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Introduction
The transcriptome representing the entire repertoire of gene 
transcripts in a cell bridges the gap between genetic infor-
mation encoded in DNA and phenotypes. A quantitative 
measurement of the transcriptome provides a snapshot of the 
content and dynamics of RNA species under a certain cel-
lular condition. Traditional tools for gene expression profiling 
include Northern blot, reverse-transcription polymerase chain 
reaction, expressed sequence tags, and serial analysis of gene 
expression. The advent of microarray1,2 and, more recently, 
RNA sequencing3,4 (RNA-seq) allows fast, cost-effective, 
and comprehensive measurement of messenger RNA abun-
dance for thousands of genes simultaneously. Many  studies 
that compare the two technologies in the same system have 
found that RNA-seq has increased sensitivity for the identi-
fication of differentially expressed genes, compared to micro-
array measurements.5–10

Although microarray or RNA-seq experiments are often 
used to probe changes in gene expression within a species,11–17 
understanding the differences in gene expression between 
species has a number of important applications in the fields 
of biology and medicine, including (1) evolution in gene 
expression18–20; (2) animal models of human diseases such as 
cancers,21,22 Alzheimer’s disease,23 Huntington’s disease,24 

diabetes,25 and hypertension26; (3) developmental biology27; 
(4) aging28–30; (5) toxicology31; and (6) biomarkers.32,33 As 
such, several computational methods have been proposed and 
developed to analyze interspecies gene expression data.8,34–36

However, a detailed, step-by-step protocol is not avail-
able for cross-species RNA-seq data analysis, which hampers 
the full utilization of gene expression data in public reposito-
ries such as Gene Expression Omnibus37 and ArrayExpress.38 
Here, we address this need with a protocol based on published 
computational pipelines39–41 and relevant Bioconductor pack-
ages. The steps in this protocol are detailed in “Description of 
the protocol” section, which include (1) short-read alignment 
to a genome, (2) quantification of gene expression based on 
a given annotation, (3) lifting of annotations between spe-
cies to their best orthologs, (4) differential expression analysis 
between multiple species or between multiple samples of one 
species, and (5) pathway enrichment and analysis of differen-
tially expressed genes.

Description of the Protocol
RNA-seq analysis typically begins with the sequencing of 
many individual complementary DNA reads, which are usu-
ally no more than several hundred base pairs long. Qual-
ity control software assesses the quality of each base pair of 
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a sequenced read and returns a file in the FASTQ format 
with both DNA sequence and a quality score for each nucle-
otide. A scientist then examines this file and may use tools to 
improve the average quality of the data by truncating the read 
fragments with low-quality scores. Other operations are often 
performed in this step as well, such as the demultiplexing of 
barcoded samples. At the end of the quality control process, 
a file with the high-quality reads is the starting point for this 
protocol (Fig. 1, Step 1).

The reads are then aligned to the genome of the organ-
ism using SHRiMP42 (Fig. 1, Step 2). This part of the pro-
tocol is dependent upon input data and is not significantly 
distinct from many other methods of sequencing. SHRiMP 
can easily be exchanged for other aligners of a user’s preference 
(eg, Tophat43 and GSNAP44). The output of many sequencing 
programs is in the sequence alignment/map (SAM)  format45 
and is then converted to a binary format (BAM) for improved 
performance and storage efficiency. Performance can be further 
improved by sorting and  indexing the file (Fig. 1, Step 3).

The next step is to quantify gene expression across species 
based on a gene annotation (Fig. 1, Step 4). This part of the 
protocol is quite specific to comparisons between species and 
is sensitive to errors. A single reference species is identified, in 
this protocol the mm10 annotation,46,47 and the annotation file 
is downloaded in the GFF format. Constitutive exons, which 
are exons that are always included in the final gene product, 
are identified in this annotation using MISO.48 Other parts of 
the annotation that are not constitutive exons are discarded. 
Pairwise genome alignments of the chosen reference anno-
tation to each query species are downloaded in the AXT 
format.49–51 All exons in the reference annotation that have 
complete orthologous regions in all query species genomes are 
lifted to their respective orthologous position in each query 
species, while maintaining the gene IDs of the reference spe-
cies. The resulting annotations are then converted from the 
GFF format to the GTF format using the gffread utility from 
the Cufflinks package.43 This step is discussed in more detail 
in “Generation of cross-species genome annotations” section 
as it is not covered in any other published protocols.

The annotations are then used to count the number of reads 
that align to each exon from the indexed alignment file, which 
is used to calculate expression on a per-gene level. For compari-
son between species, this pipeline uses a count-based method 
rather than an FPKM-based method for quantifying expres-
sion, as it is easier to integrate this information into downstream 
expression analysis tools. The reason for this is twofold. First, 
many tools that compute differential expression (eg, cuffdiff ) 
require that one annotation can be given for all input align-
ment files, which does not function when comparing between 
species, with a different annotation for each species. Second, 
many FPKM measurements take into account the expression 
of genomic locations that are not included in the annotation. 
Expressed reads aligned outside the annotation is used to nor-
malize the expression levels of genes within the annotation. This 

is desirable for many analyses, as it allows to see if one gene is 
expressed or not expressed compared to other genes. However, 
it is not desirable in our case, as genomic locations outside of the 
annotation are not considered homologous. Including them to 
measure FPKM would render the data incomparable between 
species. Instead, gene expression within a sample is normalized 
against total expression within the annotation for that sample. 
To this end, the annotations are pared down to only those con-
stitutive exons orthologously present in all queried species. Dif-
ferential expression analysis should focus on those exons and 
genes that can be measured in all samples.

Mapped short reads are counted for each sample against 
the respective annotation using Rsubread,52 which returns the 
count information in a list (Fig. 1, Step 5). This list can then 
be read into edgeR53 that is able to perform a number of sta-
tistical tests upon the count data (Fig. 1, Step 6). Of  primary 
importance, differential expression is computed for each gene 
between each sample using a negative binomial distribu-
tion.54,55 The list of differentially expressed genes may then be 
subset by magnitude and reported directly, as well as lend itself 
to further downstream analysis. In particular, our method 
covers the use of SPIA,56 GAGE,57 and pathview,58 which are 
analysis packages from Bioconductor59 (Fig. 1, Steps 7 and 
8). GAGE, which stands for Generally Applicable Gene-set 
Enrichment, examines all differential expression between two 
samples and determines which annotated cellular pathways 
are significantly different between the two samples, based on a 
given set of pathway annotations. This protocol utilizes path-
ways from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG).60 This is done using a standard gene set enrichment, 
where DEGs are ranked by log fold change. Then based on the 
ranks and numbers of pathways, certain pathways are deter-
mined to be significant. SPIA performs similarly but has the 
added feature of assessing the topology of the pathway. For 
example, if in a particular comparison, the first sample com-
pared has high expression in genes promoting a certain path-
way and the second sample has increased expression in genes 
repressing that pathway, it rates that pathway as more signifi-
cantly different than if the DEGs are randomly distributed 
through the pathway. However, this can also backfire if genes 
that are involved in both activation and repression are both 
upregulated in one sample, possibly reducing the likelihood of 
discovering new pathways. For this reason, both GAGE and 
SPIA are used in this protocol. Once significantly different 
pathways are determined, a tool named pathview is used to 
give gene names, pathway names, and expression levels, and 
it queries the KEGG servers for the pathway diagrams, anno-
tating and coloring them in accordance with expression lev-
els. Pathway-level expression analysis is the final goal of this 
protocol, enabling researchers to view and explore the differ-
ences between two samples of different species, in terms of 
one reference species’ pathways, tying the difference in gene 
expression into the true biological differences and allowing for 
a much more human-readable set of results.
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In addition to the above-mentioned pathway analysis 
charts, a number of scripts are written that leverage various 
other R packages to display various interesting aspects of the 
data using heatmaps, Venn diagrams, and other charts.

Generation of cross-species Genome Annotations
The key to being able to compare RNA-seq data between 
different species is the generation of a cross-species genome 
annotation. To this end, one species is selected as a “reference” 
species against which any other query species is compared. In 
this protocol, the mouse genome and annotation are selected 
as the reference. The goal is to ultimately compare all data 
from all relevant samples to one another in terms of genes and 
pathways in the reference species. The best way to do this is to 
use orthologous genome regions. Because many annotations 
may be variably complete or have similarly named genes that 
have different functions, comparisons at a base pair level are 
used to determine which regions in the query species’ genomes 
are to match up to each region in the reference annotation.

One commonly used tool for the translation of genomic 
coordinates from one annotation version to another, or indeed 
one species to another, is the University of California Santa 
Cruz (UCSC)’s liftOver utility. However, the chain/net files 
used by liftOver are ill suited to comparisons between species 

as small changes to the parameters can cause huge changes 
in the output when the two species have a large evolutionary 
distance. To adjust for this, the UCSC conservation track, 
which is the best alignment between two genomes, is used 
instead. This track makes the comparison more robust – not 
only are the conservation tracks partially based on ontology, 
but location conversion between the two genomes are also 
symmetrical. Symmetrical location conversion means that if 
a region in the mouse genome is converted to the rat genome 
using the conservation track, the resulting region in the rat 
converts back to the exact original region in the mouse. This 
is not always the case when using liftOver, due to the asym-
metrical nature of dynamic masking in Blastz. The symmetry 
of the conservation track allows for a much more robust com-
parison between species.

Furthermore, in our protocol, the reference annotation is 
filtered such that only constitutive exons, that is, the exons in a 
gene that are always incorporated into the final gene product, 
are included. Although alternatively splicing is biologically 
important, comparing all exons in a gene between species is 
less meaningful as exons may differ in size and number. As 
such, exons that may be spliced out of the primary transcript, 
that is, cassette exons, are removed from consideration since 
they serve as a source of variation between samples.

Sequenced data
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M. musculus

Genome assembly
for rnor5/mm10

SHRiMP

Aligned .bam files
for each sample

exon_utils

GFF genome annotation
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AXT files for mm10/rnor5
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figure 1. computational pipeline for cross-species expression analysis using rna-seq. the pipeline is divided into eight steps. description of each step 
and corresponding commands are included in the text. the custom scripts for rna-seq analysis and data visualization can be downloaded from https://
github.com/ploverso. other software or r packages listed are available for downloading (details are given in “hardware and software” section).
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comparisons with Other Methods
To the best of the knowledge of the authors, this is the first 
published protocol providing a generally applicable set of 
instructions for the comparison of RNA-seq data between 
different species. This protocol is partially based on a method 
published by Liu et al.8 for comparing RNA-seq data between 
closely related species, while adapting other parts of this pro-
tocol on previously published protocols and software39–41 that 
are already commonly used throughout the field. The goal of 
this protocol is to use off-the-shelf software when possible 
for the analysis of the data, while writing and publishing new 
code for ease of comparisons between species. There are often 
many options available for most steps in the protocol, which 
work with similar input and output files; the user may alter 
some steps to use one of the many other tools available, for 
example, Tophat rather than SHRiMP, or DEseq instead of 
edgeR, as drop-in replacements.

Several other groups have published tools for cross-species 
gene expression analysis.34–36 For instance, Kuhn et al.34 used 
an approach similar to ours (gene ontology), but rather than 
examine either species at a base pair level, they have built tools 
to query Homologene for gene IDs and return orthologous 
mappings in another species. This tool has been wrapped and 
published in a Bioconductor package “annotationTools.” One 
weakness of their method is that it does not contain any function 
to judge the relatedness between the genes. It simply returns the 
gene IDs, relying on Homologene to do the heavy lifting.

Zhu et al.36 used a method that is also similar to ours. 
That is, they have built cross-species annotations using lift-
Over, which poses some problems discussed in “Generation 
of cross-species genome annotations” section. They then used 
BLAT to filter out their orthologous exons, while we used 
AXT files instead.

Kristiansson et al.35 defined and implemented a method 
for cross-species gene expression analysis as well, although they 
did not provide a detailed step-by-step protocol for upstream 
preparation and downstream analyses. While the general idea 
of this method is the same as ours – comparison of expression 
based on ontology – the implementation is very different. They 
take into account the homology structure between compared 
species and compare the expression data from genes that have 
any number of orthologs and paralogs. A simulation study has 
shown that this method has increased statistical power com-
pared to other methods. We may construct a separate protocol 
later based on their method for the analysis of cross-species 
gene expression data.

confounding Effects
Several confounding effects may be introduced in the cross-
species analysis of RNA-seq data. First, as this protocol seeks 
to compare RNA-seq data between different species using 
one annotation, differences in the procurement and treat-
ment of cells can introduce variations into the data, as well 
as the relatedness of the species. Second, the quantification 

of  orthologous genes across species can only be an approxi-
mation based on alignment scores, and in distantly related 
species, this may introduce confounding of the data. Third, 
if the protocol is used to compare data from more than one 
study, differences in cells or data treatments between stud-
ies may also introduce variations. Fourth, experimental and 
computational tools used for the analysis may introduce 
variations. It is advised that a user should keep track of all 
software versions and cell treatment protocols used. Any dif-
ferences in the protocols may be used to determine whether 
differences found in the downstream analysis are the result 
of these factors or true biological expression variations. Fifth, 
comparing one sample from one species to one sample from 
another species may have bias introduced in the process of the 
cross-species annotation. In order to control for this, it is rec-
ommended that multiple cell types in a species be examined. 
Thus, variations in gene expression in individual samples can 
be controlled against the average expression of all samples in 
the same species.

Hardware and software
The computing resources necessary for this protocol are heavy, 
particularly for the alignment of sequencing reads to the ref-
erence genome. While there are ways to reduce the memory 
footprint of the alignment if necessary, it is recommended to 
use a computer with at least eight cores and 64 GB of RAM, 
as well as at least 500 GB of hard drive space. Additional 
resources allow multiple samples to be run simultaneously, 
significantly speeding up the analysis.

This protocol is constructed on and for a GNU/Linux 
operating system, and commands are given assuming that the 
user is using a POSIX-compliant operating system with access 
to a shell such as bash. While it is possible to run the protocol 
under Microsoft Windows, several additional steps would be 
necessary for the proper execution of various programs, which 
is outside the scope of this protocol. The author recommends 
one of the Debian or Red Hat distro’s for this protocol.

The SHRiMP alignment software may be downloaded 
from http://compbio.cs.toronto.edu/shrimp/.

To work with the alignment files, SAMtools is used 
for conversion, sorting, and indexing of the files. It may be 
installed from your distro’s software repository or downloaded 
from http://samtools.sourceforge.net/.

Determination of constitutive exons leverages MISO, 
which can be downloaded from https://miso.readthedocs.org/
en/fastmiso/index.html.

Various scripts and utilities for working with axt files, 
as well as various downstream analyses, were written by the 
author and may be downloaded from a git repo created for this 
protocol at https://github.com/ploverso.

The gffread utility, as well as other programs for down-
stream analysis, is part of the Cufflinks package and may be 
installed from your distro’s software repository or downloaded 
from https://cole-trapnell-lab.github.io/cufflinks/.
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The R statistical computing environment may be down-
loaded from http://cran.rstudio.com/.

Bioconductor and several of its packages (Rsubread, 
edgeR, gage, gageData, pathview, Org.mm.eg.db, and others 
specified below) as well as all dependencies may be installed 
using the Bioconductor package installer.

The gplots package may be installed using R’s built-in 
package installer.

Following is the output of R’s sessionInfo() command, 
which will show the versions of all packages used:

. sessionInfo()
R version 3.1.1 (2014–07–10)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.utf8 LC_NUMERIC=C
[3] LC_TIME=en_US.utf8 LC_COLLATE=en_US. 

utf8
[5] LC_MONETARY=en_US.utf8 LC_MESSAGES= 

en_US.utf8
[7] LC_PAPER=en_US.utf8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.utf8 LC_IDEN-

TIFICATION=C
attached base packages:
[1] grid splines parallel stats4 stats graphics grDevices
[8] utils datasets methods base
other attached packages:
[1] org.Rn.eg.db_3.0.0 Rsubread_1.16.1 BiocInstaller_ 

1.16.4
[4] VennDiagram_1.6.9 RColorBrewer_1.1–2 gplots_ 

2.16.0
[7] gageData_2.3.1 gage_2.16.0 pathview_1.6.0
[10] org.Hs.eg.db_3.0.0 KEGGgraph_1.24.0 graph_1.44.1
[13] XML_3.98–1.1 edgeR_3.8.6 limma_3.22.7
[16] org.Mm.eg.db_3.0.0 RSQLite_1.0.0 DBI_0.3.1
[19] AnnotationDbi_1.28.2 GenomeInfoDb_1.2.4 

IRanges_2.0.1
[22] S4Vectors_0.4.0 Biobase_2.26.0 BiocGenerics_0.12.1
[25] biomaRt_2.22.0
loaded via a namespace (and not attached):
[1] Biostrings_2.34.1 bitops_1.0–6 caTools_1.17.1 

gdata_2.13.3
[5] gtools_3.4.2 httr_0.6.1 KEGGREST_1.6.4 Kern-

Smooth_2.23–14
[9] png_0.1–7 RCurl_1.95–4.5 Rgraphviz_2.10.0 

stringr_0.6.2
[13] tools_3.1.1 XVector_0.6.0 zlibbioc_1.12.0

Alternative Aligners to the Protocol
This protocol is modular, meaning that users can use aligners 
other than SHRiMP, such as Tophat or GSNAP to count fea-
tures. With the sorted, indexed BAM files, users can proceed 
at Step 4 of the protocol (see later).

Input Data
Theoretically, this protocol is suitable for RNA-seq data from 
any species generated from a commercial NGS platform 
(Illumina, SOLiD, or Ion Torrent), provided that the quality 
control on the reads are performed according to the manu-
facturer’s instructions. For the purpose of illustration, we use 
RNA-seq data from two different species, Rattus norvegi-
cus and Mus musculus, to describe the protocol. The rat data 
are single-ended sequencing data, while the mouse data are 
paired-end sequencing data. All input files are based on out-
put from Illumina sequencing machines and in the FASTQ 
format. Detailed analysis of the rat and mouse samples using 
this protocol was published in a separate paper.61

Protocol
Preparation of reference genome. The reference genomes 

for rat and mouse (rnor5 and mm10, respectively) are down-
loaded in compressed FASTA format from llumina’s igenomes 
FTP server: ftp://igenome:G3nom3s4u@ussd-ftp.illumina.
com/. Furthermore, the comprehensive gene annotation for 
mm10 is downloaded in the GFF format from GENCODE: 
http://www.gencodegenes.org/mouse_releases/3.html. Once 
the genome FASTA files are downloaded and extracted for 
each species, they are preprocessed with SHRiMP, which 
greatly decreases the time required to align the RNA-seq 
samples to that genome. The general command used to pre-
process the genomes run from the location of each genome.
fa file is

$∼/SHRiMP_2_2_3/bin/gmapper-ls -S ,assemblyName. 
-N 8 genome.fa

This command indexes the genome and saves the indexes 
and projections of the genome to files that are loaded for each 
sample to align against. If this preprocessing step is not done, 
it will be performed prior to mapping for each sample, caus-
ing the alignment step per sample to take many hours longer. 
The index files will be several times larger than the original 
genome.fa files and should be placed in a location convenient 
to the RNA-seq samples.

Alignment of rNA-seq reads to indexed genome. Each 
sample should be aligned to its respective genome, which is 
specified with the assembly name given when performing the 
indexing. This step is the most computationally intensive and 
should be performed on a computer with at least 60 GB of 
RAM. This step can be parallelized easily, and allotting more 
CPU cores to the alignment allows it to run significantly faster. 
We suggest writing a simple bash script to run the alignments, 
to reduce the amount of oversight necessary for large numbers 
of samples. The general command used to align the rat data is

$ ∼/SHRiMP_2_2_3/bin/gmapper-ls -Q --qv-offset 33 
-L./,indexLocation./,assemblyName. -N 8 --all-contigs 
$infile . $outfile

This command outputs the alignment to a specified out-
put file in the SAM format. It is only valid for the rat data, 
which are single-ended RNA-seq data. The mouse data are 
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paired-end data, with each sample name suffixed with a _1 or 
_2 in the FASTQ format. The command used for the mouse 
data is

$ ∼/SHRiMP_2_2_3/bin/gmapper-ls -Q --qv-offset 33 
-L./,indexLocation./mm10 -N 8 --all-contigs -p opp-in -1 
$infile1–2 $infile2 . $outfile

The -p option specifies how SHRiMP attempts to align 
the paired-end data. Mapping statistics for all the samples is 
shown in an output table.

conversion, sorting, and indexing of sAM files. The 
SAM output of SHRiMP is a plain-text file. While somewhat 
human-readable, it is uncompressed, and each SAM file may 
be many tens of GB. The file size slows access to the file for 
analysis as it requires inflating storage space on a hard drive. 
To solve these problems, the SAM files are converted to the 
compressed BAM format, then sorted and indexed. The gen-
eral commands used for this are as follows:

$ samtools view -bS $inSAM . $tempBAM
$ samtools sort $tempBAM $outPrefix && rm 

$tempBAM
$ samtools index $outBAM
BAM files that are sorted and indexed have greatly 

enhanced access, which speeds up downstream analysis. Addi-
tionally, BAM files tend to be only a small fraction of the size 
of the SAM files, freeing up disk space and reducing RAM 
requirements for downstream analysis programs that need to 
load the entire BAM files into memory.

Generation of cross-species annotations. Starting with 
the GFF file downloaded from GENCODE in a previous 
step, the constitutive exons must be identified. This is done 
with the exon_utils program, part of MISO. The command is

$ exon_utils --get-const-exons mm10.gff --min-exon-
size 100 --output-dir exons/

This command extracts all constitutive exons (ie, all 
exons are always incorporated into the final gene product) that 
are greater than 100 bp, an arbitrary cutoff value, into a GFF 
file in a specified folder. This file is then broken down into 
individual chromosomes using a PERL script from the github 
repo specified above, gffToChrs.pl.

$ perl gffToChrs.pl mm10.const_exons.gff./gffChrs/
Next, the axt files are downloaded, one axt file per chro-

mosome. The wget utility may be helpful in doing so. The 
axt files are provided for many species by UCSC at: http://
hgdownload.cse.ucsc.edu/goldenPath/mm10/vsRn5/axtNet/. 
Then, the axtLift.pl script is used to convert each chromosome 
of the reference annotation to the coordinates of the query 
annotation. Exons that do not match 100% are discarded, for 
example, if the exon hangs off one end or the other of the 
aligned region. Alignments with gaps are supported. Then, the 
individual chromosome files are mapped to the new genomes. 
The axtLift.pl script does this, and it must be run for each 
chromosome. To run this script, the command is

$ perl axtLift.pl./finalChrs/chr1.gff./mm10TOrn5/chr1.
mm10.rn5.net.axt./rn5/

It should be noted that the output folder must be cre-
ated prior to running the script. Furthermore, any files in 
the folders should be deleted if this step needs to be rerun 
as the script appends rather than overwrites files. The script 
only supports a single input GFF and AXT file, so a bash 
script may be useful to run all chromosomes for the reference 
 species. It is not recommended to run the chromosomes in 
parallel as each input chromosome may map to any of the out-
put chromosome files.

Once this is completed, the GFF files should be sorted 
and combined into a single annotation file. This is again easy 
to do with R. For example:

$ R
. final ,- data.frame(matrix(nrow=0, ncol=9))
. for(gffFl in dir("rnor5")){
gffData ,- read.table(paste0("./rnor5/", gffFl), header=F, 

sep="\t", as.is=T)
gffData ,- gffData[order(gffData[,4]),]
final ,- rbind(final, gffData)
}
. write.table(final, file="rnor5_final.gff", row.names=F, 

col.names=F, quote=F, sep="\t")
Important: The final annotation for each species MUST 

be in the same chromosomal order as the genome.fa file 
for that species, otherwise the final GFF file will be sorted 
improperly and many gene quantification tools will fail to 
work. Additionally, chromosomes must be in the same format 
as in genome.fa for that species (eg, chr10 vs 10).

Finally, the GFF files should be converted to GTF for-
mat. GTF is essentially a simplified, more specific form of the 
GFF format. The Cufflinks package comes with a utility for 
performing this conversion, gffread.

$ gffread mm10_final.gff -T -o mm10.gtf
$ gffread rn5_final.gff -T -o rnor5.gtf
These GTF files are then used together with the BAM 

files generated previously to quantify the expression at a per-
gene level.

counting of gene features. The next step is to quantify 
the expression for each sample, which is done using the Bio-
conductor package Rsubread. The package takes the BAM files 
and the GTF annotation, as well as some other parameters 
describing the data, and produces a count table of each gene 
ID. As the count data are returned as a variable to the R envi-
ronment rather than written to a file, and as Rsubread outputs 
information such as the number and percent of successfully 
counted reads, it may be advisable to use a script for counting 
and to redirect terminal output to a file. The R commands 
used for counting all the data in this experiment, as well as for 
saving the R environment with all count data for later analysis, 
are shown in the Supplementary Code Snippets (#1).

This last command saves all the data, from all the sam-
ples, to a file that can be reloaded by R at any time. This is 
useful when analyses are done on a computer that a researcher 
may not have access all the time or when further analysis may 
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be desired at a later time. Unless saved, the data are deleted 
when the R environment is closed.

The data are then prepared for loading into edgeR. The 
input format for edgeR is a matrix with counts for each  sample 
for each gene ID. It may simplify the analyses to extract 
these to their own text files using R (Supplementary Code 
Snippets #2).

These commands do additional sorting and filtering to 
ensure that all genes for all samples are in the correct order, 
and there are no gene IDs that do not exist for all samples.

Differential expression analysis. Once the files with the 
counts have been prepared, they can be analyzed using edgeR for 
differential expression. EdgeR is chosen in particular for the dif-
ferential expression analysis for several useful features in the fol-
lowing. First, it supports input in the form of a single matrix of 
counts with gene IDs as the names for each row, allowing easy 
integration of the counted data from the previous step. Second, 
it has superb support for complex comparisons and experimen-
tal design. It is trivial to compare individual samples, or specify 
groups for comparison, or even to make two comparisons, and 
compare the results of that comparison against one another, 
allowing for essentially any dimension of analysis desired.

To load the count data into edgeR and then build the 
labeled experiment design, estimate the count dispersions, 
and build a fitted model, the following commands are used 
that are defined in an R script in the github repo mentioned 
earlier. Full code for the downstream analysis is available upon 
request. Due to the length of the code, complete commands 
have been omitted from this document.

The generated experimental design matrix (specifying 
which samples/replicates in the “counts.txt” file to include 
under which labels) appears as follows:

. design
mmast mmneu mmopc rnast rnneu rnopc
1   0 0 0 1 0 0
2   0 0 0 1 0 0
3   0 0 0 0 1 0
4   0 0 0 0 1 0
5   0 0 0 0 0 1
6   0 0 0 0 0 1
7   0 0 1 0 0 0
8   0 0 1 0 0 0
9   0 1 0 0 0 0
10 0 1 0 0 0 0
11 1 0 0 0 0 0
12 1 0 0 0 0 0
attr(,"assign")
[1] 1 1 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Group
[1] "contr.treatment
While not strictly necessary, a design matrix is exception-

ally useful as it allows comparisons to be made with the make-
Contrasts() function in edgeR, specifying groups to compare 

by their group name, rather than manually  entering  number 
 values representing which columns to include at  certain 
weights. The following commands are used to define vari-
ous comparisons that would be made among the data, each of 
which would have its own differential gene expression analysis 
(Supplementary Code Snippets #3).

These comparisons allow for the determination of dif-
ferentially expressed genes both generally across all cell types 
as well as on a per-cell-type basis. Comparisons of cellular 
differences between individual species as well as comparisons 
between cell types are also defined. Not all the above compari-
sons wound up having their data used for the final reporting of 
results. However, the presence of many of these comparisons 
allowed for additional error checking of the data. Additionally, 
as analyses are done, certain comparisons that had not been of 
interest before may turn to be of interest. Overall, it is useful 
to have all the data preprocessed and ready to go if it should be 
decided that any subset of it may be needed, rather than add-
ing onto already existing data structures after the fact.

The next step is to use glmLRT() to find all differentially 
expressed genes, which is done by looping through the data 
frame of comparisons. The result of each comparison is saved 
in a list for later use.

The table of fold changes and false discovery rate (FDR)-
corrected P-values is used by GAGE and SPIA to perform 
KEGG pathway enrichment. Note that native GAGE and 
SPIA pathway enrichment analyses consider only the fold 
change values and do not consider the number of samples that 
went into the fold change comparison. This causes the q-value 
outputs from GAGE to be falsely inflated. To account for this, 
the edgeR differential expression table is filtered to only include 
genes with a P-value of , 0.05 and a FDR of , 0.01. Only 
these significantly expressed genes with a low FDR are used 
in the calculation of enriched pathways. All KEGG pathway 
IDs found with a P-value , 0.05 are then returned and also 
saved to a list for further use.

In cross-species analyses, simple comparisons – for exam-
ple, comparing the rat astrocytes directly against the mouse 
astrocytes – may present skewed data, as artifacts introduced 
by the cross-species annotation are not controlled in this com-
parison. To tackle this issue, in the ast.rnVSmm and other com-
parisons specified above, individual cell type comparisons are 
controlled against the average expression of all cell types in that 
species. This means that in the resulting comparison, only the 
genes that are differently expressed in one cell type between 
two species are reported. In other words, the expression for each 
cell type is compared to the overall profile for that species, and 
the results of those comparisons are compared across species. In 
this way, when comparing a cell type across species, only those 
genes that are significantly different from the average gene 
expression of that species are compared across species.

Visualization of data. Using the gene expression and 
pathway data contained in the lists described earlier, the data 
are graphed and visualized. First, pathview is used to visualize 
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differentially enriched pathways, downloading the pathway 
map from KEGG, and then color coding each gene with the 
fold change differences. The general gene expression profiles 
are visualized using R scripts written for this purpose. The 
gene expression values for each gene are quantified from the 
gene read counts with log2(counts per million(CPM) + 1). Sev-
eral charts are generated from this. Second, a heatmap show-
ing the 200 genes with the highest expression in any sample 
are presented, sorted by similarity of expression across all 
samples. The log2(CPM + 1) table is then regenerated, using 
mean counts per species cell type, as divided in the experi-
mental design earlier. Third, a heatmap is drawn with the top 
200 expressed genes of any cell type, sorted by similarity of 
expression across all cell types. Finally, a heatmap is drawn 
with the top 25 expressed genes for each of the six cell types 
in turn, sorted top to bottom by expression level in that cell 
type. These heatmaps illustrate the similarities and differences 
among the cell types examined, allowing for easy visual iden-
tification of potential problems in the data that may not have 
been clear earlier in the protocol. For instance, if two replicates 
of the same cell type present extremely different expression 
profiles, the heatmaps would send a warning signal about the 
reproducibility of the data. These heatmaps are drawn using 
the gplots R package. In the heatmaps, the gene symbol names 
are displayed next to each row. The cross-species annotation 
uses exclusively Ensembl gene IDs. The biomaRt Bioconduc-
tor package is used to translate these IDs to gene symbols.

Furthermore, Venn diagrams are generated using the 
VennDiagram R package to visualize which genes among the 
lists of DEGs are in common or different between various 
comparisons. These Venn diagrams have the potential to grant 
further biological insight.

Pathway analysis and visualization. While lists of dif-
ferentially expressed genes are a detailed and robust way to rep-
resent differences in expression between two samples, they are 
not a very friendly format for humans to understand. A table 
of thousands of gene ID tags, each with individual expres-
sion values, is not easy to read and to visually extrapolate to 
biological significance. To this end, GAGE and SPIA are used 
in this protocol to analyze the previously generated gene lists 
and determine the differentially expressed pathways. Unfor-
tunately, neither of these software packages has the capacity 
to properly deal with unequal input samples (eg, comparing 
a group of two samples from one species against a group of 
three samples from another species). For this reason, the FDR 
values reported by either of these software packages may not 
be accurate. To deal with this, the FDR values (q-value) for 
individual genes provided by edgeR are used, and the path-
way output of SPIA and GAGE is filtered by P-value (,0.05). 
When these pathways are passed into pathview for visualiza-
tion, only the genes with a q-value less than 0.05 are provided. 
So in the final pathway charts, only significant genes are used. 
It should be noted that the SPIA package provided by Biocon-
ductor has many of its significance values hardcoded and lacks 

handling for some data aberrations such as NA  values in R. 
We downloaded and modified the source code of this package 
to suit the purposes of this experiment. As SPIA is licensed 
under the GPL, this modified source code should be made 
available to the general public. It has been hosted in the github 
repo mentioned earlier. Scripts are written to perform both 
GAGE and SPIA pathway enrichments on all the compari-
sons mentioned earlier. As both of these packages take Entrez 
IDs as input and the genes are listed by Ensembl ID, a script 
is written to leverage Bioconductor’s org.Mm.eg.db package to 
convert the IDs.

Once lists of significantly enriched pathways have been 
generated, the KEGG IDs of enriched pathways for each 
comparison are fed into pathview, which queries each path-
way ID against the KEGG database and downloads the PNG 
and XML files for that pathway map. It also takes the list 
of DEGs and logarithms of fold change values for that com-
parison and color codes genes on the pathway map to illustrate 
which parts of that pathway are differently expressed and in 
what direction. These images are then saved to files for man-
ual examination. Furthermore, as each list of differentially 
expressed pathways is produced, tables of all pathway names 
and significance values are saved for future reporting.

Discussion
Here we describe, to the best of our knowledge, the first 
comprehensive protocol for the comparison of RNA-seq data 
between species. The novelty of this should be emphasized. 
While other methods have been developed for interspe-
cies comparisons, a comprehensive protocol that walks users 
through the analysis process does not exist. By thoroughly 
explaining and documenting each step, it is easy for a  person 
without prior experience to comprehend and follow this 
 protocol rather than attempt to run or even develop it on his/
her own.

Compared to other previously published methods, this 
protocol has a number of strengths. For example, the genera-
tion of a cross-species annotation enables the use of other com-
monly used downstream analysis tools. This means that the 
cross-species annotation can be easily integrated into existing 
pipelines for automation. The downstream analysis methods 
used in this protocol are essentially identical to those used in 
within-species RNA-seq data analysis. Most common down-
stream analysis tools will be able to natively support the sorts 
of comparisons necessary for comparing between species with 
minimal effort or changes to existing workflows.

Furthermore, the use of UCSC axt files means that huge 
numbers of comparisons are possible. Any species can theoret-
ically be compared to any other species so long as an alignment 
exists between their genomes, although for distant species the 
quality of the comparison may be questionable. The axt files 
can be used as a drop-in to create annotations for as many 
species as is desired. Additionally, they provide a standardized 
format, which again proves useful in automation.
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