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Abstract

Objectives. Laryngeal squamous cell carcinomas (LSCCs) typically
have an excellent prognosis for stage I tumors but a significant risk
of locoregional and distant recurrence for intermediate to advanced
disease. This study will investigate the clinical relevance of the
tumor microenvironment in a large cohort of treatment-na€ıve
patients affected by stage II–IV LSCC. Methods. Whole slide-based
digital pathology analysis was applied to measure six immune cell
populations identified by immunohistochemistry (IHC) staining for
CD3, CD8, CD20, CD66b, CD163 and CD38. Survival analysis was
performed by Cox proportional hazards models and unsupervised
hierarchical clustering using the k-means method. Double IHC
staining and in-situ hybridisation by RNAscope allowed further
analysis of a protumoral B cell population. Results. A cohort of 98
patients was enrolled and analysed. The cluster of immune-
infiltrated LSCCs demonstrated a significantly worse disease-specific
survival rate. We also discovered a new association between high
CD20+ B cells and a greater risk of distant recurrence. The
phenotypic analysis of infiltrating CD20+ B cells showed a na€ıve
(BCL6�CD27�Mum1�) regulatory phenotype, producing TGFb but
not IL10, according to an active TGFb pathway, as proved by positive
pSMAD2 staining. Conclusion. The identification of regulatory
B cells in the context of LSCC, along with the activation of the TGFb
pathway, could provide the basis for new trials investigating the
efficacy of already available molecules targeting the TGFb pathway
in the treatment of LSCC.
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INTRODUCTION

One of the main objectives of modern precision
oncology was to be able to predict outcomes and
modulate treatment in individual patients by
profiling the immune and molecular tumor
landscape. During recent decades, various
preclinical and clinical observations have
established the crucial role of cancer
immunosurveillance in controlling cancer
growth.1–4 However, most clinically apparent and
progressive human neoplasms have escaped
cancer immunosurveillance, emerging as variants
with reduced immunogenicity through an
immunoediting process. As a result, a proportion
of human cancers are immune deserts, whereas
others are infiltrated by myeloid and lymphoid
immune-suppressive cells.5 Extensive studies on
colorectal carcinoma6,7 and other solid tumors8,9

have confirmed that the analysis of the tumor
microenvironment (TME) enables the
identification of patient subgroups with different
prognoses and predicts the response to immune
checkpoint inhibitors (ICI), such as
immunotherapy.10 Among head and neck cancers,
the recommendation of ICIs outside clinical trials
is still limited to unresectable platinum-resistant
tumors11,12 with an improved survival rate
compared with standard of care; however, long-
term, stable complete response is still
unpredictable.13 The promising results of ICIs in
neoadjuvant therapy could form the basis of a
new clinical scenario for the treatment of these
tumors.14–17 The identification of biomarkers of
response is urgently needed to guide current and
future therapeutic options. Recent analysis has
revealed that head and neck squamous cell
carcinomas (HNSCC) are highly mutated and
distinct in molecular subtypes, including the HPV-
driven subgroup showing improved prognosis.18

Given the high tumor mutational burden of
HNSCC, neoantigen load could be an indicator of
response to immunotherapies.19

Laryngeal squamous cell carcinoma (LSCC) is one
of the most common HNSCCs with an overall
estimate of 184 615 new cases and 99 840 new
deaths in 2020. The clinical behaviour of stage I
glottic tumors is favorable, with an excellent long-
term prognosis20; by contrast, the survival of
patients with intermediate-advanced stage LCSS is
still very poor.21 Specifically, in addition to
locoregional recurrence, up to 15–20% of patients

develop hematogenous distant spread with
limited treatment options and a median overall
survival of 10 months.22,23 A few studies have
analysed the TME of LSCCs and revealed that
CD8+ T-cell infiltration is correlated with improved
prognosis, whereas enrichment of tumor-
infiltrating macrophages indicates LSCCs with
poorer prognosis.24–29 No definitive data are
available on the clinical relevance of tumor-
infiltrating B cells, an immune population largely
unexplored.24–29

This study analyses the TME in a large
retrospective cohort of LSSC. Ninety-eight
treatment-na€ıve patients with intermediate-to-
advanced stage tumors were included. Whole-
slide digital pathology analysis was performed by
counting six immune cell populations, namely
CD3+ T cells, CD8+ T cells, CD20+ B cells, CD38+

plasma cells, CD66b+ neutrophils and CD163+

macrophages. Immune-enriched tumors were
associated with a poorer disease-specific survival
rate, supported by the multivariable analysis.
Furthermore, our results identify an association
between the density of tumor-infiltrating CD20+

B cells and a greater risk of distant recurrence.
The in-depth analysis of this subgroup showed a
na€ıve phenotype of B cells (BCL6�, CD27� and
Mum1�) and their localisation in a TGFb-rich
microenvironment, supporting the hypothesis of
the presence of a regulatory B-cell (Breg)
population in the immune contexture of LSCC.

RESULTS

Coordinated infiltration of immune cells in
LSCC

Nighty-eight patients (PTs) were enrolled for this
study including 83 men (84.7%) and 15 women
(15.3%). The mean age at the time of the
treatment was 67 years (range 43–89). In terms of
surgical treatment, 62 PTs (63.3%) received
transoral laser microsurgery (TLM), 14 (14.3%)
open partial horizontal laryngectomies (OPHL)
and 22 (22.4%) total laryngectomy (TL). According
to the TNM staging system, 45 PTs (45.9%) were
defined as pT2, 34 PTs (34.7%) as pT3 and 19 PTs
(19.4%) as pT4a. Based on the regional lymph
node involvement, 75 PTs (76.5%) were defined as
N0, eight PTs (8.2%) as pN1, six PTs (6.1%) as pN2
and nine PTs (9.2%) as pN3. Risk factors such as
perineural invasion (PNI) or lymphovascular
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invasion (LVI) were identified in 44 (44.9%) and
38 (38.8%) PTs, respectively (Table 1). The median
follow-up time was 49 months (95% CI 45–58
months). During the follow-up period, 25 (25.5%)
PTs developed locoregional recurrence, whereas
15 (15.3%) PTs distant hematogenous metastases;
18 (18.4%) PTs died because of disease
progression (Table 1).

Digital microscopy analysis was performed on
immune-stained sections to quantify the tumor-
associated CD3+ T cells, CD8+ T cells, CD20+ B cells,
CD38+ plasma cells, CD66b+ neutrophils30 and
CD163+ macrophages (Figure 1a; Supplementary
table 1). The median area of analysed tissue was
37.4 mm2 (range 3.0–320.4 mm2; IQR 15.6–
90.3 mm2). Using a cell recognition algorithm, the
median densities of immune cells resulted,
respectively, of 443 cells mm�2 (range 68–2210
cells mm�2) for CD3+ T cells, of 457 cells mm�2

(range 30–3200 cells mm�2) for CD8+ T cells, of
178 cells mm�2 (range 11–1230 cells mm�2) for
CD20+ B cells, of 310 cells mm�2 (range 5–2580
cells mm�2) for CD38+ plasma cells and of
140 cells mm�2 (range 1–819 cells mm�2) for
CD66b+ neutrophils. The CD163+ macrophages
infiltrate, analysed with a pixel count algorithm,
occupied a median area of 2.94% (range 0.005–
18.29%) (Supplementary table 2).

Correlation analysis of the quantitative
measurements of tumor-immune infiltrates, as
performed by Spearman’s correlation test,
showed a strong direct correlation between all
the immune cell populations analysed, with the
exception of the CD66b+ cells (Figure 1b). Among
the individual cells counted, CD3+ cells account
for a median 46.4% of the immune infiltrate
(range 9.5–85.4%), CD8+ a median 33.2% (range
3.4–85.4%), CD38+ a median 26.6% (range 0.3–
65.9%), CD20+ a median 12.3% (range 1.9–
51.3%) and CD66b+ a median 9.6% (range 0.1–
63.4%) (Figure 1c; Supplementary table 3); for
this analysis, CD163+ could not be included, as
they were measured as a percentage of the
tumor surface. At the individual tumor level,
dimensionality reduction in immune infiltrates
using the t-SNE method identified the
coexistence of most of them and confirmed the
independent enrichment of CD66b+ neutrophils
(Figure 1d–i). Association analysis between
clinical variables and immune cell infiltration did
not any reveal any meaningful relationships
(Supplementary tables 4–8).

Immune-infiltrated LSCCs reveal a
phenotype of poorer prognosis

Considering the Z-score for immune cells
infiltration, by the average silhouette method, the
cohort can be best subdivided into two clusters
(Figure 2a). Unsupervised k-means partitioning, as
shown in Figure 2b, identified a dominant cluster
(Cluster 1) characterised by ImmuneCold tumors
and a minor cluster (Cluster 2) displaying
enrichment of all the immune cells analysed
(ImmuneHot). Cluster 2 was confirmed to be highly
infiltrated by all the immune cells tested (P < 0.05;
Figure 2c), whereas no correlation with the most
relevant clinical features (pT category, pN
involvement, PNI, LVI) was observed (P > 0.05,
Supplementary table 9). Considering the survival
end points in multivariable models including Age,
pT category and pN category as covariates, Cluster

Table 1. Summary statistics of the cohort

Variable

Overall

(N = 98) Variable

Overall

(N = 98)

Age Cartilage invasion

Mean (SD) 67.4 (9.82) No 74 (75.5%)

Median [min, max] 67.0 [43.0, 89.0] Yes 24 (24.5%)

Gender N category

Male 83 (84.7%) N0 75 (76.5%)

Female 15 (15.3%) N1 8 (8.2%)

Habits N2 6 (6.1%)

None 7 (7.1%) N3 9 (9.2%)

Smoke or alcohol 49 (50.0%) ENE

Both 42 (42.9%) N0 75 (76.5%)

Site N+ ENE� 13 (13.3%)

Glottis 55 (56.1%) N+ ENE+ 10 (10.2%)

Supraglottis 28 (28.6%) Stage

Transglottic 15 (15.3%) Stage II 39 (39.8%)

Surgery Stage III 33 (33.7%)

OPHL 14 (14.3%) Stage IV 26 (26.5%)

TL 22 (22.4%) Grading

TLM 62 (63.3%) G1 8 (8.2%)

Node dissection G2 74 (75.5%)

No 50 (51.0%) G3 16 (16.3%)

Yes 48 (49.0%) PNI

Margins No 54 (55.1%)

Negative 68 (69.4%) Yes 44 (44.9%)

Positive 30 (30.6%) LVI

T category No 60 (61.2%)

pT2 45 (45.9%) Yes 38 (38.8%)

pT3 34 (34.7%)

pT4a 19 (19.4%)

ENE, extranodal extension; LVI, lymphovascular invasion; OPHL, open

partial horizontal laryngectomy; PNI, perineural invasion; TL, total

laryngectomy; TLM, transoral laser microsurgery.
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2 was independently associated with a poorer
disease-specific survival rate (DSS) (HR 6.03; 95%
CI 1.66–21.87; P = 0.006), as also shown in the
adjusted survival curves in Figure 2d. The category
pT4a showed a significant and independent risk
factor (HR 25.81; 95% CI 5.35–124.45; P < 0.0001),
as shown in Figure 2e and f combining its
marginal effect with those of the clusters.

Dense infiltration by CD3+ T cells and CD20+

B cells indicates poor prognosis in LSCCs

The prognostic significance of each immune cell
population was investigated separately, building a
multivariable model for each outcome and
evaluating the Akaike’s Information Criterion
(AIC). As expected, the covariates Age, category
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Figure 1. Representative immunohistochemical panel for immune cell quantification performed on laryngeal squamous cell carcinoma sections,

scale bar 100 lm (a). Spearman correlogram of immune cell density (b), R coefficient are shown and significant results, adjusted for multiple

comparisons, are highlighted with coloured ellipses. Violin plots of relative fraction of immune cell densities (c). Plots of tSNE of z-scored immune

cell density (d–i); a transversal immune-rich cluster can be identified, as well as one rich in CD66b+ cells (dotted red circle).
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pT4a and LVI were strongly associated with the
OS (Figure 3a).31 A non-linear effect was observed
for the Age variable, being a risk factor at the
lowest and highest value (Figure 3b). The CD3

density was retained in the model, but no
association with the OS was observed. The DSS
analysis confirmed Age and category pT4a as
independent clinical covariates (Figure 3c); the
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effect of Age followed a non-linear shape, as for
OS (Figure 3d). The CD3 density represented a risk
factor (Figure 3e and f) with an HR of 2.12 for
each doubling of the CD3 density value (95% CI
1.23–3.68; P = 0.007), consistent with the result
showing the detrimental prognostic role of
Cluster 2. Notably, when considering locoregional

recurrence-free survival (LRFS), CD3 density was
the only covariate independently associated with
this outcome (Figure 4a) in the form of risk
factor with an HR of 1.73 for each doubling value
(95% CI 1.17–2.7; P = 0.014; Figure 4b and c).
Interestingly, a significant interaction was
observed between the density of CD3+ and pT
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category (P = 0.0274), as shown in Figure 4d, with
a remarkable effect on prognosis in the pT4a
group, as seen for the DSS.

Analysing the distant recurrence-free survival
(DRFS) as an oncological outcome, categories pT4a
and N3 were both associated with a poorer
prognosis (P < 0.001), compared with the
reference categories (pT2 and N0). Among tumor-

infiltrating immune cells, a higher density of
CD20+ B cells was associated with a worse
outcome (HR 5.79; 95% CI 2.23–14.98; P < 0.001),
whereas enrichment of CD8+ T cells resulted
protective (HR 0.54; 95% CI 0.30–0.97; P = 0.04;
Figure 4e–i). Contour plots in Figure 4j–l illustrate
the combined effects of each immune cell density
measure in the model, to predict the 5-year DRFS.
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Figure 4. Forest plot of the multivariable locoregional recurrence free survival rate (LRFS) model (a). Plots showing the adjusted effect of CD3+

T-cell density (b) and its paired effect with pT category (c) derived from the multivariable LRFS model and their effect including their significant

interaction term (d) in the model. Forest plot of the multivariable distant recurrence free survival rate (DRFS) model (e). Plots showing the

adjusted effect of CD20+ B-cell density combined with pT category (f) or N-category (g) derived from the multivariable DRFS model. Plots

showing the adjusted effect of CD8+ T-cell density combined with pT category (h) or N-category (i) derived from the multivariable DRFS model.

Contours plots showing the 5-year DRFS probability considering together the CD8+ T-cell and CD20+ B-cell densities (j), the CD38+ plasmacell

and CD20+ B-cell densities (k) and the CD8+ T-cell and the CD38+ plasma cell densities (l). As age variable is modelled with a restricted cubic

spline with 3 knots, in each model is shown the linear term (Age) and the not-linear one (Age0).
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Occurrence and localisation of CD20+ B cells
in LSCC

The evidence of the poorer prognosis indicated by
CD20+ B-cell infiltration led to an in-depth
analysis of their localisation within the TME. The
B cells were organised into aggregates (median,
36.0%; min–max, 0–83.7%) also identifiable as
tertiary lymphoid structures (TLS), based on the
occurrence of BCL6+ germinal centre B cells
(CD20TLS); alternatively, CD20+ B cells occur as
diffuse stromal/intratumoral infiltrate (CD20IT)
(median, 64.0%; min–max, 16.3–100%). The
frequency of TLS – in TLS per square millimetre –
was also taken into account, with a median value
of 0.131 TLS mm�2 (min–max, 0.010–2.32
TLS mm�2) for the whole cohort. The density of
CD20+ B cells measured in the different areas of
interest (CD20TLS and CD20IT) showed strong,
direct correlation (P < 0.0001, Figure 5a–c),
suggesting a coordinated recruitment of B cells
occurring as TLS or diffuse into the tumor/stroma.
A significant decrease in TLS was observed in
advanced T and N categories, along with the
progression of the disease, and a significant
decrease in TLS density was also observed for
tumor-harbouring risk factors, such as PNI and/or
LVI (Figure 5d and e). A further multivariable
model was fitted to analyse the clinical relevance
of CD20TLS and CD20IT in terms of distant
recurrence. Adding the TLS density as covariate
did not result in any improvement in the
regression model (AICpre 102.68, AICpost 104.35),
and this variable was not even associated with a
variation in DRFS (HR 1.26; 95% CI 0.574–2.763;
P = 0.5647, Figure 5f–l), still being the whole
CD20+ density a significant risk factor (HR 5.053;
95% CI 1.771–14.419; P = 0.002, Figure 5f–l). Thus,
the enrichment of CD20+ B cells, and not their
differential localisation, is relevant for the risk of
distant recurrence in LSCC.

In-situ characterisation of prometastatic
B cells

Tumor-infiltrating B cells are in general poorly
characterised and data on head and neck
squamous cell carcinoma are limited to the oral
cavity, oropharynx and hypopharynx sites,32 with
studies on the laryngeal site included in mixed
cohorts.26 Data in the literature show that B cells
can be localised both in the tumoral or in the
stromal compartment, and they often contribute
to the composition of TLS, although their exact
function and clinical relevance are not yet
completely understood.33 To investigate
the phenotype of CD20IT B cells, we tested a set
of B-cell antigens – including CD20, Pax5, Bcl6,
Mum1 and CD27 – on seriate and double-stained
sections of a set of cases that experienced distant
recurrence during the follow-up period
(n = 15).34,35 The TLS – defined as aggregates of B
and T cells showing a BCL6+ germinal centre
phenotype – were excluded from this analysis
(Figure 6a and b). Based on double stains, we
found that most CD20IT lacked CD27 (median
fraction of CD27+/CD20+ < 1%) and Mum1
reactivity (median fraction of MUM1+/
CD20+ < 1%), thus corresponding to mature B
cells with na€ıve phenotype lacking plasma cell
differentiation (Figure 6c).34,35

Functional analysis of prometastatic B cells

To extend our analysis at the functional level, we
tested the expression of IL-10 and TGFb by using
RNAscope on a subset of the cases that
experienced distant recurrence during the follow-
up period (n = 13). IL-10 and TGFb probes were
validated in cell-blocks of monocyte-derived
macrophages showing – as expected – a selective
expression of IL-10 on M2 macrophages and a
diffuse expression of TGFb both on M1 and M2

Figure 5. Scatter plots showing the significant direct correlation between CD20+ B-cell density and TLS density (a), between CD20IT B-cell

density and CD20TLS B-cell density (b) and between CD20IT B-cell density and TLS density (c). Violin plots showing the significant decrease in

density of clusters of B cells as the disease progresses (d) considering both pT category, nodal involvement, and presence of risk factors as

perineural invasion and lymphovascular invasion. Sections from representative Stage II (n = 3) or Stage IV (n = 3) laryngeal squamous cell

carcinoma cases immunostained as labelled (e), first and third column scale bar 1 mm, second and fourth column scale bar 200 lm. Forest plot

of the multivariable distant recurrence-free survival rate (DRFS) model including density of B cells as covariate (f). Plots showing the adjusted

insignificant effect of the density of B-cell clusters (g) and the significant effect of clusters of CD8+ T cells (h) and CD20+ B cells (i, j). Contour

plots showing the 5-year DRFS probability strongly associated with CD20+ B-cell (k) and CD8+ T-cell (l) densities and not with the density of B-

cell clusters. As age variable is modelled with a restricted cubic spline with 3 knots, in each model is shown the linear term (Age) and the not-

linear one (Age0).
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Figure 6. Sections from laryngeal squamous cell carcinoma (LSCC) cases that experienced distant recurrence (N = 15) stained as labelled

showing the in-situ characterisation of pro-metastatic B cells; slides in each column belong to the same LSCC case (N = 3). (a) Double

immunohistochemistry (IHC) for CD3 and CD20 for the identification of TLS (N = 3); magnification 1009, scale bar 200 lm. (b) Areas of interest

outside the TLS (outside the dotted red lines); TLS are identified by double IHC for CD20 and BCL6 (N = 3); magnification 1009. Scale bar

200 lm. (c) Representative high-power fields of serial sections double stained for CD20/BCL6, PAX5/CD27, MUM1/CD20; B cells (CD20+ or

PAX5+) result largely negative for CD27 and MUM1, defining a B-cell mature na€ıve phenotype (N = 3); magnification 4009. Scale bar 50 lm.
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macrophages; this observation was also validated
by RT-qPCR data (Supplementary table 2, not
shown).

Based on RNAscope findings, TGFb mRNA
resulted strongly and diffusely expressed by tumor
cells and TME cells (mean � SD scores 1.6 � 1.0
and 2.2 � 0.8 on a scale of 0–3; Figure 7a),
whereas IL-10 expression was limited to the TME
compartment (Figure 7a). Specifically, by using a
set of immunohistochemical markers, we found
that among TME cells, TGFb transcript were
detected in CD20IT, CD163+ macrophages
and SMA+ fibroblasts (Figure 7b), whereas IL-10
expression was limited to CD163+ macrophages
(Figure 7b). Furthermore, by triple
immunohistochemical staining for FOXP3, CD20
and CD3 or CD8, we demonstrated recurrent cell
interaction between CD20IT and CD3+FOXP3+

T cells, the latter displaying a CD8�CD3+ Treg
phenotype (Figure 7c; Supplementary table 3).
Thus, our data support the identification in LSCC
of a subset of na€ıve CD20IT TGFb+ consistent with
the ‘tumor-evoked’ regulatory B cells (tBregs),
previously identified as promoters of breast cancer
metastasis through the conversion of resting CD4+

T cells to regulatory T cells.36 Furthermore, testing
for pSMAD2 reactivity, nuclear positivity was
observed in most of the tumor-infiltrating CD20+

B cells (TIBs) in such cases and on tumor cells,
further supporting the activation at least of the
TGFb pathway (Figure 7d). It has been reported
that IL-10+ Bregs can also express PD-L1, showing
that the PD-1/PD-L1 pathway is involved in their
immune suppressive function; by contrast the
phenotype of TGFb+ Bregs has been poorly
characterised.37 By double immunohistochemistry,
we found that PAX5+ B cells regularly resulted
negative for PD-L1 (n = 15). Overall, the
phenotype of prometastatic TIBs is consistent with
a TGFb+-producing Breg population (Figure 7e).

DISCUSSION

In the present study, we have characterised the
TME of a homogeneous retrospective cohort of
patients affected by LSCC and surgically treated at
a referral center. The relevant findings included a
significantly worse DSS for a cluster of immune-
infiltrated cases (ImmuneHot), representing one-
third of the cohort, as confirmed in multivariable
analysis. Furthermore, the investigation of
different survival outcomes identified a
correlation between high CD20+ B-cell density and

an increase in distant recurrence.
The immunophenotype of the intratumoral CD20+

B cells was consistent with a na€ıve B-cell
phenotype with production of TGFb, likely
corresponding to regulatory B phenotype.

Studies on colorectal carcinoma,6,38

subsequently extended to other cancer types,8

have shown that the type and density of immune
cells in the TME are among the key
prognosticators of the clinical outcomes of
patients, beyond the classical staging criteria.39

The available literature on LSCC TME is limited
to few studies based on tissue microarray
samples and computing only OS and DFS as
outcomes.24–29,40,41 Most authors confirmed the
positive prognosis associated with high CD8+ T-cell
density,24,26,28,29 as was also observed in our
analysis of distant recurrence. The positive
association with high CD8+ T-cell density was
already proved by a meta-analysis by Rodrigo
et al.42 considering both overall and disease-free
survivals as outcomes. However, as one of the
main findings of this study, we identified an
association between an immune-rich TME and a
poorer DSS. Although surprising, this observation
is not limited to our cohort. H€oing et al.25

observed a poorer OS in LSCC patients with high
CD45+ cell infiltration; similar observations were
made for cohorts of renal clear cell
carcinoma.9,43,44 One possible explanation for this
finding is the exhaustion of T cells in the TME as
the tumor progresses44,45; this is also consistent
with the observed significant interaction between
CD3+ T-cell density and T stage in the survival
analysis in the present study. These hypotheses
are supported by recent observations,42 including
the analysis on the HNSCC cohort of the ‘The
Cancer Genome Atlas’ (TCGA) data set.46

The investigation in our cohort of different
survival outcomes identified a population of
CD20+ B cells in the tumoral area associated with
an increase in distant recurrence. Previous
findings in the HNSCC literature also support this
observation. Whole genome expression analysis in
a matched cohort of 49 patients suffering primary
HNSCC showed an enrichment of plasma cells and
T-reg-estimated with a deconvolution algorithm
in the group that experienced distant
recurrence.47 Data on the clinical and biological
relevance of TIB in the immune contexture of
solid tumors are limited.48 The emerging literature
– mostly derived from the analysis of cohorts of
patients treated with immunotherapy – suggests
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Figure 7. Sections from laryngeal squamous cell carcinoma (LSCC) cases that experienced distant recurrence (N = 15) and stained as labelled. (a)

In situ hybridisation for TGFb and IL-10 using RNAscope is shown (N = 3); magnification 4009 scale bar 50 lm. (b) In situ hybridisation for TGFb

and IL-10 is combined with immunohistochemistry for CD20, CD163 and SMA and confirm the positivity of TGFb on CD20+ B cells, CD163+

macrophages and on SMA+ tumor-associated fibroblasts; conversely, IL-10 expression is limited to CD163+ macrophages; magnification 6009

scale bar 33 lm. (c) Co-localisation of CD20+ B cells together with CD3+ T regs (CD3+FOXP3+CD8�); FOXP3 reactivity is found on CD3+ (green

arrowhead) CD8� (yellow arrowhead) cells (N = 3); magnification 4009 scale bar 50 lm. (d) Double staining for pSMAD2 and CD20 confirmed

the activation of TGFb pathway in a relevant fraction of CD20+ B cells (green arrowhead) (N = 2); magnification 4009 scale bar 50 lm. (e)

Representative PD-L1+ (upper row) and PD-L1� (lower row) LSCC cases with absence of PD-L1 reactivity on PAX5+ B cells (N = 4), magnification

4009 scale bar 50 lm.
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that B cells contribute selectively to the anti-
tumor response in the context of mature TLS,
whereas the extra-TLS component likely promotes
immunosuppression.49,50

The existence of immunosuppressive and tumor-
promoting B cells (Bregs) was first described in
the 1990s51,52 in the mouse system. The most
studied population is characterised by the B10
phenotype, identified by Yanaba et al.53 and
subsequently confirmed in human solid
tumors.54,55 B10 cells (CD1dhiCD5+CD19+) are
located in lymphoid organs, express switched
(IgM�) or unswitched (IgM+) B-memory (CD27+)
phenotype56 and produce IL-10.55,57

Several studies have reported the crucial role of
IL-10 in B-cell regulation.48 However, IL-10-
independent regulatory functions were identified
as mediated by TGFb.58 Preclinical studies indicate
that a population of TGFb+ Bregs can be
generated starting from a pool of na€ıve B-cells
exposed to tumor-derived factors, such as
exosomes,59 in agreement with the observed
mature na€ıve phenotype of TIB in the context of
LSCC (BCL6�, CD27� and Mum1�).

The subset of Bregs, also referred as tumor-
evoked Bregs (tBregs),36 was identified in both
the murine and solid tumor models by Olkhanud
et al.,36 and its properties and phenotype are
consistent with the TIB identified above described
in the LSCC patients in our study (CD20+, PAX1+,
CD27�, Mum1�, IL10�, TGFb+, FOXP3�, PD-L1�).
The tBreg regulatory functions are IL-10-
independent; by secreting TGFb, they promote
FOXP3+ Treg36,60 conversion. Furthermore, by flow
cytometry, the tBreg phenotype was described as
mature B2 CD19+pSTAT3+CD81hiCD25+CD27�IgD+

and the results from a breast cancer mouse model
support their key role in promoting cancer
metastasis.36,60

Given the occurrence of Breg populations in the
immune contexture of solid tumors, the
therapeutical benefit of the depletion of the
B cells has been tested with rituximab. However,
the results were disappointing and the treatment
greatly enhanced cancer progression and
metastasis.61 In contrast, the positive results
obtained in the murine models targeting the TGFb
pathway paved the way for the design of clinical
trials in human solid tumors.62,63 Despite the fact
that several molecules targeting the TGFb
pathway were designed and multiple trials
conducted in the last 15 years, there is still no
clinical approval of these compounds beyond

clinical trials.63,64 As these drugs do not exert a
direct cytotoxic effect on cancer cells, ongoing
studies are testing the best clinical scenarios (i.e.
drug combinations and biomarkers of response).
Of note, in the HNSCC field, the Bintrafusp alfa
(M7824) molecule, with a combined target effect
on TGFb and PD-L1, has shown promising
preliminary results with an objective response rate
ranging from 13% to 30.5%, with the highest
observed in HPV-related tumors.63,65,66 Currently,
M7824 is under investigation in trial NCT04220775
(NCT number), combined with stereotaxic
radiotherapy in recurrent or second primary
HNSCCs, and definitive results in the neoadjuvant
setting – from trials NCT04247282 and
NCT04428047, whose enrollments are already
completed – are expected within 1 year.

In terms of biomarkers of response, a rationale
exists for pSMAD2 expression63 as detected in the
nucleus of LSCC cells and surrounding stroma
cells. The SMAD-dependent TGFb pathways shape
the protumoral trajectory in various cancer types
also by instructing various immune cells.67,68 In
our series, the evidence of diffuse positivity of
pSMAD2 on both TIBs and tumor cells supports
the rationale of considering this pathway active
and targetable in the clinical context of LSCC.63

In conclusion, this work identifies a subset of
TIBs likely promoting recurrence in the distant
control of LSCC. These preliminary findings
require additional validation on LSCC and
extension to other cancer types producing TGFb.

METHODS

Study design and cohort of patients

The study is a retrospective and translational study,
retrieving clinical data and pathologic specimens from a
homogeneous cohort of patients affected by LSCC and
treated at the Otorhinolaryngology Unit at the IRCCS
Ospedale Policlinico San Martino, University of Genoa, Italy
(IRB approval: CER Liguria 230/2019).

As inclusion criteria, we enrolled patients affected by
intermediate to advanced T-category LSCC that had
undergone surgery as primary treatment between 2012 and
2016, with at least 12 months of follow-up or earlier death
or recurrence. Early T-stage tumors (T1 category), salvage
surgery, metastatic disease or prior systemic treatment for
malignancy were exclusion criteria. Patients were monitored
regularly with clinical examinations and neck MRI or CT
every 3–6 months. For pTNM staging, the 8th ed. of TNM
was applied.39 Surgical procedures included TLM, OPHL or
TL. Patients with clinically positive nodes, with high-risk
features or who underwent open neck surgery, were
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subjected to lateral and central compartment neck
dissection. Patients affected by advanced staged tumors,
with high-risk features such as PNI, vascular invasion,
multiple positive lymph nodes or positive margin, were
treated with adjuvant radiotherapy or chemoradiotherapy,
following the NCCN guidelines.69 Clinical and pathological
data taken into account included the following: age,
gender, smoke and alcohol consumption, site of the
neoplasm, type of treatment, pT category, pN category,
overall Stage, Grading, Cartilage invasion (cricoid or
thyroid), laryngeal motility, extranodal extension for
positive lymph nodes, surgical margins (negative or
positive) and follow-up data. The LRFS rate, the distant
recurrence-free survival rate (DRFS), the overall survival rate
(OS) and the disease-specific survival rate (DSS) were
considered as survival end points, defined as the time
between surgery and the date of the corresponding event
(locoregional recurrence, distant metastasis, death for any
cause, cancer-related death) or censoring at the last follow-
up. Details of the cohort are reported in Table 1.

Immunohistochemical staining

Immunohistochemistry (IHC) was performed on a set of
tissues samples obtained from the archive of the
Department of Pathology (Policlinico San Martino, Genova).
For each patient, tissues included a representative whole-
tissue formalin-fixed, paraffin-embedded (FFPE) block of
primary carcinoma. Immunostaining was performed using
4 lm-thick tissue sections and a set of primary antibodies
(Supplementary table 1).

The reaction was revealed using Novolink Polymer (Leica
Microsystems) followed by diaminobenzidine (DAB, Dako,
Glostrup, Denmark). Finally, the slides were counterstained
with Meyer’s Haematoxylin.

For double staining, after completing the first immune
reaction, the second was visualised using Mach 4 MR-AP
(Biocare Medical), followed by Ferangi Blue (Biocare
Medical). For triple IHC, the third immune reaction was
revealed using Novolink Polymer (Leica Microsystems), and
developed in 3-amino-9-ethylcarbazole chromogen (AEC),
counterstained with haematoxylin and cover-slipped using
gelatin. Single staining for CD3, CD8, CD20, CD66b, CD163
and CD38 was applied to identify T cells, B cells,
neutrophils, macrophages and plasma cells, respectively. To
characterise the phenotype and the localisation of tumor-
associated B cells, we performed double and triple
immunostaining for a set of B-cell markers including CD20,
BCL6, CD27, PAX5, MUM1, CD38, FOXP3, PD-L1 and
pSMAD2.

Digital microscopy analysis

The CD3, CD8, CD20, CD66b, CD163 and CD38 stained slides
were digitalised using the Aperio CS2 digital scanner and
ScanScope software (Aperio Technologies, Leica Biosystem,
New Castle Ltd, UK) at 209 magnification and analysed
using ImageScope (Leica Microsystems). Each scanned image
was annotated manually, and IHC Nuclear Image Analysis
algorithm or V9-pixel count algorithm (Leica Biosystems,
New Castle Ltd, UK) was chosen for the computerised

whole slide analysis. From each case, we obtained the
quantitative measure of immune cell density (number of
cells mm�2 or the relative frequency of the area positive for
the biomarker) for the entire tumor area, including the
invasive margin of the tumor, the latter considered to be
an area 500 lm wide beneath the tumor nests. Examples of
counted fields are provided in Supplementary table 1. For
each section stained for CD20, these cells were also
organised into aggregates also identifiable as tertiary
lymphoid structures, based on the occurrence of BCL6+

germinal centre B cells and localisation in the same region
of T cells, seen on the serial section stained for CD3
(CD20TLS) or in form of diffuse stromal/intratumoral
infiltrate (CD20IT). The density of CD20IT (number of CD20+

cells mm�2) was measured, excluding the aggregates of B
cells and the TLS density (number of TLS mm�2).

RNAscope

To localise IL10- and TGFb-positive cells, the tissues were
analysed with RNAscope assay (Advanced Cell Diagnostics,
Newark, CA, USA) using RNAscope 2.5 HD Assay-RED kit, Hs-
IL10 probe (cat. no. 602051) recognising the nt 122–1163 of
the IL10 reference sequence NM_000572.2 and Hs-TGFb
probe (cat. no. 400881) recognising the nt 170–1649 of the
TGFb reference sequence NM_000660.4. The sections from
fixed human tissue blocks were treated following the
manufacturer’s instructions. Briefly, freshly cut 3-lm
sections were deparaffinised in xylene and treated with the
peroxidase block solution for 10 min at room temperature
followed by the retrieval solution for 15 min at 98 °C and
by protease plus at 40 °C for 30 min. Control probes
included Hs-PPIB (cat. no. 313901) and DapB (cat no.
310043). The hybridisation was performed for 2 h at 40 °C.
The signal was revealed using RNAscope 2.5 HD
Detection Reagent-RED. Combined RNAscope and
immunohistochemistry (for CD20, CD163, CD66b, SMA) were
used to identify the cellular source of IL10- and TGFb-
positive cells. To this end, IL10 and TGFb detection by
RNAscope was followed by immunoreaction visualised using
Mach 4 MR-AP (Biocare Medical) followed by Ferangi Blue
(Biocare Medical).

Cell-block preparation

Cell suspensions of monocyte-derived macrophages (MDM)
were centrifuged for 10 min at 282 g. A solution of plasma
(100 lL, kindly provided by Centro Trasfusionale, ASST
Spedali Civili, Brescia) and HemosIL8 RecombiPlasTin 2G
(200 lL, Instrumentation Laboratory, Bedford, MA, USA,
cat. no. 0020003050) (1:2) were added to cell pellets, mixed
until the formation of a clot, and then placed into a
labelled cassette. The specimen was fixed in 10% formalin
for 1 h followed by paraffin inclusion.

Real-time PCR

IL-10 and TGFb mRNA targets were quantified by reverse
transcription-polymerase chain reaction (qRT-PCR) assay
using the Vii-A 7 Real-Time PCR System (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, USA). Total RNA
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was purified from M0, M1 and M2 macrophages (n = 1), as
previously reported.70 The cDNA was synthesised by iScript
gDNA cDNA Synthesis kit (cat. no. 1725035; Biorad,
Hercules, CA, USA) from 500 ng of total RNA, in a total
volume of 20 lL. A volume of 1 lL of the cDNA synthesis
reaction was used for the specific amplification of the
target transcripts. The HPRT1 transcript was used as
normalisation control. The qPCR was performed in a total
volume of 10 lL with TaqMan� Universal Master Mix II (cat.
no. 4369016; Applied Biosystems, Thermo Fisher Scientific)
and the Gene Expression Assay for IL10 (Hs00961622-m1),
TGFB1 (Hs00998133-m1) and HPRT1 (cat. no. 4333768T;
Applied Biosystems, Thermo Fisher Scientific). The threshold
cycle (Ct) was determined for each sample and
quantification was performed using the comparative DDCt
method:

DCt was derived from
CtTarget � CtHousekeeping,

then DDCt was derived from
DCtTarget sample (M1φ or M2φ) � DCtControl sample (M0φ).

Statistical analysis

Standard descriptive statistics were used for data
summarising and expressing means, medians, interquartile
range and ranges. The Shapiro–Wilk test was applied to
verify the normality of continuous variable distribution.
Missing values of clinical variables were imputed with
Multivariate Imputation by Chained Equations (MICE).71

Correlation analysis between immune cells densities was
performed using nonparametric Spearman’s rank
correlation. The Wilcoxon-Mann–Whitney test or Kruskal–
Wallis test (followed by Bonferroni P-value adjustment)
were used for group comparisons in quantitative variables,
and Fisher’s exact test for qualitative variables, as
appropriate. For achieving a qualitative description of
cohabiting immune cells, an Exact Barnes-Hut t-Distributed
Stochastic Neighbor Embedding (tSNE) was computed
considering Z-scored immune cell infiltration, with
Euclidean distance used to measure similarity.72

The median follow-up time was estimated using the
reverse Kaplan–Meier method. Multivariable semiparametric
Cox proportional hazards models – presented for each
outcome – were built by estimating the linear predictors of
the full models (including all candidate predictors) and
developing simplified models that can predict the values of
the full model with high accuracy (R2 ≥ 0.85). The
simplification employed an Akaike’s Information Criterion
(AIC) guided fast backward stepdown against the full
model predicted values. Each model was validated
internally using bootstrap with 300 resamples.
Discrimination was measured by the concordance index (c-
index), reported as naive model estimates, its bootstrap
estimate (average of individual bootstrap estimates) and
optimism-corrected estimate.

For clustering analysis, we chose the optimum number of
clusters for subdividing the cohort into groups according to
the Z-scored immune cells infiltration, by applying the
average silhouette method.73 Cluster partitioning was
performed applying the k-means algorithm with 1000

repetitions. A heatmap was built for graphical evaluation
of the results. Comparisons of clusters have been
performed by Fisher’s exact test or the Wilcoxon–Mann–
Whitney test.

In all the analyses, the significance level was 5%. R
(version 4.0.2) and R studio was used for statistical analysis.
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