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Abstract

Testing potential drug treatments in animal disease models is a decisive step of all preclini-

cal drug discovery programs. Yet, despite the importance of such experiments for transla-

tional medicine, there have been relatively few efforts to comprehensively and consistently

analyze the data produced by in vivo bioassays. This is partly due to their complexity and

lack of accepted reporting standards—publicly available animal screening data are only

accessible in unstructured free-text format, which hinders computational analysis. In this

study, we use text mining to extract information from the descriptions of over 100,000 drug

screening-related assays in rats and mice. We retrieve our dataset from ChEMBL—an

open-source literature-based database focused on preclinical drug discovery. We show that

in vivo assay descriptions can be effectively mined for relevant information, including experi-

mental factors that might influence the outcome and reproducibility of animal research:

genetic strains, experimental treatments, and phenotypic readouts used in the experiments.

We further systematize extracted information using unsupervised language model (Word2-

Vec), which learns semantic similarities between terms and phrases, allowing identification

of related animal models and classification of entire assay descriptions. In addition, we

show that random forest models trained on features generated by Word2Vec can predict

the class of drugs tested in different in vivo assays with high accuracy. Finally, we combine

information mined from text with curated annotations stored in ChEMBL to investigate the

patterns of usage of different animal models across a range of experiments, drug classes,

and disease areas.

Author summary

Before exposing human populations to potential drug treatments, novel compounds are

tested in living non-human animals—arguably the most physiologically relevant model

system known to drug discovery. Yet, high failure rates for new therapies in the clinic

demonstrate a growing need for better understanding of the relevance and role of animal

model research. Here, we systematically analyze a large collection of in vivo assay descrip-

tions—summaries of drug screening experiments on rats and mice derived from scientific
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literature of more than four decades. We use text mining techniques to identify the men-

tions of genetic and experimental disease models, and relate them to therapeutic drugs

and disease indications, gaining insights into trends in animal model use in preclinical

drug discovery. Our results show that text mining and machine learning have a potential

to significantly contribute to the ongoing debate on the interpretation and reproducibility

of animal model research through enabling access, integration, and large-scale analysis of

in vivo drug screening data.

Introduction

Testing potential therapeutic compounds in animal disease and safety models is a crucial part

of preclinical drug discovery [1]. Although many in vitro methods have been developed to rap-

idly screen candidate molecules, no such simple assay system can recapitulate the complexities

and dynamics of a living organism [2]. By contrast, an in vivo assay, depending on the animal

species, allows a potentially far more realistic and predictive measure of a compound’s effect,

and can capture the complexity of target engagement, metabolism, and pharmacokinetics

required in the final therapeutic drug. Testing novel therapeutics in vivo is therefore most

likely to accurately predict patient responses and successfully translate from bench to bedside

[3]. In fact, a proof of efficacy and safety in animals is usually an essential requirement by regu-

latory agencies before progressing a compound into human studies [1, 4].

Drug efficacy tests are carried in animal models that mimic some aspects of human pathol-

ogy. Based on how the disease state is created, animal models can be generally classified into

three main groups [5]:

• In experimental (induced) disease models, the phenotype of interest is artificially induced

with an experimental intervention such as electric shock, surgical procedure, behavioral

training, or administration of specific chemicals [5]. For instance, mice injected with

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rapidly develop pathologies reminis-

cent of Parkinson’s disease, as the chemical destroys their dopamine-producing neurons

leading to uncontrollable tremors, bradykinesia, and other motor and behavioral deficits [6].

• Genetic (or spontaneous) disease models are genetic strains of animals that are primed to

develop disease-related phenotypes due to some type of naturally occurring genetic varia-

tion. As an example, Lepob/ob mice develop hyperglycemia without any experimental inter-

vention, as they become morbidly obese due to a point mutation in the gene for leptin—a

hormone involved in regulation of energy use and inhibition of hunger [7].

• In transgenic animal models, mutations of disease-related genes are directly introduced with

genome engineering techniques. This category includes many mouse knockout and knock-

down models and is likely to gain further popularity due to technological developments,

such as CRISPR/Cas9 genome editing methods [8].

Regardless of the type of an animal model used, the main purpose of in vivo drug screening

is to offer useful insights into human biology and to predict human responses to novel treat-

ments [9]. High attrition rates in the clinic, however, show that animal studies do not always

reliably inform clinical research for both drug efficacy and safety [10]. Many scientists have

drawn attention to the need for more systematic, rigorous, and objective analysis of animal

research data before designing studies in patients [11, 12]. In particular, the probability of suc-

cessful model species to human translation should be assessed based on careful meta-analyses
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and systematic reviews that integrate results across all relevant animal studies [9]. These should

involve experiments performed on different strains, species, and experimental models [9],

since they might recapitulate distinct aspects of human disease and offer variable accuracy

of predictions. Several such systematic reviews performed retrospectively exposed various

challenges of successful translation including publication bias, design flaws, insufficient report-

ing of experimental details, and lack of coordination between scientists involved in animal

research and those designing clinical trials [13–15].

Currently, systematic reviews are performed manually and involve analysis of large quan-

tities of published articles and internal proprietary reports. Attempts to automate some

aspects of this time-consuming process have mainly focused on systematic identification

and ranking of potentially relevant articles with robust search filters [16, 17] and machine

learning methods [18]. More recently, Flórez-Vargas et al. used text mining to analyze the

full text of 15,000 research papers describing mouse studies across a diverse range of thera-

peutic areas [19]. In addition to exposing insufficient reporting of gender and age of labora-

tory mice, the study found evidence of sex bias across specific fields of research. These

results demonstrate the ability of text mining to offer insights into large-scale emergent

trends and weaknesses of animal research by systematically analyzing large unstructured

datasets [19, 20]. One discussed limitation of the analysis was due to the fact that details of

animal experiments are typically reported in the full text of articles (as opposed to abstracts),

which can only be obtained for open access publications [19], ~24% of biomedical research

literature [21].

Our own study aims to contribute to the ongoing debate on the need for the integration of

animal research data, not least in enabling discovery and reuse of previous research. As a basis

of our analysis of in vivo drug testing information, we use ChEMBL [22]–a drug discovery

focused bioactivity database widely known for its large curated and consistently indexed in
vitro bioassay datasets. Animal model data in ChEMBL include descriptions and results of

more than 100,000 drug screening experiments in rats and mice—the most widely used animal

model species. These have been manually extracted by database curators from the full text of

scientific articles.

In contrast to the molecular target annotated in vitro content of ChEMBL, its in vivo screen-

ing data are currently understudied and arguably under-curated. This is very likely due to

their relative complexity compared to in vitro bioassays, and their inherent abstracted,

unstructured format. The in vivo information is encoded in textual assay descriptions, written

by database curators and intended for expert human users, not for computational analysis.

The descriptions take the form of compact summary accounts such as: “Inhibition of carra-
geenan-induced paw oedema in Sprague-Dawley rat at 5.16 mg/kg, sc after 3 hrs”. In less than

twenty words, the example above summarizes important details of the screening system (strain

of the animal, experimental stimulus, phenotypic readout) as well as compound administra-

tion details (dosage, timing, and administration route). Hence—despite their concise format,

assay descriptions can be information rich and we consider they have future potential in trans-

lational drug discovery research. However, the variety of possible expressions used to describe

the same assay makes comparison and clustering of in vivo screening data from resources such

as ChEMBL extremely challenging.

In this paper, we present the first, to our knowledge, computational analysis of the entire

ChEMBL in vivo assay description dataset in rat and mouse. We use natural language process-

ing (NLP) methods to parse the descriptions of in vivo assays and then mine them for informa-

tion connecting animal models to human disease, genetic strains, experimental treatments,

and phenotypes. To this end, we apply an approach that leverages existing community-main-

tained and stable vocabularies alongside manually crafted extraction rules. To automatically
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organize the extracted information, we construct a “semantic space” of assay descriptions

using a neural network language model, and build several random forest (RF) classifiers.

Finally, we show that combining information mined from text with structured curated data

offers new and useful insights into the in vivo dataset in ChEMBL as well as trends in the use of

animal models in drug discovery research in general. We restrict our current analysis to animal

models used in the evaluation of the efficacy of drugs, not animal model usage in ADME or

toxicology studies—although a similar analysis strategy can be applied to these.

Results

The ChEMBL in vivo dataset

ChEMBL is a large open access database covering bioactivity information for about 1.6M com-

pounds tested in 1.2M distinct bioassays. Publications on analysis and use of ChEMBL indicate

that most users focus on protein-binding/biochemical data from in vitro experiments. How-

ever, as shown on Fig 1, more than half of the bioassays in ChEMBL corresponds to “higher-

level” functional screening involving cell lines, tissues, and whole organisms. The last category

includes laboratory rodents. Rats and mice represent the most commonly studied model

organisms in ChEMBL, reflecting their central, historical and current, importance for preclini-

cal drug discovery. Jointly, these two species were used as targets in 100,250 functional assays

(77.7% of all animal-based experiments and 84.1% of experiments in mammals); see Fig 2.

As the input for our analysis, we selected all rat and mouse assay data that were extracted

from scientific publications (as opposed to those that came from direct depositions or were

Fig 1. Assay and target type distribution in ChEMBL. Distribution of assay types in ChEMBL (by percentage of all assays in the

database) and distribution of the types of associated biological targets. The molecular target category covers multiple ChEMBL target types,

including “single protein”, “protein complex”, “protein family”, “nucleic acid”, “macromolecule”, and “protein-protein interaction”.

https://doi.org/10.1371/journal.pcbi.1005641.g001
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loaded from PubChem Bioassay). In summary, the assay data we used come from the full text

of 10,851 primary research articles published between 1976 and 2015 in 17 high-impact drug

discovery and pharmacology journals. Each assay is summarized by a short description (mean

of 20.7, and median of 20 words, see Fig 3) and a set of structured additional annotation fields

including species name, molecular structures of compounds tested in the assay, and informa-

tion about the associated publication including title, year, and journal. Although the total

counts of distinct assays performed in rats and mice are similar (49,313 and 50,937 respec-

tively), time frequency analysis shows that mouse is becoming increasingly used in recent

years. Altogether, the assays involve 100,432 distinct compounds from all stages of drug dis-

covery, including 1,215 molecules that have at least reached clinical development (based on

max phase field in ChEMBL). 19,975 (20% of the total) assays involve approved drugs covering

various drug classes and therapeutic areas; see Fig 4 showing the coverage of drug classes

defined by Anatomical Therapeutic Chemical (ATC) classification [23].

Fig 2. Animals used in in vivo efficacy assays. Other mammals include mainly laboratory rodents (e.g. hamster, gerbil), carnivores (cat),

lagomorphs (rabbit), and primates (e.g. rhesus monkey); the latter were used in 1,157 assays. The main classes of non-mammal animals

include arthropods, nematodes, and birds.

https://doi.org/10.1371/journal.pcbi.1005641.g002

Classification and analysis of a large collection of in vivo bioassay descriptions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005641 July 5, 2017 5 / 31

https://doi.org/10.1371/journal.pcbi.1005641.g002
https://doi.org/10.1371/journal.pcbi.1005641


Extracting animal model mentions from the descriptions of in vivo assays

Following preprocessing of the raw assay descriptions (described in Methods section), the first

step in our analysis was to mine the descriptions for phrases representing animal disease mod-

els and genetic strains of mice and rats. Currently, there exists no dedicated software for this

task although many systems have been developed for the recognition of other biomedical con-

cepts, such as genes, cell lines, and diseases [24–26]. Similarly, there are no labelled datasets

that could be used to train supervised machine learning models for animal model identifica-

tion. Therefore, instead of a supervised approach, we explored dictionary and rule-based

methods that make use of structured terminologies, syntactic information, and custom lexical

patterns.

To identify genetic strains in text, we built two dictionaries based on specific community

nomenclature guidelines [27, 28] and official strain listings maintained by public mouse and

rat genome databases where new strains are registered [29, 30]. Each dictionary lists basic

Fig 3. Length of assay descriptions (in words).

https://doi.org/10.1371/journal.pcbi.1005641.g003
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strains (1,307 mouse and 648 rat strains), together with the strain type (e.g. inbred or hybrid),

available synonyms, and substrains.

For the task of identification of induced (experimental) disease models, where no such con-

trolled vocabularies exist, we applied a method that identifies relevant expressions using a set

of manually defined rules. These extraction patterns combine keyword matching with infor-

mation about the structure of a sentence to capture animal models, often represented by

multi-word phrases such as “maximal electroshock induced” or “high-fat diet-fed”. See

Methods section for details on grammatical analysis of assay descriptions and noun phrase

extraction.

Performance of named entity recognition. With our combined animal model recogni-

tion methods, we could identify 1,430 distinct strain, transgenic and induced animal model

names in 57,538 assay descriptions. We evaluated the performance of our approach against a

dataset of 500 randomly selected assay descriptions manually annotated by two curators. The

strict/relaxed interannotator agreement was 89.8%/93.6% for animal models and 77.3%/85.4%

for phenotypes. Table 3.4 in S1 Text reports the performance measures for four tasks: detection

of genetic strains, experimental models, transgenic animals, and phenotypes. The F-score, cal-

culated based on exact/partial matches, reached 0.95/0.96 for genetic strains (based on 183

occurrences in the benchmark set), 0.83/0.88 for experimental models (316 occurrences), 1.0/

1.0 for transgenic models (13 occurrences), and 0.61/0.76 for phenotypes (273 occurrences)

Fig 4. ATC classes of approved drugs tested in in vivo efficacy assays. The dendrogram represents the Anatomical Therapeutic

Chemical (ATC) drug hierarchy and the coverage of various drug classes in the ChEMBL in vivo dataset. The height and color of bars on the

circular bar plot (external ring) represent the number of assays involving drugs assigned given ATC code (level 2 of the ATC classification

system). Most common ATC level 2 classes corresponding to different therapeutic/pharmacological subgroups are highlighted.

https://doi.org/10.1371/journal.pcbi.1005641.g004
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respectively; see S1 Text for details, comparisons, and misannotation examples. Typically, the

precision was higher than recall—particularly in the case of genetic strain detection, where a

dictionary-based method was used. The low occurrence of transgenic model mentions in

the annotated dataset reflects the relative scarcity of this class of animal model bioassays in

ChEMBL and, hence, across the broader drug discovery literature.

Frequency analysis of extracted terms. Many of the strains that are frequently mentioned

in the assay descriptions (Fig 5A) involve spontaneous (genetic) models used to study specific

diseases, particularly hypertension, diabetes, and cancer. For instance, spontaneously hyper-

tensive rat (SHR) was used in more than 1,960 assays whilst three most common spontaneous

models of diabetes (ob/ob mouse, db/db mouse, and ZDF rat) were mentioned 1,575 times.

However, as further discussed in the next section, the most commonly used strains are long-

established general-purpose models including many outbred strains such as Sprague Dawley

rats and Swiss mice whose genetic background is diverse and non-uniform.

Amongst the experimental animal models used in ChEMBL assays (Fig 5B), the most com-

mon are models of inflammation, epilepsy, pain, and cancer, whose conditions were induced

using a variety of experimental stimuli including chemicals (e.g. in carrageenan model), tumor

transplants (xenograft models), electrical stimuli (maximum electroshock seizure (MES)

model), and thermal stimuli (hot-plate test).

In addition to animal models, we identified the phenotypic and behavioral terms in the

descriptions using a dictionary-based method leveraging existing ontologies. Here, the most

common detected terms correlate with the therapeutic use (indications) of the disease models:

edema, seizures, life span, leukemia, arthritis, etc. Finally, the most frequent behavioral terms

were “nociceptive behavior”, “writhing”, and “licking”–behaviors observed and measured in

animal models of pain.

Fig 5. Most common rodent strains and experimental disease models mentioned in the descriptions of in vivo efficacy assays in

ChEMBL. (A) Twenty strains that are most frequently mentioned in assay descriptions; outbred strains are marked with an asterisk (*).

Upon identification in the text of assay descriptions, the strain names were normalized using strain synonym listings maintained by rodent

genome databases. For instance, C57BL mouse was described in various descriptions with more than 30 different terms including names

that do not follow official nomenclature guidelines: “BL6”, “Black6”, or “C57/Black”. (B) Bar plot showing twenty experimental models that are

most frequently mentioned in assay descriptions. The models were manually annotated with disease area.

https://doi.org/10.1371/journal.pcbi.1005641.g005
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A semantic space of animal models and phenotypes

Our next goal was to automatically organize and cluster concepts extracted in the previous

step. This involved finding related entities—such as animal models of the same disease—iden-

tified based on linguistic patterns and contexts in assay descriptions. The underlying assump-

tion is that two terms are likely to be related if they often occur in similar contexts, i.e.
surrounded by the same or analogous phrases [31].

To find semantic similarities between words/phrases, we used the assay descriptions to

train Word2Vec [32]–an unsupervised neural network (NN) model that converts text into a

set of numerical vectors. These word vectors, also called word embeddings, correspond to

points in a high-dimensional semantic space where distance correlates with differences in

meaning. In other words, vectors representing semantically related words lie close to each

other in the constructed semantic space, while unrelated words are far apart [33].

Semantic similarities between concepts. We trained a Word2Vec model with the corpus

of preprocessed in vivo assay descriptions—following shallow parsing and noun phrase extrac-

tion workflow summarized in Methods section. As output, we obtained a set of 250-dimen-

sional numerical vectors (word embeddings), each corresponding to a single word (e.g.

“analgesia”) or multiword phrase (e.g. “arterial pressure”).

Simple mathematical measures, such as a Cosine vector similarity, can be used to quantify

distances between the word embeddings [34]. Among other tasks, these can be used to exploit

the semantic neighborhoods of interesting concepts to find related words and phrases. Table 1

shows examples of such semantic similarity calculations for several query terms. As shown in

the table, Word2Vec places synonyms close to each other: “antihyperglycemic activity” and

“hypoglycemic activity” have a very high cosine similarity just as “pentylenetetrazole induced”

and “ptz induced” (where PTZ is a commonly used acronym for pentylenetetrazole). This is

also true for non-synonymous words used in the same context. For instance, the most similar

terms to “heart rate” include “arterial pressure” and “systolic blood pressure”–other common

biomarkers used in assays testing drugs for cardiovascular indications, whilst terms like

Table 1. Example Word2Vec queries. For each example query, the table shows four most similar words/phrases as measured by Cosine similarity of asso-

ciated vector embeddings (shown for each result). The embeddings were learned by Word2Vec model trained with preprocessed in vivo assay descriptions

(following shallow parsing and noun phrase extraction workflow summarized in the Methods section).

ZDF rat Pentylenetetrazole induced Reserpine induced

• db/db mouse (0.914)

• zucker fatty rat (0.898)

• ob/ob mouse (0.894)

• KKaY mouse (0.888)

• ptz induced (0.938)

• maximum electric shock induced (0.886)

• subcutaneous pentylenetetrazole induced (0.862)

• picrotoxin induced (0.862)

• tetrabenazine induced (0.839)

• WIN 55,212–2 induced (0.838)

• 8-OH-DPAT induced (0.838)

• haloperidol induced (0.828)

brain antihyperglycemic activity analgesic activity

• striatum (0.844)

• frontal cortex (0.826)

• cerebellum (0.802)

• hippocampus (0.789)

• antidiabetic activity (0.947)

• diabetic assay (0.931)

• antihyperlipidemic activity (0.913)

• hypoglycemic activity (0.908)

• antinociceptive activity (0.952)

• analgesia (0.781)

• analgetic activity (0.759)

• nociception (0.741)

convulsion L1210 leukemia heart rate

• convulsions (0.952)

• seizure (0.940)

• seizure assay (0.933)

• clonic seizures (0.905)

• B16 melanoma (0.842)

• L1210/ARA-C leukemia (0.838)

• P388 leukemia (0.827)

• M5076 reticulum cell sarcoma (0.820)

• arterial pressure (0.923)

• systolic blood pressure (0.897)

• diastolic blood pressure (0.865)

• blood pressure (0.855)

https://doi.org/10.1371/journal.pcbi.1005641.t001
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“L1210 leukemia” correspond to names of different cancer cell lines used in mouse xenograft

studies.

Importantly, many of these terms are present in ontologies and term associations estab-

lished by Word2Vec often reflect the ontological relationships. However, this is not always the

case. For instance, two terms representing common behavioral endpoints measured in pain

assays: “writhing” and “abdominal constriction” are predicted to be very similar in meaning

by the Word2Vec model. Whilst the first one is present in the Neuro Behavior Ontology,

the latter is not; in fact it is not present in any of the 525 biomedical ontologies covered by

National Center for Biomedical Ontologies, NCBO [35]. Such results suggest that a set of vec-

tors learnt by a well-trained Word2Vec model could support the task of ontology expansion

[36].

Analogy queries. In addition to similarity queries based on simple distances in high-

dimensional semantic space, more complex geometry-inspired relationships between words

can be calculated to uncover analogies in the data. Mathematically simple calculations—sums

and subtractions performed on word vectors—can sometimes uncover surprising semantic

regularities in the documents [34]. A classic example of such semantic analogy is the following

relationship between four words: king—man + woman = queen [34]. In this study, we

observed many examples of such complex relationships. For example, the model predicts that

“insulin level” is to “Zucker rat” (a spontaneous model of diabetes) what “heart rate” is to

“SHR rat” (a model of hypertension). Although meaningful semantic analogies were limited to

the well-represented words in the assay descriptions, it is nevertheless encouraging that the

model can uncover such complex word relationships based on mere contextual information

and without any human supervision or bias.

Clustering animal models and phenotypes. In the next step, rather than searching the

entire semantic space for similar terms, we selected a set of interesting concepts and used the

model to find the semantic relationships between them. Specifically, we calculated pairwise

similarities between word embeddings of frequently mentioned animal models and pheno-

types, and used these similarities as input for hierarchical clustering.

The resulting heatmap is shown on Fig 6. Of note, related animal models and phenotypic

terms tend to group together around distinct disease areas; this is shown by the side dendro-

grams and red regions of the heatmap. For instance, biomarkers of hypertensions, such as

heart rate or diastolic blood pressure, cluster with animal models of hypertension. The latter

include both spontaneous and induced animal models: spontaneously hypertensive rat

(SHR)–a genetic model of hypertension, lies very close to an experimental model of the same

disease in which hypertension is induced by infusion of angiotensin. Other disease areas repre-

sented by the clusters on the heatmap are epilepsy, hypertension, cancer, pain, inflammation,

and diabesity (obesity and diabetes combined). Meaningful clustering of animal models and

phenotypes shows that Word2Vec can be used to effectively organize and summarize entities

extracted from text.

Classification of in vivo assays

Next, we considered the problem of assay classification. Specifically, we tested whether features

learnt by Word2Vec could be used to group together related in vivo assays and to predict the

type of an assay based on its textual description. To train supervised classification models, we

used the Word2Vec embeddings labeled with the curated information associated with com-

pounds tested in individual assays. Specifically, many assays in ChEMBL involve well-known

reference molecules (pharmacological standards/positive controls) used to calibrate and

validate the resulting measurements on novel molecules. Commonly, such molecules are
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Fig 6. Semantic similarities between animal models and phenotypes. A hierarchically clustered heatmap showing pairwise semantic

similarities between 35 animal models and 35 phenotypes frequently mentioned in the assay descriptions. Red color corresponds to higher,

blue—to lower semantic similarity; values in each row are Z-score normalized. Both rows and columns are hierarchically clustered (using

average linkage and Euclidean distance) and the results are represented as dendrograms. Semantic clusters, shown as red regions on the

heatmap, correspond to distinct disease areas including epilepsy, pain, inflammation, hypertension, diabesity, and cancer. The figure

provides an automatically-generated summary of the use of common animal models to study the effect of drugs on different types of

disease-related phenotypes.

https://doi.org/10.1371/journal.pcbi.1005641.g006
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comparator approved drugs, whose biological activities and therapeutic effects are already well

studied. These characteristics are summarized by Anatomical Therapeutic Chemical (ATC)

classification codes—the most widely recognized drug classification system administered by

the World Health Organization [23]. Here, we used ATC codes of involved drugs to link assays

to various disease/therapeutic area indications.

Construction and visualization of a semantic space of assay descriptions. We selected a

subset of 19,975 (approx. 20%) of animal-based assays that involve approved drugs, and used

the level 2 ATC codes assigned to those drugs to label assays and divide them into classes (see

below). We then converted assay descriptions into computable representations—numerical

vectors that would serve as input for the classification models. We calculated those by averag-

ing the individual word embeddings generated for each assay description by the Word2Vec

model. In this way, we constructed a new semantic space, where each point corresponds to an

entire assay description rather than to an individual term.

To qualitatively analyze the distribution of assays in this semantic space, we projected the

vectors into 2D using t-SNE—a dimensionality reduction technique based on Stochastic

Neighbor Embedding [37]. We then visualized the subset of assays which involved drugs from

5 most common classes (five top ATC level 2 codes): antiepileptic, psycholeptic, antineoplastic,

antidiabetic, and anti-inflammatory drugs (see Methods section for details). As shown in Fig 7,

the assays involving drugs with the same ATC codes are clustered in distinct regions of the

plot. Since the vectors used in visualization are based purely on semantic features this result

shows that the descriptions of assays testing the same drug class use similar vocabularies and

that Word2Vec can preserve this similarity when converting text into numerical vectors.

Indeed, whilst descriptions of assays testing anti-inflammatory drugs are likely to mention

“edema”, “swelling”, “acute pain”, “carrageenan”, or “paw volume”, assays testing antidiabetic

drugs are more likely to include such phrases as: “antidiabetic activity”, “blood glucose level”,

and “body weight”. For more examples, see Table 2, which reports top five enriched words

(ranked by a simple Fisher test p-value) as well as most frequent drugs, animal models, and

phenotypes for each of the five categories.

Assay classification models. In addition to simple visualizations, we also used the assay

vectors to build and evaluate several random forest classifiers. We considered four different

classification problems, each based on ATC codes of approved drugs tested in the assay (see:

Methods section). For instance, one classifier was trained to predict whether an assay involved

any drugs acting on nervous system whilst another model classified assays based on a specific

subclass of such drugs: “psycholeptics”, “antiepileptics”, “antiparkinsonians”, etc. In each case,

we applied two different methods for dividing the data into train and test sets (assay and docu-

ment-based split) to avoid overestimating the prediction accuracy due to the similarity of assay

descriptions curated from the same scientific article [38] (see Methods section for details).

Following 10-fold cross-validation procedure, we calculated the overall prediction accuracy

and per-class performance measures for each classification problem. Fig 8 shows classification

report and confusion matrix for an example classifier while all the results are detail in S1 Text.

We found that all classifiers achieved high overall performance in predicting ATC classes even

though no chemical structure information was used to train them and assay descriptions do

not normally contain any drug information. As further reported in S1 Text, the classifiers

based on assay vectors outperformed two other text-based approaches: paragraph2vec and

bag-of-words with TF-IDF weighting. One of the assay vector-based classifiers could distin-

guish between assays involving cidal/cytotoxic drugs (such as anticancer and antimicrobial

drugs) and non-cytotoxic drugs with high overall accuracy of 0.97 (or 0.92 for document-

based split). Another classifier predicting whether an assay involved any drugs acting on ner-

vous system achieved overall accuracy of 0.93 (or 0.86 for document-based split); the classifier
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predicting the specific subclasses of such drugs had the lowest, but still potentially useful accu-

racy of 0.86 (decreasing to 0.67 when the document-based test-training partitioning method

was applied).

Analysis of misclassified assays. The prediction performance varies considerably

between different models as well as between specific assay classes considered within a single

model. These differences might be explained by the complexity of the model (e.g. multiclass vs

binary classifiers), size of the dataset used in training, and dataset imbalance; see S1 Text. For

instance, there are ten times more assays involving antiepileptic drugs than there are assays

involving anesthetics, reflecting the relative historical efforts in the development of drugs for

particular therapeutic applications. This leads to an unbalanced training set, and consequently,

the recall value calculated for the latter class was much lower. The analysis of specific misclassi-

fied assays showed that some errors were due to very short, non-informative assay descriptions

(“Activity assessed as weight loss”) or due to the variation in the ATC codes assigned to a single

drug.

In addition, some misclassified assays (according to our label assignment detailed above)

involved drugs tested for therapeutic activity beyond their approved indication. This category

Fig 7. Visualization of a semantic space of assay descriptions. Vector representations calculated for individual assay descriptions were

projected into two-dimensional space and visualized as points on a scatterplot. The colors correspond to ATC codes of approved drugs

tested in the assays: antiepileptics, N03; anti-inflammatory, M01, M02, C01, S01; antidiabetics, A10; psycholeptics, N05; antineoplastics,

L01.

https://doi.org/10.1371/journal.pcbi.1005641.g007
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included several interesting examples. For instance, one misclassified ChEMBL assay

(CHEMBL994451) involved Gemfibrozil—a lipid-modifying medicine approved for the treat-

ment of hyperlipidemia. The assay was erroneously assigned by the model to the “cidal” class

grouping anticancer and antimicrobial drugs. However, manual inspection revealed that

the data have been extracted from a drug repurposing study in which the authors reported

increased survival of influenza-infected mice treated with Gemfibrozil and proposed that the

drug could be adapted for the use against the viral infection [39].

In another case, several assays involving an anti-HIV medication, Zidovudine were

assigned to the “non-cidal” class by our model and, hence, were detected as misclassified.

These assays, however, did not evaluate the well-known antiviral properties of the drug, but

its impact on cholesterol and insulin levels related to the lipodystrophy syndrome side effect

observed in HIV-infected patients receiving the treatment [40]. Therefore, the property tested

in the “misclassified” assays was not the therapeutic effect of the drug, but, in fact, its potential

side effects.

Linking animal models to other biological entities

To better understand how animal models were used in drug discovery, we have combined the

results of our text mining analysis with the manually abstracted content of ChEMBL. Specifi-

cally, we used the curated information about compounds evaluated in each in vivo assay to

Table 2. Most common drugs, phenotypes, experimental animal models, and top 5 enriched phrases (ranked by a simple Fisher test p-value) for

the five most common ATC combinations. Phenotypes, animal models, and noun phrases were text-mined from the text of assay descriptions; drug

names were extracted from structured data fields in ChEMBL.

Drug class Drugs Phenotypes Experimental models Phrases

antiepileptics • phenytoin

• carbamazepine

• phenobarbital

• ethosuximide

• valproic acid

• seizures

• shock

• nociceptive behavior

• pain

• clonic seizures

• maximal electroshock

• pentylenetetrazole

• rotarod test

• bicuculline

• CCI

• protection

• anticonvulsant activity

• intraperitoneally

• TD50

• protective

psycholeptics • diazepam

• haloperidol

• clozapine

• chlorpromazine

• risperidone

• behavior process

• seizure

• catalepsy

• stereotypic behavior

• locomotor activity

• apomorphine

• pentylenetetrazole

• amphetamine

• rotarod test

• pentobarbital

• climbing

• antipsychotic activity

• anxiolytic activity

• neuroleptic activity

• stereotypy

antineoplastics • cytarabine

• doxorubicin

• mitomycin

• fluorouracil

• tiazofurin

• leukemia

• neoplasm

• life span trait

• mortality/aging

• body weight

• P388 leukemia

• L1210 leukemia

• Lewis lung carcinoma

• Ehrlich’s ascites

• B16 melanoma

• antitumor activity

• survivors

• day

• inoculated

• implanted

antidiabetics • rosiglitazone

• glyburide

• metformin

• tolrestat

• plioglitazone

• blood glucose level

• plasma glucose level

• cataract

• body weight

• triglyceride amount

• glucose tolerance test

• streptozotocin

• glucose challenge

• fasted

• alloxan

• antidiabetic activity

• antihyperglycemic activity

• diabetic

• reduction

• RvB

anti-inflammatory • indomethacin

• phenylbutazone

• rofecoxib

• zomepirac

• ketoprofen

• edema

• arthritis

• swelling

• hyperalgesia

• inflammation

• carrageenan

• adjuvant

• acetic acid

• TPA

• yeast

• anti-inflammatory activity

• paw edema

• inhibition

• paw oedema

• acute anti-inflammatory activity

https://doi.org/10.1371/journal.pcbi.1005641.t002
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link animal disease models with approved drugs that had been tested in them. Based on the

relationships generated this way, we built and visualized a network representation of the

ChEMBL in vivo data.

As shown on Fig 9, the drug-model network shows strong local clustering with several

densely-connected modules that correspond to distinct disease classes including inflamma-

tion, cancer, epilepsy, and hypertension. The clusters bring together related drugs and animal

models of related diseases. For instance, in the highlighted cluster, antidiabetic drugs (such as

metformin or rosiglitazone) and lipid-modifying agents (e.g. gemfibrozil, fenofibrate) are con-

nected through various animal models used in diabetes and obesity research. The disease mod-

els grouped in the cluster belong to different classes. Some of the models include diabetic

animals whose condition was artificially induced in the laboratory: either through adjusted

diet (e.g. high-fat diet and glucose load models) or through administration of toxic compounds

such as streptozotocin (STZ) or alloxan—chemicals that destroy pancreatic cells thus dramati-

cally reducing insulin production [7]. In addition to the experimental models, several sponta-

neous (genetic) models can be found in the cluster. For instance, db/db mice and Zucker

Diabetic Fatty (ZDF) rats develop symptoms similar to human diabetes due to a mutation in

the Lepr gene, which encodes the receptor for a “satiety hormone”, leptin [7]. Finally, one of

the smaller nodes in the network corresponds to a transgenic model: a genetically engineered

mouse model expressing high levels of human apolipoprotein A-I (APOA1).

In addition, we combined the extracted animal model information with curated species

annotations from ChEMBL to investigate differential usage of mouse and rats in drug discov-

ery. First, we compared organism annotation across all assays involving different experimental

models; representative results are shown on Fig 10A. Next, we divided assays into classes cor-

responding to different disease areas (based on the ATC codes of involved approved drugs)

and found species distribution for the most frequent indications (Fig 10B). The figures show

that whilst some screening experiments are routinely performed on animals of different

Fig 8. Confusion matrix and per-class performance measures calculated for one of the random forest classifiers. The figure shows

performance measures calculated for a multiclass random forest classifier that assigns each assay with one of the five most common ATC

code combinations—a proxy for the most common disease areas in ChEMBL. The model was built with data visualized on Fig 7; strict

partitioning method based on random document split was used to partition the dataset into cross-validation subsets. The model achieved

overall prediction accuracy of 0.87. (A) Per-class confusion matrix. (B) Per-class classification report.

https://doi.org/10.1371/journal.pcbi.1005641.g008
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Fig 9. Major component of the animal model—Drug network with detailed “diabesity” cluster. The nodes in the graph correspond to

approved drugs and animal models of disease, including induced, spontaneous, and transgenic disease models text-mined from assay

descriptions. A drug is linked to an animal model if it was tested in at least five assays involving this model. Drug nodes are colored

according to the assigned ATC (level 2) codes, while animal model nodes are blue; node size is proportional to the number of assays

involving a given drug or model. Animal model-drug relationships visualized in the graph are listed in the S5 Dataset. STZ, streptozotocin-

induced model; GTT, glucose tolerance test; ZDF, Zucker Diabetic Fatty rat; glucose, glucose-loaded model.

https://doi.org/10.1371/journal.pcbi.1005641.g009

Fig 10. Differential use of rats and mice across in vivo assays. (A) Number of assays involving rats and mice for eight example experimental

systems. (B) Differential use of the two rodent species in assays testing drugs from the 10 most common drug classes (based on the second level of

the ATC classification). Classes are ordered by the difference in the number of assays involving rats and mice. The images of the animals used in the

figure were obtained under the open license from Gene Expression Atlas https://www.ebi.ac.uk/gxa.

https://doi.org/10.1371/journal.pcbi.1005641.g010

Classification and analysis of a large collection of in vivo bioassay descriptions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005641 July 5, 2017 16 / 31

https://doi.org/10.1371/journal.pcbi.1005641.g009
https://www.ebi.ac.uk/gxa
https://doi.org/10.1371/journal.pcbi.1005641.g010
https://doi.org/10.1371/journal.pcbi.1005641


species, in some cases the rat might be preferred to mouse, or vice versa. As further discussed

in the next section, the variation may be attributed to various factors such as anatomical and

behavioral differences between the two rodents.

Discussion

The ChEMBL in vivo data, which capture in an unbiased way reported bioactivities from ani-

mal-based drug screening experiments, are arguably the database’s least appreciated resource.

However, there are several reasons why the dataset could be valuable for data-driven transla-

tional drug discovery research. Firstly, the ChEMBL in vivo data are unique: there are almost

no other large publicly available resources for efficacy screening in animal models. Secondly,

they have been derived from scientific articles published over the last forty years and, hence,

they reflect long-term, community-wide trends in preclinical drug discovery. Finally, the

information from these publications has already been extracted, filtered and condensed by

specialists and trained curators. In some sense, it is more efficient to analyze the concise

curated summaries resulting from these efforts than to attempt to mine the original publica-

tions directly.

To our knowledge, this is the first systematic analysis of the in vivo assay description data in

ChEMBL and the first attempt to index and identify spontaneous and induced animal models

from such a resource.

Mining and classifying in vivo assay descriptions

Although most information on the in vivo assays in ChEMBL is in the form of unstructured

assay descriptions, we show that it can be efficiently extracted and systematized using modern

text mining techniques. In this work, we first identify mentions of animal models and pheno-

types, and automatically organize them using a neural network language model. Then, we use

the learned neural embeddings (word vectors) to train a random forest classifier predicting

ATC codes of drugs tested in different assays. In the following, we further discuss our

approach as well as its potential applications and limitations. In addition, we examine how the

information extracted from assay descriptions reflects trends and practices in preclinical drug

discovery.

The semi-standardized format of the assay descriptions facilitates the construction of a

meaningful semantic space. In the first experiment, we used Word2Vec model to construct

a multidimensional semantic space of words and phrases used in the assay descriptions.

We then analyzed the structure of this space with a focus on semantic similarities between

extracted biological concepts. The results show that animal models and phenotypes related to

the same disease tend to cluster together, suggesting that the model can capture real functional

similarities, and innate relationships within the domain.

Since the algorithm depends on a variety of contexts and subtle variations in vocabulary,

the results indicate that there is enough information encoded in the assay descriptions to

enable a meaningful analysis—particularly in the case of well-represented concepts and the

more frequently studied therapeutic areas. Although unsupervised language models like

Word2Vec normally require large training sets for high quality predictions [33], the model

presented here can automatically identify related biological concepts, despite the compara-

tively limited size of the ChEMBL in vivo assay description dataset.

We attribute this performance to the consistent domain and format of the sentences that

the model was trained on. Although intended for humans, not algorithms, many assay descrip-

tions might be considered semi-standardized, or “canonical”, since they have been written

by a relatively small and discrete set of humans following certain curation and operational
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guidelines. We deduce that the experienced curators tend to use standard terminology and

similar grammatical patterns when manually extracting data for ChEMBL. This leads to more

linguistic regularities that computational models depend on [41]. Moreover, the concise for-

mat of assay descriptions leads to high information density and little irrelevant content that

could otherwise obscure the signals detected by the algorithms.

In addition, we observed that the performance was improved by our multistep text process-

ing workflow. While most standard methods involve training Word2Vec with individual

words (i.e. the sentences are split on whitespace or punctuation characters), we used shallow

parsing and custom grammar patterns to chunk the sentences in such a way that noun phrases

of optimal length were preserved in the training dataset. In addition, we normalized the men-

tions of genetic strains, which reduced the impact of synonyms and further improved the

robustness of the model.

Classifiers trained on assay descriptions can predict ATC codes of involved drugs with

high accuracy. Although most assays in ChEMBL involve novel molecules which have not

even been accepted for clinical studies, approved drugs are often tested alongside new struc-

tures—as positive controls. In this work, we annotated the in vivo assays in ChEMBL with the

ATC codes of approved drugs they tested. We used these codes in visualizations of semantic

space (Fig 7) and to evaluate the functional relevance of the observed clusters. In addition,

we built four multi-class random forest models predicting ATC codes based on the features

extracted from assay summaries. In all classification tasks we considered, the models were able

to predict ATC codes with high overall accuracy. We conclude that the descriptions of in vivo
assays are well-suited for the prediction of ATC codes since they include many anatomical

terms as well as phrases describing medicinal effects and therapeutically relevant phenotypes.

In addition, the results further confirm that neural embeddings learned by Word2Vec capture

true functional similarities between assays.

Importantly, the same classification model can be used to predict the function of novel

compounds that have not yet been assigned ATC codes (and by inference a disease/therapeutic

area assignment). For ChEMBL users, this would mean easier access to 80% of the in vivo
assays that do not include approved drugs. In this regard, our method would probably work

best as a part of an integrative approach incorporating chemical structure and target informa-

tion [42] in addition to the features extracted from text. An obvious application of these mod-

els is to apply them over non-ChEMBL derived full-text, to suggest a disease association and

support hypothesis generation.

Information extracted from assay descriptions provides insights into trends in animal

model usage in drug discovery. Part of this work involved extraction of animal disease

model mentions from text. Due to the lack of annotated training sets and controlled vocabu-

laries this turned out to be a substantial task. Despite the current limitations, we could identify

a variety of spontaneous and experimental animal models in the assay descriptions. Since

ChEMBL data are derived from scientific literature of more than four decades, we hoped that

the results would help us better understand the role of different animal models in preclinical

drug discovery. In this section, we discuss some of these findings.

Frequency analysis of extracted terms reveals that mouse and rat strains most commonly

mentioned in the ChEMBL assay descriptions include many long-established traditional

rodent lines. Amongst the three most frequent models, two strains (Sprague Dawley rat

and Swiss mouse) were already established by the 1920s, whilst the Wistar rat, introduced

as early as 1906, is the oldest rat strain in biomedical research [43–45]. In addition, as

highlighted in Fig 5, the most frequent rodent lines include many traditional outbred

strains (i.e. stocks). These genetically heterogeneous colonies of animals are commonly used

in pharmacology as general purpose models. Other researchers reported similar trends,
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often discussing the disadvantages of using outbred animals with ill-defined genetic back-

ground including their negative impact on the intra-lab reproducibility of research [44, 46,

47].

In the case of induced disease models, the condition of interest can be experimentally pro-

duced in animals of different genetic backgrounds and, indeed, of different species. Here, we

analyzed the differential use of rats and mice in various experiments (Fig 10A) as well as

across a range of disease areas (Fig 10B). The observed variations may be attributed to several

factors. Firstly, mice and rats differ in anatomy. The larger physical size of rats facilitates

physiological measurements and surgical procedures. Hence, rats are more often used in

assays involving surgery such as ligation of the spinal nerve or bile duct cannulation. Smaller

size of mice, on the other hand, is preferred in the tail suspension test—a behavioral assay

commonly used to evaluate antidepressant drug candidates. In this experiment, a rodent is

suspended by its tail and observed for the extent of active (escape) movement versus passive

immobility thought to be characteristic of a depressive-like state [48]. Since rats are too

heavy to support their weight by tails only, this test is performed primarily in mice [48]. Sec-

ondly, there are known behavioral differences between the two species. Rats are generally

considered to be more intelligent and more behaviorally complex and, hence, more useful

for some behavioral assays for CNS indications such as elevated plus maze or novel object

recognition tasks [49]. Thirdly, some fields are dominated by one species due to availability

of well-established models as is the case with mouse xenograft models for cancer research.

Finally, the mouse might generally be preferred due to the lower cost associated with caging

and maintenance.

Further applications of this approach

For ChEMBL users, it is difficult to identify which in vivo assays correspond to a disease of

interest. Some assays involve approved drugs with known indications, however these corre-

spond to just 20% of the dataset. For the remaining 80% assays involving only novel, unanno-

tated structures, there are not many options beyond a simple keyword search, which does not

benefit from synonym mapping and in addition requires knowledge of animal models and

phenotypes.

Here, we have shown that natural language processing (NLP) and neural language models

can be used to automatically classify animal-based assays in ChEMBL based on the informa-

tion encoded in the free text of assay descriptions. The approach could be further extended by

incorporating models based on chemical similarity of associated molecules to known drugs or

clinical candidates. Meaningful classification of animal-based assays would provide better

access to the currently less widely analyzed in vivo screening data in ChEMBL by helping users

find a subset of data that are most likely to be relevant.

Apart from application in the use of the ChEMBL resource, our work has applications in

translational bioinformatics and data-driven drug discovery [50]. We demonstrated the first

attempt to extract the mentions of animal models from text and produced a network of rela-

tionships between animal models and approved drugs. Given the functional relevance of in
vivo screening and substantial differences between different model systems, we believe that

bulk analysis of animal-based drug screening data could improve our understanding of biolog-

ical activities of small molecules as well as the challenges of successful translation. In this

regard, text mining techniques will play an important role in extracting and integrating animal

model information since most relevant studies are disseminated in the unstructured format in

scientific publications and patents.
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Limitations of the approach and future work

Some of the limitations of this work arise from the shortcomings of the NLP workflow. Except

for genetic strains, we do not normalize synonyms, although Word2Vec helped identify many

related phrases for commonly used expressions (e.g. the metrazole—pentyneletrazole example

discussed above). Furthermore, our dictionary-based NER methods favor precision, but may

overlook terms that are not covered by the underlying vocabulary. On the other hand, the

rule-based method used to identify mentions of experimental animal models include extrac-

tion patterns that are highly dataset-dependent and would have to be evaluated and potentially

re-optimized before application to documents outside of the ChEMBL corpus.

Other limitations are due to the features of the underlying dataset, including its relatively

limited size—larger corpus would certainly improve the performance of computational models

we used. In addition, some therapeutic areas are underrepresented resulting in unbalanced

training sets. Furthermore, descriptions frequently lack essential information about animal

models, and some assays are currently misclassified.

In addition, some of our basic assumptions may be incorrect. For instance, our animal

model—approved drug relationships are based on a co-occurrence assumption which might

not hold in all cases since approved drugs might not always be active in disease models in

which they were tested. Hence, we might have erroneously annotated some assays with incor-

rect ATC codes.

Summary

Testing drug candidate molecules in proven, or putative, animal models of mechanistic efficacy

is an important part of all drug discovery programmes. Yet, there are almost no publicly avail-

able resources storing the results of historical in vivo compound screening. A notable exception

is ChEMBL—a bioactivity database widely known, primarily for its ligand-protein binding data.

In this work, we demonstrate that in vivo assay data in ChEMBL are, despite their largely

unstructured format, a valuable resource for direct use in data-driven drug discovery and opti-

mization. We show that the descriptions of screening assays can be effectively and efficiently

mined and classified using a combination of modern text processing techniques and neural

language models, and that the extracted information, particularly when combined with the

structured database content, provides fundamental insights into the inter-relationships of

experimental models, drugs, and disease phenotypes. Finally, there is currently an active

debate in the literature over the reproducibility of in vivo bioassay results and publication bias

in reports of animal studies in general [51], approaches developed in our work have potential

to further inform this debate.

Materials and methods

The goal of this study was to mine the descriptions of animal-based bioassays for information

about animal disease models and their role in drug discovery. To this end, we built a system

that uses NLP techniques and machine learning models to extract relevant information from

the ChEMBL in vivo bioassay description dataset and automatically organize extracted con-

cepts as well as whole assay descriptions based on their semantic similarity.

We begin with preprocessing and grammatical analysis of the assay descriptions extracted

from ChEMBL (the overview of this step is illustrated by Fig 11). We use the GENIA tagger to

tokenize the sentences and to annotate the words with part-of-speech (POS) tags and other lin-

guistic features. Next, we use custom grammatical patterns to chunk the descriptions such that

noun phrases of optimal length and content are retrieved. To identify mentions of animal

models and their phenotypes in text, we use a combination of dictionary and rule-based
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named entity recognition (NER) methods that consider lexical and syntactic patterns. Next,

we build an unsupervised neural network model to convert text of the descriptions into

numerical vectors, which we then use to cluster extracted concepts and to train random forest

classifiers. Finally, we combine information extracted from text with curated fields in ChEMBL

to associate animal models with approved drugs tested in them.

Dataset

The first input for our system is a text corpus of experimental descriptions of in vivo assays

involving animal models of human disease and physiology. To generate the corpus, we identi-

fied a subset of relevant experiments in ChEMBL (release 21 [52]) by selecting all functional

whole organism-based assays in mouse and rat. There are 100,250 such assays in the database,

each summarized by a concise description and a set of curated annotations. The latter include:

species name, structures and ATC classification codes of compounds tested in the assay, and

details of the publication in which the assay was reported.

To easily query and manipulate the dataset, we indexed the textual descriptions of selected

assays and associated structured data with Elasticsearch—a distributed full-text search engine

built on Apache Lucene [53]. All SQL queries used to retrieve the data and to calculate their

statistics can be found in S2 Text; the data are available in S1 and S2 Datasets.

Fig 11. Processing of assay descriptions, with an illustrative example case. (A) The input data: raw assay descriptions retrieved from

the ChEMBL database. (B) Shallow grammatical analysis (shallow parsing). GENIA tagger annotates each word with its corresponding part-

of-speech (POS) category (e.g. noun, adjective, verb). The POS annotations are then used to find longer chunks of text corresponding to

noun phrases; here represented as yellow blocks in the shallow parse tree. (C) Custom chunking. Noun phrases detected by GENIA are

simplified using custom tags and chunking rules. (D) Named entity recognition (NER). Strains, experimental animal models, and phenotypic

terms are identified in terms using a combination of dictionary and rule-based NER methods. (E) Learning distributed vector representations.

The entire dataset of preprocessed assay descriptions is used to train a neural network language model, Word2Vec. Thus, words and noun

phrases from each assay description are converted to high-dimensional numerical vectors that can be used as input for clustering and

machine learning models. S, sentence; NP, noun phrase; PP, prepositional phrase; VP, verb phrase; JJ, adjective; NN, noun; IN,

preposition; NNP, proper noun; VBN, verb, past participle.

https://doi.org/10.1371/journal.pcbi.1005641.g011
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Preprocessing and noun phrase extraction

In the text of assay descriptions, complex multi-word noun phrases (NPs) are often used to

represent meaningful concepts such as experimental stimuli (e.g. “high fat diet”), experimental

readouts (“systolic blood pressure”, “insulin level”) or assay names (“tail flick assay”, “tail sus-

pension test”). In this work, we use such phrases in the rule-based named entity recognition

and as input for the language model. In order to extract NPs from text, we applied shallow

parsing analysis (chunking [54]) with custom grammatical patterns. First, we assign each word

in a preprocessed description its corresponding part-of-speech (POS) category (e.g. noun,

adjective, verb). Next, we search for chunks of text corresponding to individual noun phrases

using custom grammatical and lexical rules.

Prior to the syntactic analysis, we modified all assay descriptions as follows: we first normal-

ized the species names, e.g. by substituting each mention of “Rattus norvegicus” with “rat”;

next, we expanded commonly used acronyms of administration routes (e.g. sc—subcutaneous

(ly)) and administration regimes (e.g. qd—daily) using a custom dictionary covering 20 com-

mon abbreviations (S3 Dataset).

POS tagging. Following preprocessing, we used the GENIA tagger (version 3.0.2, Febru-

ary 2016) [55, 56] to tokenize and annotate the descriptions with shallow linguistic features

such as POS and chunk tags. GENIA is tuned to the analysis of English biomedical text [55]

and in addition to syntactic tagging, it also has biological NER functionality: it can identify

and annotate words and phrases corresponding to biological entities including proteins, cell

lines, and cell types. An example output of this process is shown in S1 Text (1.1).

Chunking and noun phrase extraction. The shallow parsing (chunking) functionality of

GENIA makes it easy to extract noun phrases from the annotated sentences. However, the NP

chunks produced by the tagger often correspond to complex phrases that might include multi-

ple simple (base) NPs [57] as well as non-informative words such as determiners, e.g. articles

“a” or “the”, or possessive pronouns (“its”) [58]. Thus, noun phrases extracted directly from

the GENIA chunking output are often very long and specific: for example, “a perorally dosed

Freund’s complete adjuvant induced rat inflammatory pain model” is a single such noun

phrase.

To achieve a more granular output, we attempted to extract only base noun phrases from

descriptions (e.g. “inflammatory pain model” in the example above). To this end, we combined

POS tags assigned by GENIA with custom tags and chunking grammar defined based on our

observations of patterns commonly used in assay descriptions. First, we did not allow for

determiners, numbers, and other non-informative word types to be part of a noun phrase.

These were not excluded only if GENIA tagged them as a part of protein or cell line name. For

instance, “angiotensin 2 induced blood pressure” and “Concanavalin A induced hepatic cell

necrosis” are both allowed in our system. In addition, we defined custom chunking rules based

on our observations of patterns commonly used in assay descriptions. For instance, the two

example expressions above represent a common type of phrases that combine an experimental

stimulus (e.g. “concanavalin A”) and a phenotypic outcome (“hepatic cell necrosis”) linked by

the word “induced”. However, in different descriptions the same stimulus might appear with a

different phenotypic readout: “concanavalin A induced ALT elevation”, “concanavalin A

induced T-cell proliferation”, “concanavalin A induced IL-2 production”, etc. To separate

these two types of information (stimulus and outcome), we defined a custom chunking rule

that splits noun phrases on the word “induced”.

Specifically, we assigned custom tags IND and IND_B to mark twenty-four keywords

related to experimental procedures: “induced”, “infected”, “xenografted”, “fed”, “operated”,

“(pre)treated”, “stimulated”, etc. (see: S1 Text for the whole list). Similarly, custom tags
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TRANSG,EXPR, and KNOCKwere used for keywords associated with genetically modified

animals: “transgenic”, “overexpressing”, “knockout”, etc. (S1 Text). Finally, we annotated

words corresponding to species names (“rat”, “mouse”) with a custom tag SP, while custom

tags PROT and CELL were used to annotated words that form a part of a protein/cell line

name (based on the GENIA NER tags). To extract noun phrases, we then used the RegexpPar-

ser function from the Python’s nltk module [59] to search and tag all sequences of words that

followed the pattern below:

NP : f< JJjNN:� > � < PROT jCELLjNN:� > þg;

where NP, noun phrase; NN, noun; JJ, adjective; VBD, verb (past tense); VBN, verb (past parti-

ciple); PROT, protein (custom tag); CELL, cell line (custom tag). See S1 Text for additional

explanation and examples.

Named entity recognition (NER)

We adopted two distinct procedures for the detection of relevant concepts in the text of assay

descriptions. 1) To identify the names of genetic strains and phenotypes, we used a dictionary-

based approach in which documents are matched against comprehensive lists of terms from

existing ontologies and custom-built dictionaries. 2) For the detection of induced (experimen-

tal) disease models, we adopted a rule-based approach combining syntactic information and

custom lexical extraction patterns. We describe the basic aspects of our NER workflow in the

section below, while additional details and explanations can be found in S1 Text.

Genetic strains. To identify mouse and rat strain mentions in text, we created two dictio-

naries based on official strain listings and nomenclature guidelines maintained by repositories

where new strains are registered [25, 26]. Both dictionaries list basic strains (1,307 mouse and

648 rat strains), together with the strain type (e.g. inbred or hybrid), available synonyms, and

substrains; see S4 and S5 Dataset files.

Our main source for the mouse strain dictionary was the list of strains registered through

Mouse Genome Database (MGD [29]). For each inbred strain we gathered all the derived sub-

strains, whilst the names of hybrid, co-isogenic and congenic strains remained as individual

terms. To map substrains to their corresponding ancestors, we parsed the names following

standard nomenclature guidelines [27, 28]. Specifically, names of substrains are constructed

by appending parental strains with the laboratory code(s). For example, AKR/NCr is a sub-

strain derived at Charles River (Cr) laboratory from the NIH (N) substrain of AKR mouse.

For each strain and substrain we then gathered additional synonyms from the Nonstandard

Mouse Strain and Stock Nomenclature list available from the ftp site of MGD [60]. Examples

included in the list are expansions of acronyms that form strain names (“non obese diabetic”

for NOD mouse) as well as commonly used strain names that do not follow the official nomen-

clature (“c57Black” and “c57/black” for the C57BL mouse strain). Finally, we have augmented

the dictionary with synonyms from Charles River—a specialist laboratory animal supply web-

site [61], and supplemented with common outbred stocks from a review paper by Chia et al
[44].

As the main source for the rat strain dictionary we used the Rat Strain Ontology (RSO)

[62]–structured vocabulary developed at the Rat Genome Database (RGD [30]). RSO repre-

sents registered rat strains in a hierarchical format that allows for easy mapping between

derived and parental strains. We used the second level of the RSO hierarchy as the basis for

our dictionary (the first level corresponds to the strain type, such as “inbred”, “outbred” or

“hybrid”). For each second level term, we collected all child nodes (i.e. all derived strains)

and available synonyms. In addition, we augmented the dictionary with the rat strain list
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from the MGD website [63] along with strains and synonyms from the Charles River website

[61].

We then used the two dictionaries to identify the mentions of rodent strains in the assay

descriptions. Upon recognition, we normalized synonyms to preferred names and derived

substrains—to the parental strains. To minimize the impact of punctuation variation, we

applied a string matching method that only depends on alpha-numerical characters: for exam-

ple, “ob-ob mouse” is mapped to “ob/ob mouse”. The mentions of strains in the text might

also include words such as “female”, “male” or “adult”; for instance, the method detects the

mentions of “C57black mouse”, “C56BL/6J mouse”, “C56BL/6J male mouse”, and “Black 6

mouse”, and substitutes them with “C57BL mouse”–the official name for the strain.

Phenotypes. Unlike animal model names, phenotypic terms (particularly diseases) are

often considered in text-mining analyses of biomedical text. Hence, there exist many termino-

logical resources that can readily be used in dictionary-based NER. In this current study, we

selected ten commonly used ontologies to capture phenotype-related terms in assay descrip-

tions. The selected resources are themselves partially overlapping and cover:

• symptoms: Symptom Ontology (SYMP [64]), Clinical Signs and Symptoms Ontology (CSSO

[65]),

• human and animal phenotypic traits: Human Phenotype Ontology (HPO [66]), Mammalian

Phenotype Ontology (MP [67]), Vertebrate Trait Ontology (VTO [68]), Animal Trait Ontol-

ogy for Livestock (ATOL [69]),

• clinical measurements: Clinical Measurement Ontology (CMO [70]),

• diseases: Human Disease Ontology (DOID [71]), Mouse Pathology Ontology (MPATH

[72]),

• behavioral processes and phenotypes: Neuro Behavior Ontology (NBO [73]).

Induced and transgenic animal models. No controlled vocabularies currently exist for

induced and transgenic animal models. Here, we applied a rule-based method that identifies

relevant terms using manually defined extraction rules. To design these rules, we carefully ana-

lyzed a subset of assay descriptions to find textual expressions that represent experimental ani-

mals. We then generalized these expressions to a set of eight extraction patterns exploiting

lexical and syntactic constraints. For instance, phrases such as “glucose tolerance test”,

“Freund’s complete adjuvant induced” or “Staphylococcus aureus infected” can be captured

with the following pattern:

f< NPjFWjPOS > � < IND > þg;

where NP, noun phrase; FW, foreign word; POS, possessive ending; IND, custom tag

(described in the previous section). The extraction patterns and example phrases they capture

are fully listed in S1 Text.

NER performance analysis. To assess the performance of our NER workflow, we asked

two curators to manually annotate 500 randomly selected assay descriptions with four distinct

classes of concepts: “genetic strain”, “experimental model”, “transgenic model”, and “pheno-

type”. The last category includes diseases (e.g. “influenza”), symptoms (“edema”), signs

(“blood pressure”), and behaviors (“writhing”, “stereotypy”), but excludes molecular biomark-

ers such as “DOPA levels” or “IL4 production”. The annotated sentences (in BRAT format

[74]) can be found in S1 File. We calculated the overall NER performance with the standard

performance metrics (precision, recall, F1-score) based on exact and partial matches. In
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addition, we assessed the interannotator agreement (IAA) using the strict and relaxed IAA

measures described in [75]. For details and comparison with other methods (e.g. phenotype

annotation with MetaMap), see S1 Text.

Construction and visualization of semantic space with Word2Vec

In the next step, we converted words and phrases from assay descriptions into numerical vec-

tors that can be used to find semantic similarities between concepts and to train classification

models.

To calculate distributed vector representations for the assay description dataset, we used an

unsupervised neural network model, Word2Vec [33], implemented in the Python gensim

module [76]. As input for the model, we used preprocessed assay descriptions tokenized into

words and noun phrases (see: “Chunking and noun phrase extraction” section). For better

results, we normalized the names of genetic strains mentioned in the descriptions, and

removed numbers and standard English stop words (“the”, “in”, etc.) from the training sen-

tences. The parameters of the model were set to standard values as follows: window (the maxi-

mum distance between the current and predicted word) = 5; minimum count (minimum

word frequency) = 30; number of features (the dimensionality of resulting word embeddings)

= 250. The output of the model was a set of 250-dimensional numerical vectors, each corre-

sponding to a single word or phrase from the input corpus.

To find semantic similarity values for pairs of terms, we calculated the cosine distances

between their corresponding vector embeddings [33]. We used analogous method to find sim-

ilarities between entire assay descriptions. In this case, we first converted assay descriptions

into numerical format by averaging their corresponding word vectors and normalizing the

resulting mean representation vectors to unit norm [77, 78].

We visualized pairwise semantic similarities for a set of 35 most frequent animal models

(with an exception of general purpose strains) and 35 phenotypic terms using a hierarchically

clustered heatmap implemented in Python seaborn module for statistical data visualization

[79].

To qualitatively analyze the distribution of functional assays, we projected the neural

embeddings from 250-dimensional space into 2D using t-Distributed Stochastic Neighbor

Embedding (t-SNE) [37]. To reduce the noise and speed up the computationally expensive t-

SNE calculations, we first reduced the dimensionality of the vectors to 20 dimensions [37]

using principal component analysis (PCA) [80].

Random forest classifiers

Next, we considered the problem of assay classification. To train supervised models, we used

the fact that many assays include reference molecules—mostly approved drugs with known

indications. Specifically, we used the Anatomical Therapeutic Chemical (ATC) classification

codes assigned to those drugs to annotate the assays and divide them into classes [23]. In most

cases, we used the second level of the ATC hierarchy corresponding to the main therapeutic

group of a drug, e.g. drugs used in diabetes (“A10”) or in epilepsy (“N03”). We considered dif-

ferent classification problems and built four distinct random forest models that predict assay

class membership based solely on the textual information from the descriptions.

The first classifier predicts whether an assay involves any cidal/cytotoxic drugs. These are

therapeutics whose main mechanism often involves causing cell death or inhibiting the growth

of microbes): antineoplastic drugs (ATC code “L01”), antibacterials (“J01”), antivirals (“J05”),

antiprotozoals (“P01”), etc. (see S1 Text).
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The second model predicts whether an assay involves any drugs acting on the nervous sys-

tem (ATC code “N”).

The third model is a multiclass classifier that assigns an assay with one of the five most

common ATC code (level 2) combinations—a proxy for the most common disease areas in

ChEMBL. In order of frequency these are: antiepileptic drugs (ATC code “N03”), psycholep-

tic drugs (“N05”), antineoplastic drugs (“L01”), drugs used in diabetes (“A10”), and anti-

inflammatory drugs (combination of 4 ATC codes: “C01”, “M01”, “M02”, “S01”). The last

combination of ATC codes is assigned to a nonsteroidal anti-inflammatory drug, Indometh-

acin, which is very commonly used as reference standard in the models of inflammation and

pain.

The fourth classifier predicts specific drug classes for assays involving drugs acting on ner-

vous system. The six class labels are: antiepileptics (“N03”), psycholeptics (“N05”), analgesics

(“N02”), psychoanaleptics (“N06”), antiparkinsonians (“N04”), and anaesthetics (“N01”).

Dividing assays into classes is not a straightforward task since some assays might involve

multiple drugs and, in addition, one drug might be assigned multiple ATC codes. To deal with

this complexity, we selected a subset of assays that can be unambiguously assigned to one of

the classes in every classification problem. For the details on class assignment and number of

assays allocated to different classes, see S1 Text.

We applied two different methods for splitting the data into ten subsets used for training

and testing in the 10-fold cross-validation procedure. In the first method, we split all assays

randomly into equally sized subsets; in the second method, we partitioned the assays by ran-

domly splitting the documents (scientific publications) from which the assay data were

curated. This is important since the descriptions of assays reported in the same document are

often very similar; commonly, they correspond to the same experiments that differ solely in

dose or timing details. The second splitting method assured that such assays would never be

used for both model training and testing, which might result in classifiers with overly optimis-

tic performance and poor generalization to new data. See [38] for in-depth discussion on split-

ting assay data for QSAR model building.

We trained each random forest (RF) model with a set of vectors calculated for assay descrip-

tions as average of their corresponding word embeddings (see previous section). Each RF clas-

sifier consists of an ensemble of decision tree estimators trained on an equally sized dataset

sample drawn with replacement. The final classification is given by averaging probabilistic pre-

dictions of individual decision trees. We set the number of tree estimators to 200; we used

adjusted class weights to reduce the impact of dataset imbalance (class_weight parameter set to

“balanced”). Other parameters remained set to default values of the Python scikit-learn imple-

mentation [81]. Following 10-fold cross-validation procedure, we calculated standard perfor-

mance measures (precision, recall, accuracy, F1-score), confusion matrix, and out-of-bag

estimate (OOB) [82] for each model. Additional details on performance and comparison with

other text-based methods (paragraph2vec and bag-of-words with TF-IDF weighting) are

reported in S1 Text.

Network of drugs and animal models

To generate a network of drugs and animal models, we combined the information extracted

from assay descriptions with curated compound data from ChEMBL. For a subset of assays

involving approved drugs, we created a dataset of animal disease models, including experi-

mental and transgenic models as well as genetic strains. From the latter, we excluded general

purpose models (such as Wistar rat or Swiss mouse), which are indiscriminately used for

screening compounds for diverse indications (leaving only strains that spontaneously
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develop disease-related phenotypes). In addition, we manually consolidated synonymous

names of experimental disease models; for instance “maximal electroshock”-“maximum

electric shock”, “pentylenetetrazole (PTZ)”-“pentylenetetrazole”, and “hot plate”-“hotplate”

are pairs of equivalent terms which were merged together. To create the network, we linked

animal models to approved drugs such that a drug is connected to an animal model if it was

tested in at least five assays involving this model. This resulted in a bipartite graph with 554

nodes and 710 edges, which we visualized using the Gephi network visualization software

[83].
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