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Abstract

Proliferation of antigen-specific lymphocytes and resulting clonal expansion is essential for 

adaptive immunity. We report that B cell-specific deletion of CD98hc reduced antibody responses 

due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of 

CD98hc didn’t impair early B cell activation, but did inhibit later activation of the MAP kinase 

Erk1/2 and down regulation of the p27 cell cycle inhibitor. Reconstitution of CD98hc-deficient B 

cells with CD98hc mutants revealed that the integrin-binding domain of CD98hc is required, but 

the amino acid transport function of CD98hc is dispensable, for B cell proliferation. Thus, 

CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage 

of adaptive immunity favored appearance of CD98hc in vertebrates.
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Introduction

Adaptive immunity is a vertebrate specialization that requires selective proliferation of 

antigen-specific lymphocytes 1, 2. The CD98 heavy chain (CD98hc; also called 4F2hc) 

(http://www.signaling-gateway.org/molecule/query?afcsid=A000262), encoded by the 

Slc3a2 gene, is a vertebrate membrane protein whose expression is greatly increased in 

proliferating lymphocytes 3. Originally described 25 years ago3 as a lymphocyte activation 

antigen, the role of CD98hc in the immune system remained obscure. CD98 has two distinct 

functions: facilitating amino acid transport4, 5 and mediating integrin signaling6, 7. The 

80kD CD98hc is covalently linked with one of several 40 kD light chains, which function as 

amino acid transporters 4, 5. Leucine and isoleucine transport is mediated by the CD984, 5 

heterodimer, and these amino acids are important regulators of the mTOR pathway that 

governs nutrient-regulated lymphocyte function8, 9. CD98hc also interacts with certain 

integrin β-subunits to mediate signaling events that control cell migration, survival, and 

proliferation 7. CD98hc is first seen in primitive vertebrates, coincident with the appearance 

of adaptive immunity 2, 10. Consequently, we hypothesized that CD98hc could play a role 

in the rapid lymphocyte proliferation required for effective adaptive immunity.

Here we report that CD98hc facilitates humoral immunity by supporting the rapid 

proliferation of B cells that is necessary for clonal expansion and subsequent differentiation 

into plasma cells. We deleted CD98hc in B cells by crossing mice bearing a floxed Slc3a2 

allele (Slc3a2f/f) with those expressing Cre recombinase in B cells (CD19-Cre+). These mice 

exhibited normal maturation and distribution of peripheral B cells, and normal morphology 

of secondary lymphoid organs. Slc3a2f/fCD19-Cre+ mice immunized with T cell-dependent 

or -independent antigens showed markedly reduced antibody responses, compared to control 

mice, due to complete suppression of B cell proliferation and plasma cell formation in 

CD98hc-null B cells. Mutant forms of CD98hc that mediate integrin signaling but not amino 

acid transport supported proliferation of CD98hc-deficient B cells; hence, the region of 

CD98hc that mediates integrin interaction is required, and the domain facilitating amino acid 

transport function is dispensable, for B cell proliferation. Furthermore, stimulation of a 

mixture of CD98hc-deficient and CD98hc-sufficient B cells resulted in strong enrichment of 

CD98hc-sufficient cells; this finding establishes the capacity of CD98hc to confer a strong 

selective advantage during rapid B cell proliferation. Thus, the ability of CD98hc to enable 

clonal expansion, necessary for adaptive immunity, may have favored the appearance and 

retention of CD98hc in vertebrates10.

Results

B cell CD98hc is needed for antibody responses

Because germline loss of CD98hc is embryonic lethal 11, we targeted CD98hc by flanking 

exons one and two of Slc3a2 with loxP sites that specified Cre-recombinase-mediated 

deletion of the cytoplasmic and transmembrane region of CD98hc (Supplementary Fig. 1a), 

online) thus leading to complete loss of CD98hc expression12. We crossed Slc3a2f/f mice 

with mice bearing Cre recombinase under the control of the endogenous B cell-specific 

Cd19 locus 13. The resulting Slc3a2f/fCD19-Cre+ mice showed specific deletion of CD98hc 

in B lymphocytes beginning at the pro-B to pre-B cell transition, when CD19 expression is 
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first induced 14; Within the splenic B cell compartment, 70–90% of cells lacked CD98hc 

(Fig. 1a), and we did not detect any deletion in T cells or monocyte/macrophages (Fig.1b), 

consistent with the efficiency and specificity of CD19-Cre-mediated recombination 13. B 

cells in Slc3a2flf littermates were uniformly positive for CD98hc (Fig 1a).

To test whether CD98hc is important for B cell antibody secretion, we measured 

concentrations of circulating IgG in Slc3a2f/fCD19-Cre+ and Slc3a2f/fCD19-Cre− mice. 

Whereas basal circulating IgM concentrations were not significantly lower in naive 

Slc3a2f/fCD19-Cre+ animals, we noted a significant reduction in class-switched IgG in naive 

Slc3a2f/fCD19-Cre+ mice (Supplementary Fig. 1b). Furthermore, after challenge with T cell-

independent antigen (Fig. 2a), or T cell-dependent antigen in Complete Freund’s Adjuvant 

(Fig. 2b), we noted a profound reduction in antigen-specific IgM and IgG concentrations in 

Slc3a2f/fCD19-Cre+ compared with Slc3a2f/fCD19-Cre− mice. This reduction was not 

specific to Toll-like receptor signals, because similar reductions were observed after 

immunization with T cell-dependent antigens in adjuvant lacking microbial components 

(Incomplete Freund’s Adjuvant) (Fig. 2c). In addition, this reduction correlated with Slc3a2 

gene dosage; compared to Slc3a2f/+CD19-Cre+ mice, Slc3a2f/− CD19-Cre+ animals showed 

a more severe defect (Supplementary Fig. 2). Thus, B cell CD98hc is important for 

mounting specific antibody responses to antigenic challenge.

CD98hc is involved in integrin signaling, and integrins are involved in localization and 

distribution of B cells subsets 15, 16. In addition, CD98hc is important for integrin-mediated 

mesenchymal cell migration7. To test whether loss or misdistribution of B cell subsets could 

explain the impaired antibody production in Slc3a2f/fCD19-Cre+ mice, we examined 

lymphoid tissue for the presence and localization of B cells subsets. Despite the role of 

CD98hc in adhesive signaling and amino acid transport 6, 7, 17, CD98hc-deficient follicular 

B cells, marginal zone B cells, transitional B cells, and peritoneal B1 cells were present in 

normal percentages in the periphery; in addition, pro-B, pre-B, immature B, and mature B 

cells were present in normal proportions in the bone marrow (BM) (Fig. 3a). Similarly, we 

detected no significant differences in the absolute numbers of these subsets between 

Slc3a2f/fCD19-Cre+ and Slc3a2f/fCD19-Cre− mice (Supplementary Fig. 3). Slc3a2f/fCD19-

Cre+ animals also exhibited normal splenic architecture, as follicular B cells segregated with 

intact marginal zones, and Slc3a2f/fCD19-Cre− and Slc3a2f/fCD19-Cre+ mice contained 

similar numbers of germinal centers (Fig. 3b). Finally, we detected no differences between 

naïve Slc3a2f/fCD19-Cre− and Slc3a2f/fCD19-Cre+ mice with regard to formed elements of 

the blood (Supplementary Fig. 4) or concentrations of circulating natural IgM (Fig. 3c). 

Thus, CD98hc is not required for the formation of mature B cells or their capacity to 

populate secondary lymphoid organs.

B cell CD98hc is necessary for plasma cell formation

B cells differentiate into antibody-secreting plasma cells following antigenic challenge, 

suggesting that a CD98hc requirement in plasma cell formation might explain the reduced 

humoral immune responses of Slc3a2f/fCD19-Cre+ mice. To test this idea, we purified 

resting splenic B cells from Slc3a2f/fCD19-Cre+ mice, depleted the population of any B 

cells that expressed CD98hc, and stimulated the remaining population with 
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lipopolysaccharide (LPS) to induce plasma cell formation. B cells from Slc3a2f/fCD19-Cre+ 

mice were defective both in class-switching (Fig. 4a) and in development into CD138+ 

plasma cells (Fig. 4b). This phenotype bears similarities to that of β1-integrin-deficient B 

cells16. The few plasma cells formed by Slc3a2f/fCD19-Cre+ B cells expressed CD98hc, 

indicating that they were the progeny of a few remaining CD98hc-expressing cells that 

escaped Cre-mediated recombination and in vitro depletion (Supplementary Fig. 5). Indeed, 

when we omitted the step of in vitro depletion of CD98hc-expressing cells, the 10–20% of B 

cells that expressed CD98hc in Slc3a2f/fCD19-Cre+ mice generated near normal percentages 

of plasma cells in vitro (Supplementary Fig. 6, 7).

Consistent with defective formation of antibody-secreting plasma cells, B cells from 

Slc3a2f/fCD19-Cre+ mice also showed impaired antibody secretion after LPS stimulation in 

vitro (Fig. 4c). As shown by ELISPOT, Slc3a2f/fCD19-Cre+ mice immunized with a T-

dependent antigen also contained fewer cells secreting antigen-specific antibody directly ex 

vivo, compared to immunized Slc3a2f/fCD19-Cre− mice (Fig. 4d). Taken together, these data 

show that without CD98hc, B cells are markedly impaired in their capacity to form plasma 

cells.

CD98hc is required for rapid B cell proliferation

Differentiation into plasma cells is preceded by multiple rounds of proliferation, leading to 

increased numbers of antigen-specific B cells 18; class switching is also independently 

regulated by cell division19. Previous reports utilizing blocking or cross-linking antibody 

suggested CD98hc was involved in T cell 20 21 and keratinocyte proliferation22. To test the 

role of CD98hc in B cell proliferation, we purified CD98hc-deficient or CD98hc-sufficient 

resting splenic B cells from Slc3a2f/fCD19-Cre+ or Slc3a2f/fCD19-Cre− mice, respectively, 

labeled them with the intracellular dye carboxyfluorescein succinimidyl ester (CFSE), 

stimulated them with B cell mitogens, and measured their proliferation by dye dilution via 

flow cytometry. Five days after stimulation, B cells from Slc3a2f/fCD19-Cre− mice divided 

5–8 times, as seen by the discrete populations of daughter cells exhibiting exponential 

dilution of fluorescence (Fig. 5a). In sharp contrast, B cells from Slc3a2f/fCD19-Cre+ 

littermates showed minimal division in response to the B cell receptor crosslinking agent, 

anti-IgM, provided alone or together with interleukin 4 (IL-4) or anti-CD40; similar data 

were obtained by direct enumeration of viable cells (Supplementary Fig. 8). A few cells 

from Slc3a2f/fCD19-Cre+ mice did undergo 1–2 divisions in response to high-dose LPS 

stimulation (Fig. 5a). However, these divided cells expressed CD98hc, suggesting that they 

escaped Cre-mediated deletion of Slc3a2 (Fig. 5b). Thus, CD98hc is necessary for rapid 

proliferation of mature B cells in response to antigen or other mitogenic signals. In the 

absence of stimulation, the lack of CD98hc did not appreciably alter the viability of cultured 

B cells (Supplementary Fig. 8), suggesting the low expression of CD98 expression in the 

resting state is not required for B cell survival. Thus, CD98hc is crucial for the rapid B cell 

expansion and plasma cell formation in response to external stimuli that drive adaptive 

humoral immunity.

CD98hc has two well-documented biochemical functions: it interacts with certain integrin β 

subunits to mediate integrin signaling 6, 23, thus influencing adhesion-induced signaling 
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events such as activation of pp125FAK, p130CAS, PI3 kinase, and Akt, that control cell 

proliferation 7. In addition, by associating with light chains such as LAT-1, CD98hc 

facilitates transport of amino acids such as leucine and isoleucine 4, 5. These amino acids 

are important regulators of mTOR 24, a critical node in a signaling pathway that controls 

immune responses 8, 9 Chimeras in which portions of CD98hc are replaced with portions of 

CD69, another Type II transmembrane protein, allow decisive separation of these two 

CD98hc functions17 (Fig. 6a). We used these chimeras to identify the mechanism whereby 

CD98hc enables B cell proliferation.

To study the function of these chimeras in primary B cells, we infected BM from 

Slc3a2f/fCD19-Cre+ mice with retroviruses containing bicistronic mRNAs encoding either 

human CD98hc or CD98-69 chimeras, followed by an internal ribosomal entry site and a 

GFP cassette. These transduced bone marrow cells were used to reconstitute lethally-

irradiated recipients to create animals in which B cells that develop and continue to express 

a human CD98-CD69 chimera are marked by GFP fluorescence (Supplementary Fig. 9, 10a) 

(Fig. 6a). Staining with an antibody specific for mouse CD98hc enabled us to identify B 

cells that lack mouse CD98hc but express retrovirally encoded human CD98hc chimeras; 

these cells were found in the blood beginning as early as 3 weeks after BM transfer.

Furthermore, all B cells that expressed GFP also stained for either human CD98hc or CD69 

(Supplementary Fig. 10b). Six weeks after BM transfer, we purified mouse CD98hc-null 

resting splenic B cells, labeled them with the membrane dye 1,1′-dioctadecyl-3,3,3′,3′-

tetramethylindodicarbocyanine (DiD) to track proliferation, and stimulated the cells with 

LPS. Four days later, we analyzed proliferation by dye dilution via flow cytometry (Fig. 6b). 

B cells reconstituted with full-length human CD98hc or with the integrin-interacting 

C98T98E69 chimera proliferated. In sharp contrast, the C98T69E98 chimera, which interacts 

with LAT-1 and mediates isoleucine transport but does not interact with integrins, failed to 

reconstitute proliferation. Thus, the integrin signaling portion of CD98hc is necessary and 

sufficient for proliferation of mature B cells.

Loss of CD98hc inhibits integrin-dependent events

Integrin ligation leads to signals that result in cell spreading and migration 25. In addition, 

integrins synergize with certain tyrosine kinase receptors to prolong and sustain activation of 

the MAP kinase Erk1/2, which promotes cell proliferation 26 by downregulating cyclin-

dependent kinase inhibitors27 and facilitating progression through the G1 phase of the cell 

cycle 28, 29. B cells from Slc3a2f/fCD19-Cre+ mice exhibited reduced Erk1/2 

phosphorylation at 17 hours after BCR ligation (Fig. 7a). In sharp contrast, early (<1 hr) 

activation of Erk1/2, Akt, and Syk was intact in B cells lacking CD98hc (Supplementary 

Fig. 11a–c), as was expression of activation markers (Supplementary Fig. 11d). However, 

coincident with a failure to sustain Erk1/2 activation, Slc3a2f/fCD19-Cre+ B cells showed 

impaired downregulation of the p27 cyclin-dependent kinase inhibitor (Fig. 7b), consistent 

with the observed lack of proliferation. Thus, absence of CD98hc selectively impairs 

sustained activation of Erk1/2 after BCR ligation, an event known to depend on integrins in 

other cell types.
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To directly assess the effect of B cell CD98hc deficiency on another integrin-dependent 

function, we utilized a recently described B cell adhesion and spreading assay 30, 31. 

Activated B cells from Slc3a2f/fCD19-Cre+ mice failed to spread following direct antibody-

mediated ligation of integrin α Lβ2 (LFA-1) (Fig. 7c). In sharp contrast, CD98hc-bearing B 

cells from Slc3a2f/fCD19-Cre− littermates spread extensively, as evidenced by a >2 fold 

increase in cell area and perimeter relative to the CD98hc-deficient B cells. In total, these 

data point to the potential importance of integrin signaling for B cell proliferation.

As an initial test of this provocative idea, we analyzed responses to crosslinking of the B cell 

receptor on B cells from mice engineered to lack all leukocyte integrins32. Even though 

some of these B cells expressed a small quantity of integrin β1, they exhibited decreased 

proliferation in response to BCR ligation (Supplementary Fig. 12), providing direct evidence 

of the involvement of integrins in B cell proliferation. The occurrence of some proliferation 

of these B cells raises the possibility that the loss of amino acid transport resulting from 

CD98hc deficiency may also contribute to the more profound defect in proliferation seen in 

CD98hc-deficient B cells.

CD98hc confers a selective advantage on B cells

During T cell-dependent responses, antigen-specific B cells expand in germinal centers in 

competition for limited antigen 33. The preceding experiments indicated that CD98hc 

conferred a strong selective advantage during B cell expansion in vitro. To measure this 

advantage in vivo, we immunized Slc3a2f/fCD19-Cre+ mice with TNP-KLH, a T cell-

dependent antigen, and analysed expression of CD98hc on splenic B cell subsets. In this 

experiment, CD98hc was present on <10% of resting splenic B cell subsets (Fig. 8a). 

However, during the germinal center response, B cells undergo a proliferative burst and are 

selected for the capacity to bind antigen with high affinity. At this stage, the percentage of 

CD98hc-expressing cells in the Slc3a2f/fCD19-Cre+ mice increased from <10% to 40% 

(Fig. 8a). Furthermore, following class switching, >99% of plasma cells in Slc3a2f/fCD19-

Cre+ mice expressed detectable surface CD98hc (Fig. 8a). Thus, there were no detectable 

CD98-null plasma cells in Slc3a2fl/flCD19Cre mice, and these observations are consistent 

with our in vitro findings that CD98hc is required for the rapid proliferation of mature B 

cells and subsequent formation of plasma cells.

Slc3a2f/fCD19-Cre+ mice had significantly fewer germinal center B cells and plasma cells 

than Slc3a2f/fCD19-Cre− mice one week after immunization (data not shown), likely due to 

the existence of far fewer CD98hc-expressing precursor cells capable of proliferating in 

germinal centers and forming plasma cells. However, 2–3 weeks after immunization, titers 

of antibodies specific for TNP-KLH in Slc3a2f/fCD19-Cre+ mice were similar to those in 

Slc3a2f/fCD19-Cre− mice, likely due to germinal center selection for the few pre-existing 

CD98hc-expressing antigen-specific B cells (Supplementary Fig. 13). This strong selection 

for CD98hc-expressing B cells can thus account for the relatively modest reduction in basal 

serum IgG concentrations in Slc3a2f/fCD19-Cre+ mice. Immunohistochemical staining for 

CD98hc in spleens of immunized mice confirmed that germinal center B cells express 

CD98hc in Slc3a2f/fCD19-Cre+ mice, in contrast to surrounding follicular B cells (Fig. 8b). 

In vitro analysis of B cells purified from Slc3a2f/fCD19-Cre+ mice without depletion of 
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CD98-expressing cells provided further confirmation of the strong selective advantage 

conferred by CD98hc; after 4 days in culture, 99% of plasma cells expressed CD98hc (Fig. 

8c).

CD98hc is upregulated 20–30 fold after B cell activation and we showed here that CD98hc 

is required for B cells to proliferate and to differentiate into plasma cells. Hence we propose 

that upregulation of CD98hc can serve as a checkpoint in the progression to humoral 

immunity. Consequently, CD98hc expression and function are potential targets for the 

modulation of antibody responses.

Discussion

CD98hc was one of the earliest lymphocyte activation antigens described 3, yet its role in 

the immune response remained obscure. Whereas studies in which T cells were treated with 

anti-CD98hc antibody in vitro20, 21, 34 suggested that CD98hc was involved in T cell 

activation, the role of CD98hc in lymphocytes in vivo was unknown. Here we have shown 

that CD98hc is absolutely required for the rapid B cell clonal proliferation necessary for 

their subsequent differentiation into antibody-secreting plasma cells. Consequently, 

increased CD98hc expression provides antigen-stimulated B cells with a profound selective 

advantage.

The linkage of CD98hc integrin-binding function to B cell proliferation suggests a new 

paradigm for the role of integrin signaling in lymphocytes. In addition to functioning in 

hematopoiesis, trafficking, and in formation of immune synapses 16, 35–39, our work 

indicates that integrin signaling is involved in clonal proliferation during immune responses. 

CD98hc performs two cellular functions; the first is amino acid transport, through 

interaction with one of several light chains4, 5. The extracellular domain of CD98hc is 

responsible for this function, and reconstitution with a chimeric protein containing only this 

domain of CD98hc was not sufficient to rescue proliferation of CD98-null B cells. The 

second major function of CD98hc is mediating integrin signaling6, 7. The transmembrane 

and cytoplasmic domains of CD98hc are necessary for interaction with β-integrin subunits, 

which leads to pp125FAK-dependent PI3 kinase activation of Akt and p130CAS-mediated 

Rac activation 7. Reconstitution with a chimeric protein that contained only these portions 

of CD98hc was sufficient to rescue proliferation of CD98hc-null B cells.

Integrins can cooperate with immunoreceptors, utilizing similar downstream signaling 

proteins, to promote lymphocyte proliferation and activation40. Thus, our findings establish 

a nexus of CD98hc-dependent integrin and immunoreceptor signaling pathways regulating 

proliferation in lymphocytes. CD98hc could function by allowing integrins to lower the 

threshold for cellular activation41 by efficiently organizing components of the 

immunological synapse; however we found that CD98hc was not required for early 

activation events. Rather, our data support a mechanism whereby CD98h-mediated integrin 

signals can extend the kinetics of immunoreceptor signals42 to the point of driving cell 

division and clonal expansion.
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Integrins drive fibroblast proliferation by sustaining Erk activation. Without integrin-

mediated adhesion, growth factor signals are transient and unable to downregulate CDK 

inhibitors such as p27, and cells fail to exit the G1 phase of the cell cycle26 28, 29. Our data 

indicate that a similar mechanism is operative in B cells. CD98hc-deficient B cells were able 

to generate early BCR signals, but could not sustain late Erk1/2 signaling or downregulate 

p27, and failed to divide. The inability of CD98hc-deficient B cells to spread on integrin-

specific antibodies confirmed the integrin signaling defect of CD98hc-deficient B cells. 

Recent work using supported lipid bilayers or plate-bound antibodies30 to study formation 

of immunological synapses, showed that B cells spread rapidly upon BCR activation in an 

integrin-dependent manner 30, 43; we now report that this spreading is CD98hc-dependent. 

Thus, CD98hc could promote integrin-dependent changes in cell shape that might stabilize 

interactions with antigen-bearing cells.

An intriguing implication of this work relates to the origin of the adaptive immune system. 

CD98hc orthologues first appear in primitive vertebrates10 as do sequences in integrin β-

cytoplasmic domains that permit CD98hc to interact with integrins 44. The coincidence of 

these events with the emergence of adaptive immunity 2, 10 suggests that the survival 

advantage conferred by adaptive immunity was among the factors that favored the 

maintenance of CD98hc and its ability to mediate integrin signaling. CD98hc is over-

expressed in many cancers and mediates tumorigenesis 7, 45–47. In particular, recent work 

underscores the importance of integrin signaling25 in the development and maintenance of 

epithelial cancers 48, 49 and of CD98hc in potentiating the growth of cancer cells 7, 47. 

Thus the appearance of CD98hc in vertebrates, which enables an adaptive immune response, 

may lead to increased susceptibility to cancer.

Methods

Mice

Slc3a2-floxed mice were generated by flanking exons 1 and 2, which encode the 

transmembrane portion of CD98hc, with loxP sites 12. The neomycin selection cassette used 

to select ES clones positive for a Slc3a2-floxed allele was flanked by Flp sites and thus was 

excised when Slc3a2-floxed mice were bred with human β-actin FLPe deleter mice (Jackson 

Laboratories). Slc3a2f/fCD19-Cre+ mice were the result of crossing Slc3a2f/f with the CD19-

Cre+ strain 13. Slc3a2f/+CD19-Cre+ offspring were identified by PCR and backcrossed with 

Slc3a2f/f mice to create mice heterozygous for CD19-Cre and homozygous for the Slc3a2 

floxed allele (Slc3a2flf). Experiments in this paper utilize this littermate comparison for 

every experiment possible. For \Supplementary Figures 2 and 4, Slc3a2+/− × Slc3a2f/fCD19-

Cre+ offspring were used. All mice were housed at the University of California San Diego 

animal facility, and all experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC). Pan integrin-deficient mice were generated as previously described 

32. Briefly, integrins were ablated by crossing mice carrying Itgb1flf, Itgavflf, Itbg2−/−, and 

Itgb7−/− genes with mice carrying an Mx1-Cre transgene. Cre expression in hematopoietic 

cells was induced by intraperitoneal injection of 250 μg polyI:C (Amersham Biosciences). 8 

days after polyI:C injection, mice were used for B cell proliferation assays.
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Flow cytometry of B cell subsets

BM cells were prepared by dissecting femur and tibia bones from adult (10–20 wk-old) 

Slc3a2f/fCD19-Cre+ mice and flushing with media using a 23-gauge needle. After passing 

through the 23-gauge needle twice, erythrocytes were lysed for 8 min at room temperature 

using ACK lysis buffer (Biowhittaker). Splenic single-cell suspensions were prepared by 

dissociating whole spleens using a 7ml tissue grinder (Kontes), and lysing erythrocytes as 

for BM. Peritoneal lavage cells were isolated from adult mice by flushing peritoneum with 

10 ml complete medium in 1–2 ml batches. After counting, BM, spleen, or peritoneal cells 

were stained in 100 μl of staining buffer (PBS, 0.5% BSA) containing fluorochrome-

conjugated antibodies (BD Biosciences) against mouse B220 (RA3-6B2), IgM (II/41), 

CD21 (7G6), CD23 (B3B4), CD98hc (RL388), GL7 (GL7), CD138 (281-2), and Fas (Jo2), 

at optimal concentrations. After incubation on ice for 30–45 min, followed by three washes 

in staining buffer, subsets were analyzed by flow cytometry using FACS Aria or 

FACSCalibur cytometers (BD Biosciences).

Immunohistochemistry

For analysis of CD98 selection after immunization, adult Slc3a2f/fCD19-Cre+ and littermate 

control (Slc3a2flf) mice were immunized with 100 μg TNP-KLH (Biosearch) emulsified in 

Complete Freund’s Adjuvant (CFA) (250 μl i.p.). Seven days later, spleens were embedded 

in Tissue-Tek O.C.T. compound (Sakura Finetek U.S.A.) and frozen at −80°C. Eight μm 

sections were mounted on microscope slides, fixed for 10 min in cold acetone, blocked for 1 

h with block buffer (0.5% BSA in PBS), and stained for 1hr at RT with peanut agglutinin 

(PNA)-FITC (Vector Labs) and anti-B220 (BRA3-6B2), CD5 (53-7.3), CD3 (145-2C11), 

CD98 (RL388) (all from BD Biosciences), or anti-MOMA-1 (BaChem, clone MOMA-1). 

After washing with PBS containing 0.5% Tween, sections were covered with Gel/Mount 

(Biomeda Corp) and sealed with glass coverslips. Images were acquired using Zeiss 

Axiocam M1 microscope (Zeiss) and Slidebook software (Intelligent Imaging Innovations).

Antibody analyses

For antigen-specific antibody responses, adult Slc3a2f/fCD19-Cre+ and control littermate 

mice were injected i.p. with 50 μg TNP-LPS (Sigma) in 250 μl PBS (T cell-independent 

antigen), or 100 μg TNP-KLH (Biosearch) emulsified in 250 μl CFA (T cell-dependent 

antigen). Blood serum was collected by centrifugation of tail vein bleed (100–200 μl with 1–

2 mM EDTA solution as an anticoagulant) before (pre-immune) and at 1, 2, and 3 wk after 

immunization. TNP-specific antibody concentrations in blood sera were assessed by direct 

ELISA with TNP-OVA as the coating antigen and AP-conjugated polyclonal anti-mouse 

IgG (Sigma), polyclonal anti-mouse IgM (Sigma), or anti-mouse IgG3 (Clone R40-82, BD 

Biosciences) as the detection antibody. Due to inconsistencies in commercially available 

anti-TNP standards, ELISA data in Fig. 2 and Supplementary Fig. 13 were quantified by 

multiplying the O.D. reading out of 3–4 dilutions of sample that was in the linear portion of 

the assay with the dilution factor to obtain values shown in bar graphs. Circulating IgG and 

IgM concentrations from naive mice and from in vitro splenic B cell stimulations were 

measured by sandwich ELISA with polyclonal anti-mouse IgG (Sigma) or anti-mouse IgM 
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(Sigma), detection antibodies as for direct ELISA, and standard curves obtained with 

purified polyclonal IgG or IgM.

In vitro proliferation and differentiation of resting B cells

Resting B cells (defined as CD43−) were purified from spleen cell suspensions of 

Slc3a2f/fCD19-Cre+, pan integrin-deficient, or control mice by depletion of CD43+ cells 

(and depletion of CD98hc+ B cells for Slc3a2f/fCD19-Cre+ mice or depletion of β-1 

integrin+ cells in pan integrin-deficient mice) using B cell magnetic beads (Dynal). Purity, as 

assessed by anti-B220 (RA3-6B2) or anti-CD43 (eBioR2-60) staining and flow cytometry, 

was routinely 95–98%. Resting B cells were plated (400,000 per well) in 48-well plates and 

stimulated for 3–5 days with 20 μg/ml Ultrapure LPS (InVivoGen), 30 μg/ml F(Ab′)2 goat 

anti-mouse IgM (Jackson Immunoresearch), 2 μg/ml anti-CD40 (BD Biosciences, Clone 

3/23), or 50 ng/ml recombinant murine IL-4 (Peprotech). Unstimulated resting cells were 

cultured with media alone. Anti-CD138 (eBioscience, clone DL-101), anti-IgG3 (BD 

Biosciences, clone R40-82) and anti-B220 (eBioscience, clone RA3-6B2) staining and flow 

cytometry were used to assess class-switching and differentiation to plasma cells. For 

measuring proliferation, purified resting B cells were labeled with 2 μM carboxyfluorescein 

succinimidyl ester (CFSE, Molecular Probes), and analyzed by flow cytometry for dilution 

of fluorescence from cell division at 3–5 days. In Supplementary Fig. 12 histograms of 

unstimulated cells are shown, as the extent of CFSE labelling varied between samples. For 

some differentiation or proliferation experiments cells were also stained with anti-CD98 

(eBioscience clone RL388). Propidium iodide exclusion and automated enumeration by flow 

cytometry was used for analyzing expansion of cell populations. It should be noted that in 

this in vitro culture system, many of the cells die or are lost during harvesting or staining, 

and a smaller subset divide rapidly.

Retroviral CD98hc-chimera reconstitution and BM transplant

The BM transplant protocol was generously shared by S. Rowland in the lab of R. Pelanda 

(Denver, CO). Briefly, donor mice were treated with 4 μg per mouse of 5-Fluorouracil 

(Adrucil, from Sicor pharmaceuticals) in 200 μl PBS, i.p. Three days later, ecopack293 

packaging cells (Imgenex) were transfected with pCl-Eco (Imgenex) and with one of 4 

retroviral constructs (C98T98E98, C98T69E98, C98T98E69, or C69T69E69 in an MSCV-IRES-

GFP backbone) 50 and cultured for 48 hours. On day 4, donor mice were sacrificed, and BM 

cultured overnight in complete medium containing IL-3 (25 ng/ml), IL-6 (50 ng/ml), and 

SCF (50 ng/ml) (all from Peprotech). Viral supernatants were collected from packaging cells 

on day 5 and used to spin-fect BM at 2800 rpm, room temperature for 90 min on days 5 and 

6. BM cells were harvested on day 7 and injected (250,000 per mouse) in 100 μl PBS i.v. 

Small samples were retained and stained for Sca-1 (eBioscience, clone D7), a marker of 

stem cells. In all samples, 24–29% of Sca-1+ populations were GFP+ before injection. 6–8 

wk after transplant, (mouse)CD98hc-deficient resting B cells were purified from spleens of 

recipient mice, labeled, and stimulated with LPS. Proliferation and plasma cell 

differentiation was assessed as described above, but using the membrane-dye 1,1′-

dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine DiD (Molecular Probes) that emits in a 

range distinct from GFP.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CD98hc deletion in Slc3a2f/fCD19-Cre+ mice. (a) CD98hc deletion in B cells. BM cells 

from adult Slc3a2f/fCD19-Cre+ and control mice were isolated and CD98hc expression 

(filled peaks) measured at different stages of B cell maturation compared to isotype control 

staining (lines); experiment was repeated once. (b) Specificity of CD98 deletion. Peripheral 

blood and spleen cells from Slc3a2f/fCD19-Cre+ and control mice were prepared by lysing 

erythrocytes. CD98hc expression was measured on T cells (CD3+), macrophages 

(CD11b+B220−), and B cells (B220+) by flow cytometry. Data from one representative 

mouse of each genotype are shown (n=4 per group for each panel); experiment was repeated 

once.
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Figure 2. 
Impaired antibody responses in Slc3a2f/fCD19-Cre+ mice. (a) T cell-independent antibody 

response. Adult (8–12 wk old) Slc3a2f/fCD19-Cre+ or control mice were immunized with 50 

μg of a T cell-independent antigen, TNP-LPS, in PBS. Mice were bled before immunization 

(pre-immune) and at one wk after immunization to obtain serum. Concentrations of anti-

TNP IgM or anti-TNP IgG3 were measured by direct ELISA. Error bars represent s.e.m. 

from 5 mice in each group. ** P < 0.025 (b, c) T cell-dependent antibody responses. 

Slc3a2f/fCD19-Cre+ or control mice were immunized with 100 μg of the T cell-dependent 

antigen TNP-KLH in Complete Freund’s Adjuvant (CFA) (b) or Incomplete Freund’s 

Adjuvant (IFA) (c). Anti-TNP IgM and anti-TNP IgG in serum were measured by direct 
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ELISA. Error bars represent s.e.m. 5 mice for each group. (**P <0.025, *P = 0.057). 

Experiments in (a–c) were repeated once.
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Figure 3. 
Normal B cell distribution and natural antibody concentrations in Slc3a2f/fCD19-Cre+ mice. 

(a) Enumeration of B cell subsets. Indicated B cell subsets in spleen, BM, and peritoneal 

cells from adult (8–12 wk old) Slc3a2f/fCD19-Cre+ and control mice were analyzed flow 

cytometry. Error bars show s.e.m. from 4 mice in each group; experiment was repeated with 

similar results (b) Analysis of secondary lymphoid architecture. Frozen spleen sections from 

Slc3a2f/fCD19-Cre+ and littermate control mice were stained with the antibodies specific for 

the indicated proteins to detect B220+ B cells, metalophillic macrophages that outline the 

marginal zone (MOMA-1+), T cells (CD5+), and germinal center B cells (PNA+). (c) 
Natural antibody concentrations. Naïve adult (8–12 wk old) Slc3a2f/fCD19-Cre+ and 

Cantor et al. Page 17

Nat Immunol. Author manuscript; available in PMC 2009 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



littermate control mice were bled and serum analyzed by sandwich ELISA for total IgM. 

Error bars show s.e.m. from 30 mice per group (P = 0.11).
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Figure 4. 
Defective plasma cell formation in Slc3a2f/fCD19-Cre+ mice. (a,b) In vitro plasma cell 

formation. Resting splenic B cells (CD43−CD98hc-deficient) were purified from 

Slc3a2f/fCD19-Cre+ or littermate control mice, cultured with LPS for 5 days, and stained for 

surface IgG3 (a) and CD138 (b) (Syndecan-1, a plasma cell marker). Cells were analyzed by 

flow cytometry. Dot plot is representative data from one mouse; bar graphs summarize IgG3 

or CD138 staining on B220lo cells. Error bars show s.e.m. from 3 mice per group. **P < 

0.025 Experiment was repeated with similar results. (c) In vitro antibody secretion. 

Supernatants from resting B cells stimulated for 4 days with LPS were assayed for total IgM 

and IgG by sandwich ELISA. Error bars show s.e.m. from 4 mice per group. *P <0.05 

Experiment was repeated with similar results. (d) In vivo plasma cell formation. 

Slc3a2f/fCD19-Cre+ and control mice were immunized with TNP-KLH in CFA. One wk 
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later, splenocytes were cultured for 2–3 h on TNP-coated PVDF membrane 96-well plates. 

After washing to remove cells, and incubation with anti-IgG HRP-conjugated secondary 

antibody, AEC substrate was used to develop red spots indicating TNP-specific IgG-

secreting plasma cells. Error bars indicate s.e.m. from 4 mice for each group (*P = 0.05, **P 

= 0.08). Experiment was repeated once.
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Figure 5. 
Proliferation of splenic B cells from Slc3a2f/fCD19-Cre+ mice. (a) In vitro proliferation 

analysis. Resting B cells (CD43−) were purified from splenocytes of 8–12 wk-old 

Slc3a2f/fCD19-Cre+ and littermate control mice and labeled with CFSE. 400,000 CFSE-

labeled B cells were cultured per well in a 48-well plate with the indicated stimuli (filled 

peaks) for 5 days, and proliferation was measured by the dilution of CFSE fluorescence by 

flow cytometry, as compared with unstimulated resting cells (lines). Each histogram is data 

from one mouse that represents data from 3 mice of each genotype in one experiment. This 

experiment was repeated twice with additional mice. (b) CD98hc expression on proliferating 

cells. CD98 expression was measured on CFSElo (dividing) vs. CFSEhi (non-dividing) cells 

by antibody staining and 2-color flow cytometry; experiment was repeated once.
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Figure 6. 
Mechanism by which CD98hc enables B cell proliferation. (a) CD98-CD69 chimeric 

constructs encoded by retroviruses. (b) Rescue of B cell proliferation with CD98hc integrin 

signaling function. Six to eight wk after transplant of BM cells infected with indicated 

retroviruses, resting B cells (CD43− mCD98hc−) were purified from splenocytes of recipient 

mice. Cells were labeled with DiD dye. 350,000 DiD-labeled B cells were cultured per well 

in a 48-well plate with LPS (filled peaks) and proliferation was measured by the dilution of 

DiD fluorescence by flow cytometry. Dot plots show mouse CD98 expression vs. DiD 

fluorescence by 2-color flow cytometry; fewer dots in the full-length CD69 or in the 

integrin-signaling-deficient CD98-CD69 chimera are indicative of the lack of proliferation 

in these samples. This experiment was repeated twice.
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Figure 7. 
Integrin signaling defects in B cells lacking CD98hc. (a) Late Erk signaling. Resting B cells 

(CD43−CD98−) were purified from splenocytes of 8–12 wk-old Slc3a2f/fCD19-Cre+ (n=4) 

or littermate control mice (n=3) and were stimulated with anti-IgM (30 ug/ml) and IL-4 (15 

ng/ml) for 17 h. Cells were then immediatedly washed with ice-cold PBS, lysed, and Erk1/2 

phosphorylation was analyzed by immunoblotting. Bands are present, albiet faint, in the 

Slc3a2f/fCD19-Cre+ lanes. (b) p27 downregulation. Purified B cells from Slc3a2f/fCD19-

Cre+ or littermate control mice were stimulated with anti-IgM and IL-4 for 0, 12, or 24 h. 

Cells were washed and lysed, and expression of p27 was analyzed by immunoblotting 

(Intervening bands have been omitted for clarity). Bar graph summarizes staining of p27 

normalized to total Erk. Error bars represent s.e.m. from n=3 mice per group for (a) and (b). 
Experiment for (a–b) was repeated once. (c) Integrin-dependent cell spreading. Purified B 

cells from Slc3a2f/fCD19-Cre+ or littermate control mice were stimulated with anti-CD40 
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and IL-4 for 24 h, and were plated on anti-LFA-1 for 16 h. Digital pictures show 

representative fields, and bar graphs summarize area and perimeter of 30 traced cells for 

each group. Experiment was repeated once.
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Figure 8. 
Selection for CD98hc+ B cells during activation. (a) CD98hc expression on responding B 

cells in vivo. Cells were isolated from halves of spleens from Slc3a2f/fCD19-Cre+ and 

control mice immunized with the T cell-dependent antigen TNP-KLH in CFA. CD98hc 

expression (filled histogram) was measured on indicated B cell subsets by flow cytometry. 

Isotype control, open histograms. Data from one representative mouse of each genotype are 

shown (n=3 per group). (b) Selection of CD98hc+ B cells in vivo. Remaining halves of 

spleens were frozen, sectioned, and stained for B220 and CD98hc; germinal centers were 

verified with PNA staining. Data from one mouse are shown and are representative of 3 

mice per group; experiment for (a-b) was repeated once. (c) Selection of CD98hc+ B cells in 
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vitro. Resting splenic B cells were purified from Slc3a2f/fCD19-Cre+ mice without depletion 

of CD98hc+ cells or from control mice. Cells were cultured with LPS for 4 days, stained for 

B220, CD98hc, and CD138 (Syndecan-1, a plasma cell marker), and analyzed by flow 

cytometry. Representative data (n=3 per group) from one mouse are shown; entire 

experiment was repeated twice.
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