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Abstract: Parkinson’s disease is a commonly encountered neurodegenerative disorder primarily 

found in aged populations. A number of medications are available to control symptoms, although 

these are less effective in advanced disease. Deep brain stimulation provides a practicable alter-

native at this stage, although a minority of patients meet the strict criteria for surgery. Novel 

medications that provide enhanced symptomatic control remain in developmental demand. Both 

gene and cell-based therapies have shown promise in early clinical studies. A major unmet need 

is a treatment that slows or stops disease progression.
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Introduction
Parkinson’s disease (PD) is a common neurodegenerative disorder, manifested 

clinically by bradykinesia, resting tremor, rigidity, and postural instability.1 The cause 

of PD is unknown. Although there are a number of medications available for those 

affected, treatment remains focused on these motor, as well as nonmotor, symptoms. 

A number of environmental factors have been implicated in PD.2 However, aging is 

the most significant risk factor for development of the disease. With the number of 

people in the United States aged above 65 years expected to double by 2030,3 a major 

unmet need is new and novel treatments that address both the symptoms of PD and 

its progressive nature.

Since its introduction in 1968,4 levodopa has remained the most efficacious 

treatment of PD. Unfortunately, its use is associated with motor complications such 

as wearing off, dyskinesias, and ‘on–off’ phenomenon.1,5–7 These complications occur 

in about 50% of levodopa-treated patients who have received the drug for more than 

5 years, in 80% of patients treated for 10 years, and in nearly all patients with young-

onset disease.8–10 Additionally, levodopa targets only dopamine deficiency, although 

other neuronal targets, such as acetylcholine, glutamate, and N-methyl-d-aspartic acid, 

may be important.10,11 Novel therapeutic strategies continue to be in developmental 

demand. This review will focus on current medical and surgical treatment strategies 

for PD as well as emerging technologies.

Dopaminergic stimulation
The degeneration of the dopaminergic system associated with PD alters the normal 

physiology of the basal ganglia. There is substantial scientific evidence to support 

that under normal circumstances, dopaminergic neurons in the substantia nigra pars 
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compacta (SNc) fire at a nearly constant rate, independent 

of body movement. This steady firing maintains striatal dop-

amine at a fairly constant level, providing continuous stimu-

lation of striatal dopamine receptors.12–16 However, with the 

progressive loss of dopamine secreting neurons in the SNc in 

PD, striatal dopamine levels become increasingly dependent 

on the availability of peripherally administered levodopa.17 

Immediate-release preparations of levodopa have a half-life 

of 1–3 h,18 the length of which can be modestly increased 

by inhibition of peripheral catechol-O-methyltransferase 

(COMT) using either entacapone or tolcapone.19,20 This 

nonphysiologic stimulation further disrupts an already 

unstable striatum and is believed to be the basis for the motor 

fluctuations seen with chronic levodopa therapy.21,22 In fact, 

continuous infusion of levodopa has been shown to reduce 

‘off’ time and dyskinesias in patients with PD and motor 

fluctuations,23–25 and longer-acting dopaminergic drugs, such 

as dopamine agonists, are associated with dyskinesias to a 

lesser extent.26,27 These findings have led to the evaluation of 

long-acting levodopa strategies to treat the motor symptoms 

of PD.28

Continuous dopaminergic 
stimulation with frequent  
levodopa dosing
The Stalevo Reduction in Dyskinesia Evaluation in 

Parkinson’s Disease (STRIDE-PD) study was a double-blind 

trial comparing the risk of developing dyskinesias in PD 

patients initiated on the combination of levodopa/carbidopa/

entacapone (LCE) versus levodopa/carbidopa (LC) admin-

istered 4 times daily. In the trial, subjects treated with LCE 

demonstrated a shorter time to dyskinesia onset and increased 

frequency of dyskinesias compared to those treated with 

standard LC.29 This occurred despite extended elimination 

half-life and plasma area under the curve of levodopa asso-

ciated with LCE.20 Given the compromise of 4 times daily 

dosing, the authors speculated that the goal of continuous 

dopaminergic stimulation may not have been achieved with 

the chosen dosing frequency.30

An unanticipated outcome of the study was a higher 

incidence of prostate cancer in those treated with LCE. 

Although it has been postulated that COMT may play a 

protective role, the relationship of COMT inhibition or 

entacapone and prostate cancer is not defined.31,32 The Food 

and Drug Administration (FDA) has announced a safety 

review regarding this imbalance and the possible impact it 

may have on those patients treated with LCE.

Duodenal levodopa
Studies of intravenous and enteral levodopa have shown 

a more predictable motor control and reduced fluctuations 

when compared to oral therapy.33,34 These observations led 

to the development of a concentrated levodopa/carbidopa 

formulation intended for long-term enteral infusion therapy.35 

By providing more consistent plasma levodopa levels, this gel 

formulation (Duodopa®; Solvay Pharmaceuticals, Bruxelles, 

Belgium) is delivered via a transabdominal port placed 

directly into the duodenum and has proven to be a successful 

therapeutic option.36 Clinical trials have proven the safety and 

efficacy of this delivery method with improvements in both 

motor scores and quality of life measures.37 In one 12-month 

study, the average daily ‘off’ time was reduced from 284 

to 30 min/day, and troublesome dyskinesias were reduced 

from 156 to 40 min/day.25 This therapy is now considered a 

viable treatment alternative for advanced patients.38 Although 

generally reserved as a last-line therapy after subcutaneous 

treatments or deep brain stimulation (DBS) has failed or been 

deemed not feasible, the safety and tolerability of this therapy 

may warrant use earlier in the course of PD.39

Duodopa received approval by the FDA in 2000 as an 

orphan drug and continues to be evaluated for its clinical 

use. There are currently nine studies under way to further 

clarify the efficacy of enteral levodopa. The DuoCOMT 

study is designed to determine the effects of oral COMT 

inhibitors, in the form of tolcapone and entacapone, on 

plasma concentrations of parenterally delivered levodopa.40 

The medication’s effect on the sympathetic nervous system,41 

its cost–benefit versus standard PD treatments,42 as well as 

its pharmacodynamics continue to be evaluated in controlled 

studies.43 Although there have certainly been difficulties 

associated with the delivery system such as tube dislocations 

and clogging, demand for alternative treatments continues to 

drive improvements in parenteral levodopa delivery.38

Levodopa formulations
After oral ingestion, levodopa is actively transported in the 

duodenum by a specific, large neutral l-amino acid carrier.18 

To reach this site, it must pass through the stomach where it 

is subject to erratic gastric emptying in a high percentage of 

patients with PD.44,45 Because there is no gastric absorption, 

irregular gastric emptying is a major obstacle in the plasma 

concentration of levodopa and may contribute to motor 

fluctuations in advanced disease.46

Liquids pass through the stomach more quickly than 

solids and reach the small intestine faster, perhaps ensuring 
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more rapid and efficient absorption.47 Melevodopa is an 

effervescent prodrug with about 250 times higher water 

solubility compared to tablet levodopa, which allows faster 

and more consistent absorption and a more rapid onset 

of action (Table 1).48,49 This quicker and a more predictable 

time to effect allows improved mobility for patients which 

can translate into less daily ‘off’ time, a useful measure of 

drug efficacy in PD patients.49 Effervescent formulations 

continue to demonstrate safety and tolerability in clinical 

trials and warrant further exploration.50

Two other levodopa formulations are currently in 

development in an attempt to improve absorption. XP21279 

is a levodopa prodrug that is designed for absorption 

by transporter mechanisms expressed throughout the 

entire gastrointestinal tract, not just the duodenum, and is 

currently in Phase I trials.51,52 IPX066 is an extended-release 

carbidopa–levodopa formulation fashioned to produce quick 

and sustained concentrations of levodopa with the goal 

of improved and more reliable control of PD symptoms. 

It proved its superiority to immediate-release levodopa 

in a study of 27 PD patients with at least 3 hours of daily 

‘off’ time.53 IPX066 decreased ‘off’ time by 2  hours and 

increased ‘on’ time by nearly 2 hours without a significant 

increase in troublesome dyskinesias. APEX-PD is a Phase III 

randomized, double blind, placebo-controlled study under 

way to evaluate the safety and efficacy of IPX066 over 

30 weeks.54 The sustained action may help to reduce dosing 

frequency and improve compliance as well.

Adenosine A2A antagonists
Several nondopaminergic therapies have been explored in the 

treatment of PD and the adenosine A2A receptors antagonists 

seem promising. Of the four subtypes of adenosine receptors, 

the A2A subtype is densely localized in the basal ganglia. 

Here, they are concentrated on γ-aminobutyric acid (GABA)-

containing medium spiny neurons of the indirect pathway that 

project from the striatum to the globus pallidus externa.55,56 

Antagonism of adenosine A2A receptors facilitates intrastriatal 

GABA release, reducing striatopallidal neuronal overactivity. 

This reduction helps to increase indirect inhibitory output 

from the striatum to the globus pallidus, thus restoring balance 

between the basal ganglia output pathways.57,58

Based on encouraging results in both rat and primate 

PD models,59–63 the adenosine A2A receptor antagonist 

istradefylline has been explored in a number of human 

clinical trials. A small Phase I study showed potentiation 

of the antiparkinsonian effects of concomitant low-dose 

levodopa, a measurable prolongation of ‘on’ time, and 

no exacerbation of dyskinesias.64 A subsequent 12-week, 

randomized, placebo-controlled, double-blind trial in 

levodopa-treated patients with advanced PD demonstrated 

a significant reduction in ‘off ’ time, although there was 

a measurable increase in ‘on’ time with dyskinesias.65 

Two large, randomized, double-blind, placebo-controlled, 

Phase II studies also demonstrated significant reductions 

in ‘off ’ time over 12 weeks in advanced PD patients, many 

of whom were also taking multiple adjunctive therapies 

in addition to levodopa.66,67 These results were confirmed 

by a large Phase III clinical trial where istradefylline-

treated patients had a 0.7-hour reduction in daily ‘off ’ 

time compared to placebo, which was sustained over 

12 weeks.68 This reduction in ‘off ’ time translated into 

increased functional ‘on’ time in this advanced PD group, 

the vast majority of whom were already taking adjunctive 

therapies. However, these results were not replicated in 

another trial.69 The effect of istradefylline on levodopa-

induced dyskinesias in patients with advanced PD is also 

being investigated.70

A number of other adenosine A2A antagonists are 

currently under development as well, some of which have 

early clinical data. Initial reports concerning vipadenant 

(BIIB014/V2006) were promising, but this compound 

will not be developed, secondary to interest in favor of 

‘next generation’ A2A antagonists held by that sponsor. 

These are expected to enter early Phase I studies in 

2011.71 Preladenant has reached a Phase II, randomized, 

placebo-controlled trial in moderate to severe PD patients 

with motor fluctuations and dyskinesias. In this setting, it 

showed significant reductions in ‘off ’ time and increased 

‘on’ time without exacerbation of dyskinesias.72–74 Further 

studies of preladenant are ongoing in both early and 

advanced PD patients.75,76 ST-1535 is another potential 

candidate currently in Phase I development by Sigma-tau 

(Gaithersburg, MD).77 SYN-115, in development by 

Synosia (Basel, Switzerland), will soon enter Phase IIb 

trials after encouraging functional magnetic resonance 

imaging (fMRI) and early clinical data.78

Perhaps more exciting than symptomatic improvement 

with adenosine A2A antagonists is data suggesting a neu-

roprotective one. Higher intake of caffeine, a nonselective 

adenosine antagonist, has been shown in a number of studies 

to have a protective effect on development of PD in diverse 

populations.79–82 These encouraging findings have translated 

into similar results in both mice and primate models of PD, 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2011:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

244

Hickey and Stacy

which have demonstrated a reduction in neuronal loss with 

concomitant use of A2A antagonists.83–85 The mechanism of 

this apparent protection is not well understood, although it 

may be a result of altered release of glutamate and aspartate 

in the brain.86

Monoamine oxidase B inhibitors
Inhibitors of monoamine oxidase type B (MAO-b) are 

receiving renewed attention based on two recent trials 

investigating a possible disease-modifying effect of 

rasagiline, an MAO-b inhibitor shown to have neuroprotective 

effects in animal models of PD.87,88 In an attempt to overcome 

the barriers to the study drug washout, the previous method 

to separate disease modifying from symptomatic treatment 

effect, a delayed-start design was employed. In this para-

digm, the early start group received the active study drug 

for the full period of the study and the delayed start group 

received a placebo through the first phase of the study. After 

a predetermined period of time, the placebo group switched 

to active therapy, and both groups received the active drug for 

the second phase. Any difference measured between the two 

groups at the end may be interpreted as a disease-modifying 

effect of the medication.

An initial, 12-month study of rasagiline using this unique 

design demonstrated less progression in terms of total 

Unified Parkinson’s Disease Rating Scale (UPDRS) scores 

for those randomized to immediate treatment compared to 

those delayed by 6 months.89 The authors concluded that one 

explanation for these findings is a disease-modifying effect 

of the medication, a slowing of motor disability progression. 

Based on these results, the Attenuation of Disease Progression 

with Rasagiline Once-daily (ADAGIO) study was developed. 

This larger, double-blind, placebo-controlled, delayed-start 

trial was designed to further evaluate whether rasagiline was 

able to affect the rate of progression of PD in patients over 

72 weeks.90 Subjects randomized to early lower dose (1 mg/

day) treatment met  all prespecified endpoints showing a 

sustained slower rate of progression and significant improve-

ment in the change in total UPDRS score compared to those 

delayed to treatment. Although those randomized to early 

higher dose (2 mg/day) did show a slower rate of progression 

compared to those delayed to treatment, the change in total 

UPDRS did not differ significantly. These confounding 

results suggested a disease-modifying effect for lower dose 

rasagiline, although the same conclusion could not be drawn 

for higher dose. Rasagiline remains a useful treatment in both 

early and moderate PD, but its neuroprotective properties 

continue to be the subject of much debate.91,92

Safinamide is an aminoamide derivative with multiple 

mechanisms of action, currently in Phase III clinical trial 

development. It acts as a highly selective, reversible inhibitor 

of MAO-b, reduces the reuptake of dopamine, blocks 

voltage-dependent sodium/calcium channels, and inhibits 

glutamate release.93,94 This combination of actions sug-

gests some potential for neuroprotection and symptomatic 

relief in PD. An early study showed that safinamide was 

associated with improved motor UPDRS scores in early 

PD patients especially when added to those on dopamine 

agonist monotherapy.95 It is now being investigated as an 

adjunct therapy for patients stabilized on levodopa. Early 

results from a 6-month, Phase III, double-blind, placebo-

controlled trial indicate significant improvement in ‘on’ time, 

1.3 hours/day in the treatment group compared to 0.7 hours/

day in the placebo group.96 This improvement came without 

an increase in troublesome dyskinesias. Significant improve-

ments in daily ‘off’ time, ‘off’ time after the first morning 

levodopa dose, UPDRS III during ‘on’ phase, and clinical 

global improvement change and severity scores were also 

reported. Further trials are ongoing to investigate the effect 

of safinamide on levodopa-induced dyskinesias and motor 

fluctuations.97,98

Dopamine agonists
Dopamine agonists provide an important option in the 

treatments available for PD, and there is long-term data to 

support their efficacy and safety. Compared to levodopa, 

dopamine agonists provide modest symptomatic benefit 

and are associated with higher incidence of side effects 

such as hallucinations, edema, sudden sleep attacks, 

and impulse control disorders (ICD).99 However, motor 

fluctuations such as dyskinesias are less common with these 

medications.99–101

In the Comparison of the Agonist Pramipexole versus 

Levodopa on Motor Complications of Parkinson’s Disease 

(CALM-PD) study, patients were randomized to initial 

treatment with either levodopa or pramipexole and followed 

for up to 4 years. A subset of patients were evaluated with 

regular [123I]β-CIT SPECT imaging to follow the rate of 

dopamine transporter (DAT) loss as a measure of dopamin-

ergic neuronal concentration in the striatum. There was a 

significant reduction in transporter loss at each time point 

over the 46  months in the pramipexole group.102 Similar 

results were seen in the Ropinirole as Early Therapy versus 

l-dopa Positron Emission Tomography (REAL-PET) study, 

which used 18F-dopa positron emission tomography as a 

biomarker of neuronal degeneration in a similar study design. 
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Again, there was a significant reduction in tracer uptake 

decline in the ropinirole group compared with the levodopa 

group over 2 years.103 These findings offered evidence of 

a possible disease-modifying effect of dopamine agonists, 

something that had been demonstrated in vitro previously.

The PRamipexole On Underlying Disease (PROUD) 

study utilized a delayed start design to examine whether 

immediate treatment with pramipexole 1.5 mg/day had any 

evidence of disease modification compared to delayed treat-

ment. After 15 months, there was no significant difference 

between the two groups in terms of change in total UPDRS 

score from baseline, suggesting no modification of disease 

over this period.104 A subset of 150 patients underwent striatal 

DAT density evaluation by [123I] FP-CIT SPECT to compare 

decline in neuronal density, and these results may shed further 

light on any lasting benefit in disease progression.105

Both ropinirole and pramipexole have recently been 

approved as once daily prolonged-release formulations, 

providing important additions to the treatment options in 

both early and advanced PD. In comparator studies between 

immediate- and prolonged-release formulations, both 

medications showed similar efficacy in treating motor 

symptoms. The Efficacy and Safety Evaluation in PD–Mono-

therapy (EASE-PD Monotherapy) study was a multicenter, 

randomized, double-blinded, crossover study involving 161 

PD patients that proved noninferiority between ropinirole 

immediate release and ropinirole prolonged release.106 It 

also showed that an overnight switch from immediate to pro-

longed release with an approximate 1:1 conversion was well 

tolerated. Of great importance, especially when considering 

treatment options, was the finding that overall compliance 

was significantly better in the once-a-day prolonged-release 

group compared to the three-times-a-day immediate-release 

group. The Efficacy and Safety Evaluation in PD–Adjunct 

(EASE-PD Adjunct) study randomized 393 advanced PD 

patients who were suboptimally controlled on levodopa 

to either prolonged release ropinirole or placebo in a 1:1 

fashion.107 The authors found significant improvement in 

daily ‘off ’ time, evident as early as 2 weeks after treatment 

initiation,108 UPDRS motor scores, and the ability to sub-

stantially lower daily levodopa dose.

Extended-release pramipexole also showed similar 

efficacy to immediate-release formulation in an 18-week, 

randomized, double-blind, placebo and active comparator-

controlled trial.109 A total of 259 patients were randomized 

to either extended-release pramipexole, immediate-release 

pramipexole, or placebo in a 2:2:1 ratio with rescue levodopa 

allowed if deemed necessary. Both pramipexole groups 

showed significant improvement in PD symptoms to a 

similar degree compared to placebo. Again, the potential for 

increased compliance with once daily dosing is an attractive 

option with the extended-release formulation.

One frequent limiting factor in the use of dopamine 

agonist is the development of ICD. Increased incidence 

of pathologic gambling, compulsive sexual behavior, 

compulsive buying, and binge or compulsive eating 

have garnered increased attention in PD and can have a 

devastating impact on the lives of those affected.110–113 ICD 

are under-reported in clinical practice, although up to 17% 

of PD patients taking a dopamine agonist may be affected.113 

The DOMINION study, a cross-sectional study of over 3000 

PD patients treated with at least one PD medication for at 

least 1 year with a demonstrable response, showed a 2- to 

3.5-fold increased risk of ICD associated with dopamine 

agonist treatment.114 However, levodopa-treated patients 

also experienced ICD, especially with higher doses. In this 

population, all ICDs were seen with similar frequency, 

and more than a quarter of patients had more than one 

concurrent ICD. This further highlights the need for proper 

patient education and screening during treatment with 

these medications, as many patients will not volunteer such 

difficulties.113

Amantadine showed marked benefit in a small study of 

17 PD patients with severe pathologic gambling that did not 

improve with medication reduction or behavioral strategies.115 

The authors hypothesized that the antiglutamatergic actions 

of amantadine may underlie its effectiveness. However, in 

the DOMINION patient population, amantadine use was 

associated with a higher incidence of at least one active 

ICD when compared to no amantadine use.116 This remained 

true after controlling for dopamine agonist use as well as 

levodopa dosage and highlights the need for further research 

to elucidate its relationship with ICD. A study evaluating 

whether naltrexone, an opioid antagonist, improves ICD 

symptoms is under way.117

Nanotechnology
One of the most formidable limitations to drug efficacy in PD 

is restricted entry to the central nervous system (CNS) by the 

blood–brain barrier (BBB). The BBB allows the free passage 

of small lipophilic molecules; however, large, hydrophobic, 

or charged molecules require facilitated transport. Dopamine, 

a polar compound, is restricted from free entry into the CNS. 

Nanotechnology can overcome this impediment by packaging 

drugs into small (10–1000 nm) nanoparticles, which more 

readily cross the BBB.118 In addition, these structures can 
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avoid traditional degradation lines and better target specific 

CNS structures, helping to reduce systemic side effects.119 

Ideally, nanoparticles would be part of a system able to 

automate drug delivery, sensing when medication is needed 

and delivering it to a specific target.120

Perhaps more intriguing, nanotechnology has potential 

applications in treatments that reduce and reverse neuropathol-

ogy as well as promote the regeneration of damaged neurons. 

With the ability to target signaling pathways, gene products, 

and protein aberrations involved in neurodegeneration, nano-

therapies may provide unique neuroprotective strategies.121

DBS
Since it was first discovered that high-frequency stimulation 

of deep brain structures was able to replicate the therapeutic 

effect of lesioning procedures, surgical techniques to treat 

PD have continued to evolve.122–125 DBS is now the preferred 

surgical procedure to treat advanced PD and is more effective 

at treating motor disability and improving quality of life in PD 

patients with motor fluctuations than best medial therapy.126,127 

Using microelectrode recording, electrophysiological 

exploration of the target structures is undertaken under local 

or general anesthesia. Local anesthesia allows the advantage 

of intraoperative testing of the effects of DBS and perhaps 

more precise localization.127 Once the optimal target is found, 

the electrode is replaced by a chronic lead, which will then be 

fixed to a pulse generator implanted under the skin, typically 

in the subclavicular area.

The most common target for DBS in PD is the 

subthalamic nucleus (STN). However, the globus pallidus 

interna (GPi) has often been considered a target for patients 

with severe dyskinesias. A recently published randomized 

trial comparing the two targets in 299 patients with 

idiopathic PD showed no significant difference in terms of 

change in motor function from baseline to 24 months.128 

Function was blindly assessed using the UPDRS III, with 

a reduction of 10.7 points in the subthalmic-stimulation 

group and a reduction of 11.8 points in the GPi group. 

However, a number of nonmotor elements did show a notable 

difference. Those in the subthalamic group showed a signifi-

cant worsening in depression and visuomotor speed, while 

those in the pallidal group required more dopaminergic 

medication. Both groups rated comparably in quality of 

life measures. The authors concluded that both are feasible 

targets and that nonmotor measures are important determi-

nants in target selection.

As PD advances, falls and gait freezing become a major 

source of disability for patients. These symptoms are not 

well managed with current pharmacotherapy options or DBS 

targets. Stimulation of the pedunculopontine nucleus (PPN) 

has been explored as a target to improve postural instability 

in advanced PD. Early open-label studies demonstrated the 

safety of the procedure and detailed encouraging results 

in terms of motor function.129,130 However, the outcomes 

of recent blinded studies have been mixed. In six patients 

with advanced PD, unilateral PPN stimulation showed no 

objective motor benefit, although improvement in patient 

reported falls after 1 year.131 Similarly, freezing of gait 

showed a modest improvement in another small study while 

other motor symptoms were unchanged.132

The exact mechanisms of action of high-frequency 

stimulation are not known. Electrically jamming the area 

with high-frequency stimulation may interrupt an irregular 

feedback loop or abnormal oscillatory activity in a similar 

manner to lesioning.133,134 Alternatively, direct recording 

during stimulation has shown a change in the neuronal 

Table 1 Medications currently in development for the treatment of Parkinson’s disease

Drug Classification Mechanism Clinical benefit

Melevodopa Effervescent levodopa prodrug Converted to dopamine Improves motor symptoms
XP21279 Levodopa prodrug Converted to dopamine Improves motor symptoms
IPX066 Long-acting levodopa Converted to dopamine Improves motor symptoms
Istradefylline Adenosine A2A antagonist Reduces striatal-pallidal firing Improves motor symptoms 

Potential for neuroprotection
Preladenant Adenosine A2A antagonist Reduces striatal-pallidal firing Improves motor symptoms 

Potential for neuroprotection
ST-1535 Adenosine A2A antagonist Reduces striatal-pallidal firing Improves motor symptoms 

Potential for neuroprotection
SYN-115 Adenosine A2A antagonist Reduces striatal-pallidal firing Improves motor symptoms 

Potential for neuroprotection
Safinamide MAO-b inhibitor 

Reduces reuptake of dopamine 
Inhibits glutamate release

Multiple Improves motor symptoms 
Potential for neuroprotection

Abbreviation: MAO-b, monoamine oxidase type B.
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frequency and firing pattern in the area being stimulated.135 

Even the downregulation of certain local neurotransmitters 

and/or hormones may play a strong role as shown by the effect 

of high-frequency stimulation on cultured cells.136

There is emerging interest around a possible neuropro-

tective effect of DBS. A number of preclinical studies have 

shown evidence of protection against nigral dopaminergic 

neuronal degeneration in experimental models of PD in 

both rats and primates.137–142 These authors suggest that 

the increased activity in the STN may generate glutamate 

excitotoxicity, which in turn could lead to the degeneration 

of dopaminergic neurons in the SNc causing disease 

progression.143–145 Therefore, altering the activity of the 

STN may remove or inhibit a source of glutamatergic input 

to the SNc leading to protection of dopaminergic cells.138,142 

An alternative explanation may be that an increase in 

brain-derived neurotrophic factor associated with DBS is 

responsible for the neuroprotective effects.142

Patients eligible for DBS are those with clinically 

diagnosed idiopathic PD who are experiencing disabling 

motor fluctuations despite optimal drug titration, in absence of 

severe dementia (Mini-Mental State Examination score .24), 

and remain responsive to levodopa therapy.127,146–148 Currently, 

the mean disease duration is 14 years before STN-DBS is 

performed, and less than 5% of PD patients meet eligibil-

ity criteria.149,150 If, in fact, DBS offers neuroprotection to 

dopaminergic cells in the SNc, there will be a substantial 

degree of disease progression and cell loss in the typical DBS 

patient prior to intervention. Interest has, therefore, developed 

regarding early DBS with encouraging results in regards to 

quality-adjusted life expectancy.151 Two studies are currently 

evaluating the potential for early DBS. The first defines early 

PD as aged younger than 60 years and is evaluating the dif-

ference in Parkinson’s Disease Questionnaire-39 (PDQ-39) 

scores at 24 months in mild to moderate PD patients with 

motor fluctuations and disease duration for greater than 4 

years.152 The second is a prospective, randomized trial com-

paring the time to reach a 20% worsening in UPDRS motor 

score and a reduction in medication 24 months after STN-

DBS in patients 50–75 years old on dopaminergic therapy 

for 6 months to 4 years.153

Gene therapy
The theory that a denervated CNS can be functionally 

repaired by packaging the deficient enzymatic machinery 

and delivering it back where it has been lost is an attractive 

option, especially when exploring treatment options for 

neurodegenerative diseases such as PD. This elegant concept 

was first envisioned for the treatment of single-gene heritable 

diseases such as Lesch–Nyhan syndrome in the mid-

1900s.154,155 Since that time, this concept has expanded to 

include more complex disease states, allowing gene therapy 

to enter the conversation as a viable goal in treatment of PD. 

This technique is currently being tested in a number of Phase I 

and II clinical trials using viral vectors as a means to transport 

enzymes to the striatum of PD patients, in hopes of providing 

both symptomatic benefit and possibly neuroprotection in 

this progressive disease.

In PD, the selective degeneration of dopaminergic 

neurons from the SNc is coupled with the loss of dopamine 

synthesizing enzymes and the brain’s ability to produce 

this essential catecholamine.156 The goal of gene therapy 

is to restore the ability of the brain to once again deliver 

dopamine to the arid striatum. Packaging novel genes into 

viral vectors and delivering them to the brain with the goal of 

enhancing in vivo dopamine production is now under active 

therapeutic evaluation. Adeno-associated virus (AAV) has 

been the most commonly utilized vector for such purposes 

thus far due to its ease of use and safety profile.157,158 The 

potential benefits are compelling: the ability for selective 

basal ganglia stimulation by bypassing the need for sys-

temic medications, the avoidance of undesirable side effects 

induced by indiscriminate dopamine activation, and even the 

possibility for individualized treatment regimens.

Shen et al have used AAV vectors expressing tyrosine 

hydroxylase (TH), l-amino acid decarboxylase (AADC), 

and GTP cyclohydrolase 1 (GCH1) and shown sustained 

behavioral improvement in 6-hydroxydopamine (6-OHDA)-

lesioned rats.158 Muramatsu et  al stereotactically injected 

four 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-

treated monkeys in the unilateral putamen with these vectors. 

Using the primate parkinsonian rating scale (PPRS), the 

animals showed marked behavioral improvement that was 

sustained for up to 10 months. In addition, they were able to 

demonstrate greater than 90% transduction of the injected 

putamen based on immunostaining.159

More recently, efforts have been made to deliver all three 

functional genes in a single viral vector with the goal of 

more efficient delivery and translational efficacy. ProSavin 

(owned by Oxford Biomedica, Oxford, UK) developed 

a lentiviral-based vector. A study in MPTP-treated pri-

mates showed significant motor benefit starting 2 weeks 

after transfection with sustained benefit up to 44 months. 

Positive effects toward dyskinesias as well as off-time 

dystonia were also demonstrated.160 With these encouraging 

results, six Parkinson’s patients have been injected in a 
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Phase I/II study. Two of three in the initial low-dose group 

have shown a 30% improvement in the UPDRS III ‘off ’ 

score at 2 years.161 This initial dose-escalation trial will be 

followed by a second phase to confirm the efficacy of the 

optimal dose in a randomized trial.162

An alternative approach under investigation is the 

delivery of AADC to the striatum as a means to increase the 

conversion efficiency of exogenously administered levodopa 

into active dopamine. This concept was first explored in 

MPTP-lesioned primates who showed higher conversion 

rates of l-dopa to dopamine following AADC gene 

transfer.163 Two recent Phase I trials have been completed 

using this technique, both showed a significant improvement 

in ‘off ’ time measured by UPDRS at 6 months, with trends 

in improvement in ‘on’ time. The majority of patients were 

able to reduce their total dose of levodopa. Positron emission 

tomography (PET) with 6-[18F]fluoro-l-m-tyrosine (FMT), 

a tracer for AADC, showed sustained AADC activity in the 

putamen for as long as 96 weeks.164,165

The concept of continuous dopamine delivery has been 

explored in the setting of levodopa-induced dyskinesias.17,166–168 

Using gene therapy to attain such a state has been explored 

in rat models of PD with some success. One such study 

used recombinant adeno-associated viral (rAAV) to deliver 

the TH and GCH1 genes to the striatum of lesioned rats 

rendered dyskinetic with daily, pulsatile levodopa injections. 

The magnitude of dyskinesias was reduced by 85%, and in 

four of the nine animals, the dyskinesias were completely 

eliminated.169

Taking a different approach to gene transfer, Kaplitt et al 

used an AAV viral vector to deliver varying concentrations 

of the glutamic acid decarboxylase (GAD) gene directly 

into the STN of 12 patients. GAD catalyzes the synthesis 

of GABA, the major inhibitory neurotransmitter in the 

brain. The procedure was well tolerated and demonstrated 

significant improvement in motor UPDRS scores for as 

long as 12  months along with corresponding changes on 

FDG-PET. However, given that this was an open-label inves-

tigation, further double-blind trials will be needed to explore 

the benefit of this method.170,171

Unfortunately, no available treatment has yet proven to 

have a definitive neuroprotective effect for patients with 

PD.172 However, the concept of delivering trophic factors to 

the CNS has evolved considerably to become a major topic 

in this conversation. Most of the attention has revolved 

around glial-derived neurotrophic factor (GDNF) since it 

was first discovered to have a potent protective effect on 

the survival of midbrain dopaminergic neurons.173 Although 

initial studies with GDNF were disappointing, this was 

attributed to limited CNS penetration as the trophic factors 

were delivered via intraventricular cannula.174,175 A number 

of studies have now shown the feasibility of using rAAV 

to deliver GDNF to the rat striatum and its neuroprotective 

effect against dopaminergic cell loss following lesioning with 

6-OHDA.176,177 In addition, GDNF delivery using a lentiviral 

vector showed prevention of nigrostriatal degeneration and 

induction of cell regeneration in MPTP-treated primates.178 

However, GDNF was unable to prevent cell loss in a genetic 

model of PD using an intranigral injection of mutant human 

alpha-synuclein via lentiviral vector in rats.179

Delivery of GDNF has been studied by way of continuous 

intraparenchymal infusion into the posterior putamen in 

human PD patients as well. In one Phase I trial, the procedure 

was well tolerated and resulted in significant improvement 

in motor performance in both the ‘off-’ and ‘on-’ medication 

states at 24 months.180,181 However, a randomized, double-

blind, placebo-controlled, parallel-group study failed to show 

a significant improvement in the UPDRS motor ‘off’ score 

with bilateral GDNF infusion.182

Other trophic factors in the tumor necrosis factor α family 

are possible targets for neuroprotection in PD as well includ-

ing neurturin (NTN), the naturally occurring analog of GDNF. 

NTN has also shown protection of dopaminergic nigral neu-

rons following 6-OHDA lesioning in rats up to 6 months.183,184 

Additionally, MPTP-treated monkeys demonstrated protec-

tion of nigral neurons, preservation of dopaminergic striatal 

innervation, and prevention of motor dysfunction following 

injection with an AAV-based vector encoding human NTN.185 

With these encouraging results, Ceregene Inc (San Diego, 

CA) completed a Phase I study in which 12  Parkinson’s 

patients received AAV2-NTN (Cere-120) injected into the 

bilateral putamen in either a low- or high-dose range. The 

procedure was proven safe, and there was a statistically sig-

nificant improvement in the UPDRS score in the practically 

defined ‘off’ condition, a secondary measure of the study.186 

A Phase II study is currently under way comparing the change 

in ‘off’ time between Cere-120 and placebo in patients with 

advanced PD.187

Nonviral vectors for the safe and effective transfer of 

genes is a focus of nanotechnology as well, although they 

may lack the high transfection rate obtained with viral 

vectors.121 Amino-functionalized organically modified silica 

nanoparticles have been shown to bind and protect plasmid 

DNA from enzymatic digestion and to provide effective cell 

transfection in vitro.188 These gene-containing nanoparticles 

may become an effective alternative to restore deficient 
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enzymes and deliver neurotrophic factors directly where 

needed (Table 2).

Conclusion
PD is a commonly encountered neurodegenerative disorder 

of impaired voluntary movements as well as many 

nonmotor symptoms. Although it has been well recognized 

within the medical community since its first description 

by James Parkinson,189 the cause of PD remains unknown 

and the treatment symptomatic. However, since levodopa 

revolutionized care in the 1960s, there has continued a 

torrent of medical and surgical advances that now provide 

the clinician a number of viable treatment options. The quest 

for novel treatments, disease-modifying therapeutics, as well 

as a definitive cure, remains fervent with both basic science 

and clinical research continuing to add to our understanding 

of this disabling disorder.
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