
cytes act as neuronal precursors [71-73]. These cells can not
only differentiate into mature neurons but are also able to
divide asymmetrically to generate a neuron and another pre-
cursor [73]. There are ongoing efforts to exploit these proper-
ties clinically, especially in conjunction with stem cell-based
approaches [74]. Faiz and colleagues (2015) have identified
Ascll as a gene that can induce the transdifferentiation of
astrocytes into neurons [75]. Similarly, Zhang et al. (2018)
have implicated IL-17 expression and release from astrocytes
in promoting neurogenesis via the NF-kB pathway [76].
Another study reported that the secretion of 3-arrestin from
astrocytes promoted neurogenesis, while knockout animals
displayed reduced proliferation of neural precursor cells
[77]. Disrupted in Schizophrenia 1 (DISC-1) is yet another
gene expressed by astrocytes known to influence
neurogenesis, where a dominant negative mutation is known
to cause reduced neurogenesis [78]. Astrocytes, therefore,
present an attractive target for stroke therapy, especially when
combined with stem cell-based therapeutic approaches and
other neurogenesis promoting treatments. If the developmen-
tal ability of astrocytes to neurons can be harnessed and mod-
ulated, this presents a somewhat renewable pool of neural
precursors, which is additional to neuroblasts from the SVZ
and the DG. Furthermore, astrocyte-derived growth and sup-
port factors can also be clinically targeted to ensure better
survival of the post-stroke newborn neurons.

Targeting Neurogenesis in Experimental
Stroke

Regarding modulating post-stroke neurogenesis to improve
stroke outcome, there are a number of considerations.
Selective ablation of post-stroke neurogenesis has been report-
ed to have deleterious effects in stroke recovery [79-81], in-
dicating the potential for manipulating neurogenesis to alter

@ Springer



Transl. Stroke Res. (2021) 12:1-14

stroke outcome. This is further reinforced by studies showing
enhancement of neurogenesis positively affecting stroke out-
come [82-85]. In doing these studies, the timing of interven-
tion becomes a key consideration because neurogenesis is a
part of the delayed repair process and any intervention
targeting an aspect of the neurogenic process needs to be in
synchrony for maximum efficacy [86—88]. In addition, it is
important to consider the interplay with other repair processes
such as angiogenesis [24]. Some recent studies examining
post-stroke neurogenesis are listed in Table 1.

In early studies, newborn neurons were detected in gerbil
brains after cerebral ischemia, 26 days after ischemic insult
and persisted for 7 months [89]. More recent studies, however,
showed that in mice and rats, neural stem cell proliferation in
the SVZ was significantly enhanced in as early as the first 7—
14 days after MCAO [11, 13, 90, 91]. Thored and colleagues
reported the presence of neuroblasts from 1 week up to
16 weeks after insult, in the striatum [7]. Similarly,
neuroblasts were shown to migrate to the cortex and survive
for 35 weeks or more [90]. Therefore, these represent the
rodent counterparts for therapeutic windows for treatments
aimed at proliferation (7 days and beyond) and migration.
These time windows would be different in humans and need
to be investigated to determine effective treatment regimes.
Lastly, most of these neurons die within 2—5 weeks [15]. It
is this critical period that must be targeted if neuroprotective
factors or factors promoting neuronal survival are to be ad-
ministered for therapy, although it is unclear how long that
treatment will have to be continued, to ensure the survival of
the newborn neurons. It may be important to target the process
of synaptogenesis at time periods like this since failure to
make connections has been proposed as a mechanism of neu-
ronal death [15].

The process of angiogenesis has been reported to be closely
intertwined with the process of neurogenesis after stroke [24,
85, 92-95]. This process is defined as the formation of new
blood vessels via the sprouting of preexisting vessels and gen-
erally occurs in response to an injury such as cerebral ischemia
[96]. It is characterized by proliferation of endothelial cells
that then form tube-like structures, ultimately forming the
complete blood vessel [97]. Research has shown that endothe-
lial cells secrete a number of neurotrophic factors like VEGF,
Angiopoeitin-1, and SDF-1 that facilitate neurogenesis and
neuronal differentiation and subsequent survival [33, 98,
99]. Moreover, angiogenic processes precede the neurogenic
processes in the infarct area after ischemic insult [100-103].
Research has also shown that modulation of the factors
governing neurogenesis also affects angiogenesis [32,
104—-108]. These all point to the idea that modulation of
neurogenesis can be achieved by modulation of angiogenesis
as well as the importance of keeping angiogenic processes in
mind while manipulating neurogenesis. A question can be
raised about how one could go about targeting neurogenesis
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specifically without altering angiogenesis. One way to do so
may be to delay treatments such that period of angiogenesis is
surpassed and mostly neurogenesis is targeted [17], while an
alternate method could involve treating with a cocktail with
components that would compensate for effects on angiogene-
sis specifically that might occur as a concurrent effect of one
or more of the other components. It might have to be a com-
bination of the two methods or others to achieve maximum
targeting efficiency.

Drugs Targeting Neuroinflammation to Alter
Neurogenesis

Minocycline is a tetracycline derivative that inhibits
microglial activation and has been shown to be neuroprotec-
tive following focal cerebral ischemia [109, 110]. It has also
been shown to be able to upregulate neurogenesis in multiple
models [111-113]. Therefore, this remains the most promis-
ing pharmacological agent in this regard. Srivastava and col-
laborators [114] reported it as safe and efficacious in their
clinical trial, which was further supported by the meta-
analysis conducted by Malhotra and colleagues [115], of sev-
en randomized clinical trials. It is safe to be administered for
sure, but its efficacy still needs some more validation before it
is widely accepted for treatment of stroke.

Another study reported that the drug Sildenafil promoted
neurogenesis and was able to enhance functional recovery
after perinatal/pediatric ischemia in mice [116]. While this is
not exactly the same as the hypoxia occurring during ischemic
stroke, it is consistent with previous findings that sildenafil
promotes neurogenesis after focal cerebral ischemia
[117-119]. Engels and collaborators [116] proposed that
Sildenafil altered the levels of Wnt signaling pathway mem-
bers [3-catenin and GSK-3, via inhibition of phosphodiester-
ase type 5, and subsequent increase in cGMP levels. Although
they did not find any direct evidence of affected neuroinflam-
mation, GSK-3 and Wnt signaling has been implicated in the
regulation of neuroinflammation in several studies [120, 121].
One GSK inhibitor called Tideglusib has been investigated in
clinical trials as well, where it was deemed clinically safe but
was not effective [122, 123]. Other GSK inhibitors that may
be worth exploring include 6-bromoindirubin-30-oxime
(BIO) [46, 48] and lithium chloride [47, 124].

Based on several in vitro and in vivo studies investigating
the role of IL-1 in stroke, recent studies have considered IL-1
receptor antagonist (IL-1Ra) as an attractive new therapy.
Indeed, a small phase 2 clinical trial showed that IL-1Ra is
safe in stroke and may be effective [125], and the more recent
SCIL-STROKE study confirmed this hypothesis that IL-1Ra
may be potent neuroprotective therapy in stroke [126]. IL-1Ra
may improve stroke outcome through inhibition of the inflam-
matory response; however, an interesting recent study found
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that IL-1Ra administration in rat stroke model potently pro-
motes long-term neurogenesis and functional recovery [127].
This study suggests that, although acute inflammation is an
important trigger for post-stroke neurogenesis, a more con-
trolled neuroinflammatory response appears critical for an op-
timum neurogenic response after stroke. These are only a few
of the drugs being tested for efficacy in stroke treatment, via
neurogenesis modulation. It is widely recognized that phar-
macological modulation of neurogenesis can be a valuable
tool to treat stroke and is, therefore, likely to be active area
of research focus for the foreseeable future.

Potential of Stem Cell-Based Therapy
and Considerations of Challenges

One major observation in ischemia-induced neurogenesis is
that only a small quantity of the newborn neurons survive in
the peri-infarct area [7, 15]. Therefore, to overcome this, in
addition to modulating endogenous neurogenesis, stem cell
therapy to treat stroke has also been investigated as a possible
alternative or as a potential way to augment the endogenous
stroke-induced neurogenesis [128—130].These exogenous
stem cells can become the source of some much-needed tro-
phic factors and exert paracrine reparative effects. In turn, this
could lead to the microenvironment in the peri-infarct area
more supportive of new neuron differentiation and integration
into the circuitry.

In one study, transplanting human fetal neural stem cells
into the hippocampus 24 h after surgically occluding the mid-
dle cerebral artery in mice was reported to have improved
behavioral recovery and reduced infarct volume, compared
with animals without the transplant [131]. They also noted
improved BBB repair and lower number of activated microg-
lia in the transplanted brains, as well as higher abundance
of Brain derived neurotrophic factor (BDNF). A subsequent
study by the same research group reported the transplant pro-
cedure as highly beneficial in combination with tissue plas-
minogen activator (t-PA) treatment, resulting in lower levels
of pro-inflammatory cytokines, tumor necrosis factor
(TNF-) and IL-6, as well as MMP-9 [129]. Taken together,
these validate the potential of transplanting fetal neural stem
cells as a mode of therapy. Of course, the ethical challenges of
obtaining and maintaining such stem cells remain a major
limitation of such a process.

The alternative approach to using fetal stem cells is to use
inducible pluripotent stem cells (iPSCs) or mesenchymal stem
cells (MSCs). Oki et al. [132] used human iPSC-derived
neuroepithelial-like stem cells that they transplanted into mice
1 week and 48 h after MCAO. They reported improved fore-
limb motion recovery, increased VEG-F deposition, and suc-
cessful differentiation of iPSCs into neurons in the striatum.

@ Springer

Use of MSCs is limited by the observation that most of the
systemically transplanted MSCs end up in the lungs and do
not make it to the infarct area of the brain [133, 134], where
they are actually intended to proliferate and repair the damage.
Tobin and colleagues [135] have proposed the use of MSCs
that have been activated by Interferon gamma (aMSCs). They
reported that both activated and naive MSCs induced com-
plete behavioral recovery, reduced infarct volumes, and re-
duced microglial activation and levels of IL-13, TNF-«, and
IL-6 in treated animals, compared with vehicle-treated control
stroke animals. However, they propose the activated MSCs
are a better treatment option than naive MSCs because of an
increased yield of anti-inflammatory factors from microglia.
Interestingly, they did not observe any induction of
neurogenesis in the SVZ after MSC treatment.

A phase 1 clinical trial (PISCES) involving the administra-
tion of CTXO0EO3 human neural stem cells via stereotactic
ipsilateral putamen injection reported that a dose of up to
20,000 cells is safe and well tolerated in patients [136]. The
treatment also resulted in functional improvements and upon
further investigation, may very well become a mainstream
intervention strategy. Since the study was conducted only on
11 men, it needs to be followed up with the inclusion of fe-
male patients and a larger patient population [136].

Another phase 2 clinical trial involving the administration
of bone marrow stem cells to stroke patients proved safe in
patients, but ineffective in terms of treating stroke [137].
Similar results were obtained in another phase 2 clinical trial
where patients were treated with bone marrow derived ALD-
401 stem cells [138]. Taken together, these studies indicate
that the administration of stem cells is safe. As for effective-
ness, there is potential for the stem cells to promote functional
recovery in more tightly controlled settings, which was a lim-
itation of all three studies, along with the small population of
patients that have been tested.

The process of preconditioning the MSCs and using the
resulting media may prove even more effective in stroke treat-
ment [128, 139]. A recent systemic review highlighted the
therapeutic potential of extracellular vesicles secreted by var-
ious cells like MSCs, macrophages, and neural stem cells,
identifying these vesicles as an attractive approach.
However, being a recent trend, there is a significant amount
of heterogeneity among the results of applications, presum-
ably due to isolation and administration techniques, as well as
cell-type of origin [140]. Further work on MSCs precondition-
ing with various inflammatory mediators found that IL-1cc can
be used as a key priming stimulus to induce MSCs to produce
anti-inflammatory and neurotrophic factors [141], and a fur-
ther in vivo study in mice demonstrated that conditioned me-
dium of IL-1x-primed MSCs administered peripherally after
stroke had beneficial effects on stroke outcome and functional
recovery [139]. Further work investigating the efficacy of
targeted delivery of IL-1o-primed MSCs in stroke is ongoing.
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Conclusion and Future Therapeutic
Perspective

Stroke affects millions of people every year. With the world
populations steadily rising, the global burden of stroke keeps
rising proportionally. As a result, there remains a global and
critical need to develop better treatment options. Stroke-
induced neurogenesis presents a promising therapeutic target,
since it can allow the brain to, essentially, rewire and refresh
itself, and heal the damage caused by the ischemia or hemor-
rhage. However, harnessing neurogenesis remains a challenge
because of the intricate interplay of the factors involved, espe-
cially ones involved in neuroinflammation. It is now well un-
derstood that the two processes much more deeply connected
than a simple inverse relationship. Moreover, both processes
are interconnected with angiogenesis and together work to-
wards post-stroke brain repair. In order to harness them and
improve functional recovery, it is imperative, now more than
ever, to characterize the roles played by each immune cell,
cytokine, and chemokine, as part of the post-injury microenvi-
ronment, taking into special consideration their temporal ex-
pression patterns, specific effects on angiogenesis,
neurogenesis, neuroprotection, and neuron elimination. All of
these need to be considered carefully to craft effective therapeu-
tic cocktails that are to achieve maximum treatment efficiency.
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