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ABSTRACT: Prostate cancer (PCa) is annually the most frequently diagnosed
cancer in the male population. To date, the diagnostic path for PCa detection
includes the dosage of serum prostate-specific antigen (PSA) and the digital rectal
exam (DRE). However, PSA-based screening has insufficient specificity and
sensitivity; besides, it cannot discriminate between the aggressive and indolent
types of PCa. For this reason, the improvement of new clinical approaches and
the discovery of new biomarkers are necessary. In this work, expressed prostatic
secretion (EPS)-urine samples from PCa patients and benign prostatic
hyperplasia (BPH) patients were analyzed with the aim of detecting differentially
expressed proteins between the two analyzed groups. To map the urinary
proteome, EPS-urine samples were analyzed by data-independent acquisition
(DIA), a high-sensitivity method particularly suitable for detecting proteins at low
abundance. Overall, in our analysis, 2615 proteins were identified in 133 EPS-
urine specimens obtaining the highest proteomic coverage for this type of sample; of these 2615 proteins, 1670 were consistently
identified across the entire data set. The matrix containing the quantified proteins in each patient was integrated with clinical
parameters such as the PSA level and gland size, and the complete matrix was analyzed by machine learning algorithms (by
exploiting 90% of samples for training/testing using a 10-fold cross-validation approach, and 10% of samples for validation). The
best predictive model was based on the following components: semaphorin-7A (sema7A), secreted protein acidic and rich in
cysteine (SPARC), FT ratio, and prostate gland size. The classifier could predict disease conditions (BPH, PCa) correctly in 83% of
samples in the validation set. Data are available via ProteomeXchange with the identifier PXD035942.

■ INTRODUCTION
Prostate cancer (PCa) is the most common and the second
lethal cancer in men with 191.930 new cases and 33.330 deaths
in the United States in 2020.1 PCa diagnosis is based on the
digital rectal exam (DRE) and on serum dosage of prostate-
specific antigen (PSA),2 although the PSA test shows low
specificity, sensitivity, and the inability to stratify patients.3 In
fact, PSA is detectable at low levels in the blood circulation as
the result of the diffusion through the prostate basal cells;
conversely, with the PCa onset, PSA levels increase because the
tumor changing the architecture of the gland leads to tissue
flaking and PSA release.4 Unfortunately, the increase of PSA
levels cannot be considered as a parameter that uniquely
reflects the presence of PCa because PSA levels could also
increase in other conditions such as prostatitis, gland
inflammation, and benign prostatic hyperplasia (BPH).5

What further complicates PCa diagnosis is the fact that some
patients with advanced PCa show levels of PSA comparable to
those detected in patients with benign alterations. This leads to
the necessity of developing new approaches to improve PCa
diagnosis.

The aim of this work is to make an initial assessment of the
utility of a proteomic profile of EPS-urine samples in helping
the classification of PCa and BPH, two conditions that share
the characteristic of increased PSA levels.
During the development of the experimental design,

attention was mainly focused on two aspects: (i) to use an
easily collectable sample as the starting material and (ii) to
analyze the proteomic profile of each sample through a method
able to detect proteins at low abundance. To fulfill the first
point, proteomic analysis was performed on EPS-urine, a
prostate proximal biofluid. EPS-urine6,7 is a sample collected
after DRE, clinical practice that promotes the release of
prostate-specific proteins in the biofluid. For this reason, EPS-
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urine analysis may hold promise for detecting proteins that
give an early signal of an alteration of the health status of the
gland. Considering that urinary proteins are dispersed in a
large volume, we chose an approach that allowed sample
concentration before the enzymatic digestion step: namely, the
filter-aided sample preparation (FASP)8−10 protocol.
To obtain a deep proteome coverage, the urinary proteomic

profile was investigated through data-independent acquisition
(DIA), a sensitive quantitative method where all ions undergo
MS/MS events. By sequencing all peptides present in the
sample, even those at low abundance,11 the probability of
detecting proteins that mediate molecular processes involved
in the tumor increases. For this reason, the snapshot of the
sample12 provided by DIA analysis represents a box to research
potential molecular switches that trigger the tumor onset.
We developed and implemented a machine learning (ML)

pipeline to select features and identify interesting patterns.
Such a pipeline is based on a voting mechanism that ensembles
the ML models, enhancing the prediction performance on
average. In the literature, there are available pipelines similarly
processing prostate cancer and (more general) biological data
sets, with similar results.13−15

■ MATERIALS AND METHODS
All chemicals used in the experiments described were
purchased from Sigma-Aldrich (St. Louis, MO) unless
otherwise specified.
Sample Collection. EPS-urine samples were obtained

from the Urology Units of the Magna Graecia University of
Catanzaro and from the Romolo Hospital Urology Unit. The
study was approved by the Institutional Ethical Committee of
the Magna Graecia University of Catanzaro, RP 41/2018; all
patients provided their written informed consent for the
analysis of EPS-urine samples. Overall, 73 specimens from PCa
patients and 60 from BPH patients were collected after DRE.
The characteristics of patients enrolled in this work are

summarized in Table 1.

FASP Protocol. After collection, EPS-urine samples were
centrifugated within 2 h of collection at 2100 rcf for 10 min to
remove cellular debris; the supernatant was stored at −80 °C
until use.
For FASP digestion, 500 μL of EPS-urine was diluted with

100 μL of the diluent (6% sodium dodecyl sulfate, SDS, 300
mM buffer Tris-HCl at pH 8.0 and 300 mM dithiothreitol,

DTT) to achieve a final concentration of 1% SDS, 50 mM
Tris-HCl, and 50 mM DTT. After the addition of denaturants,
the samples were incubated at 95 °C for 10 min with gentle
shaking. Subsequently, diluted EPS-urine samples (600 μL)
were loaded onto a Microcon-10 Centrifugal Filter Unit
(Millipore) and were processed as suggested by the
manufacturer changing the wash volume from 100 to 200
μL, to more effectively remove detergent residues; the details
of FASP digestion were reported in a previous study.16

After protein digestion, 15 μL of each EPS-urine digest was
purified by strong cation exchange17 (SCX) StageTips to
remove residues of the detergent. In detail, since salts prevent
the binding of peptides to the SCX stationary phase, to reduce
the salt concentration below 5 mM, the peptide solution was
diluted 4-fold in 0.5% formic acid (FA) and 80% of acetonitrile
(ACN) (wash solution 2). After purifying the samples as
described previously,16 peptides were eluted in a volume of 7
μL and immediately diluted to 27 μL of 0.1% FA. By making
this dilution, ∼1 μL of purified digest corresponded to 1 μL of
the starting EPS-urine sample. This portion of the purified
sample was only used for acquiring preliminary injections,
exploited for the estimation of protein amount and for
compiling the sample card (see below).
Protein Amount. To estimate the protein amount, 1 μL of

the peptide mixture purified by StageTips was analyzed by LC-
MS/MS, and the total area of all identified peptides was
calculated; the value of the total area was interpolated with a
calibration line built as follows: (i) starting from HeLa digest
stock with a concentration of 100 ng/μL, five different
solutions were prepared (1, 2.5, 7.5, 25, and 75 ng/μL), (ii)
each solution was injected in duplicates using the same
injection volume (2 μL), and (iii) the proteomic analysis was
performed with the same LC-MS/MS acquisition method used
for the preliminary injection of sample.
Raw files of HeLa injections and raw files of preliminary

sample injections were analyzed in Proteome Discoverer 1.4 as
described in the DDA Data Analysis section to identify and
quantify peptides present in each sample; the total area was
calculated by summing up the peak areas of all detected
peptides. Total area values from each sample were interpolated
with the external standard (HeLa digest) calibration curve to
estimate protein concentration in the FASP digests. Based on
this estimation, 2 μg of total proteins from each sample were
purified for subsequent analyses (see below).
Sample Card. To obtain the first overview of the sample

(sample card), the following parameters were evaluated: (i) the
number of the identified proteins and peptides, (ii) the
presence of prostate-specific proteins, and (iii) the total
protein content.
An important reference for the sample card elaboration was

the list of 49 proteins classified as “prostate enriched” in EPS-
urine, which was provided by Principe et al.18 This list was
further reduced by us using the BioGPS (www.biogps.org)19

database to select only prostate-specific proteins; after this data
filtering, the number of proteins was reduced from 49 to 33.
We assumed that the total protein intensity of these proteins
(equal to 33) could provide an estimation of relative EPS
content in the samples. For this reason, we introduced the EPS
factor, a parameter calculated by dividing the total intensity of
EPS proteins (33 proteins) by the total intensity of the
identified proteins in the sample; the value of intensity was
obtained by processing the raw files of preliminary injections
with MaxQuant software (see below).

Table 1. Median Values and Interquartile Ranges (IQR) of
Main Clinical Variables in Our Sample Set

variables PCa (n = 73) BPH (n = 60) p-value

age (years), median (IQR) 69.0
(63.0−74.0)

68.0
(62.0−72.0)

0.19

PSA (ng/mL), median (IQR) 7.43
(5.66−13.12)

2.72
(1.21−4.80)

<0.01

PSA ratio (%), median (IQR) 16.0
(13.0−22.0)

36.0
(25.0−45.25)

<0.01

prostate volume (cc), median
(IQR)

40.0
(30.0−50.00)

57.0
(40.0−79.0)

<0.01

Gleason score, n (%)
Gleason 6 (3 + 3) 22 (31.0%) N/A
Gleason 7 (3 + 4) 22 (31.0%) N/A
Gleason 7 (4 + 3) 16 (22.5%) N/A
Gleason 8 9 (12.7%) N/A
Gleason 9 2 (2.8%) N/A
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Besides the parameters just described, the following
elements were included in the sample card: (i) the number
of identified proteins and peptides, (ii) the protein amount,
and (iii) the area under chromatogram (AUC) of preliminary
injections (Xcalibur software, Thermo Scientific).
Encompassing so many elements, the sample card

represented for us a snapshot of the sample and a valid
means to make an initial quality assessment of each individual
sample.
C18 StageTip Purification. After completing the prelimi-

nary injections, 2 μg of proteins were withdrawn from each
sample and purified both by SCX StageTips, as described
above, and by C18 StageTips

17 to discard the salts deriving
from SCX purification. In detail, 7 μL of the SCX eluate was
acidified with 150 μL of 0.1% trifluoroacetic acid (TFA) and
loaded on C18 StageTips. An elution volume of 10 μL was kept
at 30 °C for 3 min in a speed-vac to reduce the volume to 2−3
μL. Afterward, 47 μL of 0.1% FA was added.
DIA Library. To achieve high proteome coverage, the EPS-

urine samples were analyzed by DIA analysis.11−20 To generate
the DIA spectral library, peptides from 22 EPS-urine samples
(around 11 μg) were pooled and loaded on a StageTip made
of two stacked disks of the C18 stationary phase; fractionation
of peptides in basic reversed-phase mode was performed using
solutions constituting 10 mM triethylammonium bicarbonate
(TEAB), 0.2% ammonium hydroxide, and increasing concen-
trations of acetonitrile (ACN; 4, 8, 12, 16, 20, 24, 28, 32, 40,
80%).
The 10 fractions were analyzed by DDA mode, and the

obtained identifications were used to build the DIA spectral
library, a fundamental element for DIA analysis on the single
samples.
LC-MS/MS Analysis. Peptides were separated by an Easy

nLC-1000, chromatographic instrument coupled to a Q-
Exactive “Classic” mass spectrometer (both from Thermo
Scientific, Bremen, Germany).
For preliminary analysis, 1 μL of the peptide mixture was

separated using a linear gradient of 75 min at a flow rate of 230
nL/min on a 15 cm, 75 μm i.d., in-house-made column packed
with 3 μm C18 silica particles (Dr. Maisch). The binary
gradient was performed using mobile phase A (0.1% FA, 2%
ACN) and mobile phase B (0.1% FA and 80% ACN). Peptide
elution was obtained at a flow rate of 230 nL/min and ramped
from 6% B to 42% B in 60 min and from 42% B to 100% B in
an additional 8 min; the column was cleaned by running 100%
B for 5 min. For preliminary analysis, the Q-Exactive mass
spectrometer operated in DDA mode using a top-12 method.
The MS full scan range was 350−1800 m/z, with a resolution
of 70 000, an ACG target of 1e6, and a maximum injection
time of 50 ms. The mass window for precursor ion isolation
was 1.6 m/z, with a resolution of 35 000, an AGC target of 1e5,
a maximum injection time of 120 ms, an HCD fragmentation
at normalized collision energy of 25, and dynamic exclusion of
15 s.
For the construction of the spectral library, the 10 fractions

obtained by high-pH reversed-phase C18 fractionation were
separated using a linear gradient of 140 min at a flow rate of
230 nL/min on a 15 cm, 75 μm i.d., in-house-made column
packed with 3 μm C18 silica particles. Peptide elution was
obtained using a gradient from 3% B to 25% B in 90 min, from
25% B to 40% B in 30 min, from 40% B to 100% B in 8 min,
and then at 100% B for 10 min. The mass spectrometer was

acquired in DDA mode using the same parameters described
above.
Each EPS-urine sample was analyzed in DIA mode with the

same chromatographic method used for fraction analysis with a
unique shrewdness: every 10 analyses, at the end of the
gradient, 100% B was maintained for 70 min instead of 10; this
procedure allowed for more effective regeneration of the
column and, consequently, longer chromatographic perform-
ance. The DIA method enclosed 26 windows with a full scan at
resolution of 17 500 (AGC target of 1e6 and maximum
injection time of 50 ms) and DIA scans with 35 000 (AGC
target of 5e5, maximum injection time of 120 ms, and
normalized collision energy of 25). In detail, the total number
of windows was 26, including 20 windows with an isolation
width of 20 m/z, 5 windows with an isolation width of 50 m/z,
and 1 window with an isolation width of 200 m/z. The
resulting m/z range was from 350 to 1200 Th.
DDA Data Analysis. The raw files of preliminary injections

were analyzed by Proteome Discoverer 1.4 (Thermo Fisher
Scientific, Bremen, Germany),21 using Sequest as the search
engine, and the Human Uniprot Complete proteome database,
downloaded on March 2016 and containing 42.013 sequences.
This analysis was performed using an MS tolerance of 15 ppm,
an MS/MS tolerance of 0.02 Da, trypsin as an enzyme, and a
maximum of two missed cleavage sites. Oxidation of
methionines (+15.995 Da) was set as dynamic modification,
whereas carbamidomethylation of cysteines (+57.021) was the
only static modification. The false discovery rate (FDR) for
peptide identification was assessed by a percolator; the cutoff
value was set at 0.01. Quantification at the peptide level was
achieved within Proteome Discoverer using the “event
detector” (mass precision 2 ppm) and “precursor ion area
detector” nodes to calculate the peptide peak area.
To elaborate the sample card, the same raw files of

preliminary injections were processed in MaxQuant software
(version 1.6.1.0)22 using the following settings: protein
database Human Complete proteome (see above), an MS
tolerance of 6 ppm, an MS/MS tolerance of 20 ppm, trypsin/P
as an enzyme, and two missed cleavages. Carbamidomethyla-
tion of cysteines was set as static modification, and oxidation of
methionine and protein N-terminal acetylation were allowed as
variable modifications. FDR was set to 0.01, and only peptides
with ≥7 amino acid residues were selected for identification. At
least one unique peptide was necessary to identify a protein.
DIA Data Processing. For spectral library generation, the

raw files of C18 high-pH reversed-phase fractionation were
analyzed in Spectronaut by setting the Q-value cutoff to 0.01
with a minimum of 3 and a maximum of 6 fragment ions.
The raw files of the DIA acquisition were imported in

Spectronaut 13.0 with no file conversion, and the obtained
identifications were filtered by a Q-value of 0.01. Protein
quantification was performed using “major group quantity”
with a minimum of 1 and a maximum of 10 peptides and
setting the Q-value percentile at 0.45 for data filtering. The
intensity for each protein was calculated by summing fragment
ion peak areas. In the end, DIA analysis performed in
Spectronaut gave us a matrix with the quantified proteins in
the different samples.
To cross-correlate proteomic data with clinical information,

the matrix with the quantified proteins in each patient was
merged with the following clinical parameters: patient age,
total PSA, ratio PSA free/total PSA (FT ratio), and prostatic
gland size.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c05487
ACS Omega 2023, 8, 6244−6252

6246

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05487?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


A framework for extracting and analyzing features from
clinical and mass spectrometry data was developed. The
framework can be summarized in modules, as reported in
Figure 1.
Mass spectrometry data were gathered and collected by the

data acquisition module. Also, patients’ clinical information
was collected from electronic health records (EHRs) enclosing
patient age, total PSA, FT ratio, and prostate gland size. Such
data were merged based on patient id and stored in a database
(see DB module in Figure 1). Patients’ merged data were then
preprocessed, and only information useful for defining and
creating the ML methods was selected. Since the clinical
process generated potentially incomplete data sets, the
preprocessing module also identified missing data and
generated synthetic values according to data distribution.
Data were then filtered and scaled to prepare the data set for
analysis via ML models.23 The approach was based on the
ensembling of ML models whose results were integrated by
voting ML approaches. The ML process was implemented in
Python language. Python scripts were based on the scikit-learn
library and run on Google collab for training and validation
phases.
To build a predictive model, our data were divided into two

groups: a data set constituting 121 samples (90% of data) and
a validation set constituting 12 samples (10% of data). The
data set of 121 samples was in turn split into a training set and
a testing set, according to a 10-fold cross-validation strategy. In
detail, the training set was used to train the ML models in
classifying the samples, while the testing set was used to
evaluate the prediction power of the predictive model. Finally,
the accuracy of the model was evaluated using the validation
set (12 samples).

■ RESULTS AND DISCUSSION
In the first stage of this work, 73 PCa and 60 BPH EPS-urine
samples were analyzed in DDA mode. On average, 991
proteins with 3940 peptides and 991 proteins with 3965
peptides were identified in BPH and PCa groups, respectively.
To summarize the main qualitative characteristics of our
sample set, these data together with the EPS factor, i.e., the
percentage of protein intensity ascribed to prostate-specific
proteins (33 proteins; Table S1), were enclosed in the sample
card (Table S2); in particular, the EPS factor was an index of
the secretory capacity of the gland.
After this first exploration of the data set in data-dependent

mode, the proteomic profile of each sample was thoroughly

investigated by DIA analysis. DIA data were processed by
Spectronaut, identifying and quantifying 2615 proteins. The
number of quantified proteins was high compared to previous
studies;24 this high proteome coverage resulted in a higher
probability of detecting tissue-specific proteins, possibly related
to PCa. To confirm this hypothesis, our protein list was
compared to a panel (composed of 135 proteins) generated
after matching the proteins contained in our spectral library to
(i) the list of “Elevated genes of PCa” from Protein Atlas
(www.ProteinAtlas.org), (ii) the list of “Prostate Cancer”-
related proteins from BioGPS (www.biogps.org), and (iii) the
“Prostate enriched proteins” from Protein Atlas. This
comparison showed an overlap of 73% (99 of 135),
demonstrating that a relevant part of the PCa-related proteome
originally present in our library was detected in DIA single LC-
MS/MS injections.
The 2615 quantified proteins were filtered by Spectronaut

setting the Q-value percentile to 0.45; this parameter required
that the matrix only included proteins quantified in at least 60
samples (45% of 133). By setting this filter, a matrix composed
of 1670 proteins was obtained (Table S3); these 1670 proteins
were quantified in all samples; thus, no data imputation was
required for MS data. The list of quantified urinary proteins
obtained by Spectronaut (1670) was merged with the
following clinical information: patient age, total PSA, PSA
free, FT ratio, and prostate gland size (Table S4); this strategy
has allowed us to build a more complete picture, encompassing
clinical and proteomics data, for each patient.
The full matrix was loaded from the database containing

both clinical and proteomics data and stored in a Python
Dataframe variable. Both clinical and mass spectrometry data
were then preprocessed. We note that in the case of missing
values for clinical-related information (e.g., prostate gland size,
age, total PSA), missing and invalid value samples were
updated by data distribution average values. Imputation
regarded a very small number of records (8 out of a total of
600 records). No imputation was needed for MS data because
the criteria adopted for protein filtering (i.e., valid values in at
least 45% of samples) returned a full matrix with no missing
values. Categorical values were converted into numeric classes,
finally normalizing all numeric values in the 0−1 range. After
the preprocessing phase, a feature selection algorithm has been
applied, to reduce the number of inputs for the development of
the prediction model. The pipeline included a feature selection
module, which implemented the following models: (i) Pearson
correlation coefficient: (ii) Chi-square test; (iii) RFE

Figure 1. ML-based workflow.
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(recursive feature elimination); (iv) random forest; and (v)
logistic regression. Pearson correlation was used to evaluate the
correlation between couples of features; the objective was to
exclude redundant variables and only retrieve independent
ones. Thus, this phase was used to identify the most
statistically significant features (i.e., columns of the data set)
according to each model’s predictive performance and rank
them according to a relevance score (i.e., how many models
agreed on its relevance). We used the above reported feature
selection models and focused on the features on which all of
the methods agree. This reduced the total number of variables
for multivariate analysis to four best candidates: semaphorin-
7A (sema7A), secreted protein acidic and rich in cysteine
(SPARC), FT ratio, and prostate gland size (see Figure 2D).
Random forest, support vector machine, decision tree, K-

nearest neighbors classifier, and logistic regression ML models
were trained by measures referred to the selected features, as
described in the Materials and Methods section. Briefly, 90% of
the data set was used for training and testing using a 10-fold
cross-validation approach, whereas 10% of the data set (12
samples) was dedicated to the validation phase using hard/soft
voting strategies. The models were evaluated on the testing set
based on the following measures: AUC, F1, specificity, and
sensitivity; the relative values are reported in Table 2. We
integrated all five models through two voting-based strategies:
(i) hard voting and (ii) soft voting. Hard voting counted

models that agreed on the predicted classes, whereas soft
voting weighted models based on predictive accuracy. For
instance, considering the hard voting approach, if four ML
models out of five predicted the PCA class for a certain input,
then the PCA class was adopted as a result. In the soft voting
approach, each ML model prediction (i.e., PCA or BPH class)
was weighted by the F1 performance measure (as per column
“F1” of Table 2). The classifier could predict disease
conditions (BPH, PCa) correctly in 83% of samples in the
validation set (10 out of 12 samples).
The discrimination power of our model was compared to

other biomarker discovery efforts on PCa published in the last
decade. Glycoproteomic analysis performed on serum by Cima
et al.25 allowed elaborating a signature based on four
glycoproteins able to classify PCa and BPH patients with an
AUC of 0.726: a value comparable to the one obtained by PSA
alone within the same sample set (0.730). The authors
combined the four-protein signature and PSA into a single
predictive model, which showed an AUC of 0.840. This study
represents a milestone in PCa biomarker discovery by MS,
though glycopeptide profiling performed on serum presents
advantages and disadvantages, as described in our recent
review.26

Proximal biofluids, such as EPS-urine, being physically closer
to the tumor, may contain proteins secreted or shed from
cancer cells. A notable effort in EPS-urine analysis has been
reported by Kim et al.27 Starting from a previously compiled
database of EPS-enriched proteins, they narrowed down the
attention to 34 candidates of potential diagnostic and
prognostic value, which were assayed by selected reaction
monitoring (SRM). This analysis generated a predictive model
based on six peptides able to separate controls from PCa
patients with an AUC of 0.77. In their case, the proteomic
model performed remarkably better than PSA alone (AUC =
0.67). Furthermore, to better investigate the molecular
dynamics of PCa, urine was also studied from the point of

Figure 2. Key steps of our workflow: (A) EPS-urine sample collection and FASP protocol, (B) elaboration of the sample card by DDA analysis, (C)
high-pH reversed-phase C18 fractionation for spectral library generation and DIA analysis by Spectronaut, and (D) bioinformatics analysis by ML
models. Created with BioRender.com.

Table 2. AUC, F1, Accuracy, Specificity, and Sensitivity
Values Obtained for Each ML Model

AUC F1 accuracy specificity sensitivity

random forest 0.710 0.733 0.711 0.716 0.704
logistic regression 0.779 0.830 0.793 0.910 0.648
KNN 0.729 0.768 0.736 0.791 0.667
SVM 0.707 0.802 0.736 0.970 0.444
decision tree 0.777 0.814 0.785 0.851 0.704
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view of its metabolomic profile28 to detect metabolites capable
of promoting tumor growth.29

The model described here had the strength of a “high-
coverage” proteomic analysis combined with several clinical
parameters. Though the starting number of quantified proteins
was very high (1670), the four-feature signature included just
two proteins. Their involvement in cancer development was
already established.30,31 As can be appreciated in Figure 3, their
average abundance in EPS-urine was very low. Their detection
was facilitated by the extended dynamic range provided by the
DIA scanning mode.
Univariate analysis and dot plots for the two proteins and

the two clinical variables are reported in Figure 4; levels of
both proteins were found, on average, decreased in the PCa
group.
Both proteins enclosed in the predictive model showed

decreased levels in PCa patients compared to BPH. Since the
digital rectal exam is only performed on patients with elevated
PSA levels, no healthy subjects were recruited in this study.
Thus, no information could be acquired on the levels of
SPARC and SEMA7A in EPS-urine from healthy subjects.
Consequently, no comparison can be made between the levels
of these proteins in healthy subjects and PCa or BPH groups.
As a result, this model can only be applied following a positive
PSA test readout to discriminate between benign and
cancerous disease. First-level evaluation aimed at discriminat-
ing between healthy subjects and patients with prostatic
disease will be carried out by means of well-established PSA
serum testing.
The two proteins belonging to the model harbor different,

often tissue-dependent molecular functions in cancer develop-
ment. SEMA7A belongs to the semaphorin family, which
comprises proteins involved both in physiological events
(growth and migration of nervous cells, and assembly of
cytoskeleton) and in neoplastic mechanisms (cell invasion and
migration).30 A possible explanation of SEMA7A higher levels
in EPS-urine from BPH patients is that this protein could play
a protective role against cancer development. It is known from

the literature that this protein is an immune semaphorin,
modulating several immunoinflammatory processes. In partic-
ular, it has been identified as a regulator of the effector phase of
the T-cell-mediated inflammatory response. Since the T-cell
response plays a critical role in anticancer surveillance, this
might suggest an involvement of this protein in preventing
cancer development. Nevertheless, in other tumors, this

Figure 3. Ranking plot of identified proteins by DIA analysis. Prostate-specific proteins (33) are indicated in violet, while the two components of
our model (SPARC and Sema7A) are in purple.

Figure 4. This panel shows the dot plots relative to univariate analysis
for the two proteins (SPARC and Sema7a) and the two clinical
variables (FT ratio and prostate gland size); all these variables
showed, on average, a significant decrease (p-value < 0.05) in PCa
samples with respect to BPH.
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protein was involved in promoting migration, invasion, and
angiogenesis;32 in fact, some studies showed that elevated
levels of SEMA7A are associated with the progression of breast
cancer.32,33 Concerning PCa, one work has found increased
levels (over 18-fold) of SEMA7A following the overexpression
of ERG in mouse prostate organoids.34 Based on this evidence,
SEMA7A seems to have a role in establishing the micro-
environment of premalignant, ERG-positive prostate lesions.
Nevertheless, no experimental evidence relative to its
expression or its potential role in PCa development has been
reported.
SPARC is a glycoprotein belonging to cellular matrix

proteins, and it is involved in tissue remodeling.35 SPARC’s
role in PCa is quite debatable, since its levels of expression may
point in opposite directions depending on if the tumor or the
stroma is considered. For example, the upregulation of SPARC
in the tumor is correlated to the epithelial-to-mesenchymal
transition (EMT) and to events specific to malignant
phenotype such as metastasis;36 contrariwise, SPARC of
stromal derivation appears to hinder the growth of PCa
cells.37,38 Since the role of this protein is strictly related to its
localization (tumoral/stromal) and since the origin of SPARC
found in EPS-urine is unknown, no conclusive interpretation of
data can be made at this stage.

■ CONCLUSIONS
All in all, our experimental design could be considered a
starting point to investigate the potential of DIA-based
proteomic analysis of EPS-urine in the context of PCa. DIA
analysis provided an extended dynamic range, which allowed
the detection of low-abundance proteins. The combination of
clinical and proteomic variables yielded a classifier comprising
four variables: SPARC, SEMA7A (both from proteomics data),
FT ratio, and prostate gland size (clinical parameters). This
classifier had AUC values higher than those of PSA alone in
three out of five of the ML approaches used, but with higher
specificity. Both PSA alone and our classifier could predict
disease conditions (BPH, PCa) correctly in 83% of samples in
the validation set.
Despite the promising results, a larger validation cohort is

needed to assess the ability of our predictive model to
discriminate between PCa from BPH patients. Though the
FASP/DIA protocol achieves a wide proteome coverage, it is
relatively laborious and time-consuming and thus might not be
the best approach for validation on a larger sample cohort.
Alternative approaches based on ELISA assays on the two
protein candidates and a total protein content measurement
could be more appealing for validation at a larger scale.
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