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Abstract

Both actin and microtubules are major cytoskeletal elements in eukaryotic cells
that participate in many cellular processes, including cell division and motility,
vesicle and organelle movement, and the maintenance of cell shape. Inside its
host cell, the human pathogen Chlamydia trachomatis manipulates the
cytoskeleton to promote its survival and enhance its pathogenicity. In particular,
Chlamydia induces the drastic rearrangement of both actin and microtubules,
which is vital for its entry, inclusion structure and development, and host cell
exit. As significant progress in Chlamydia genetics has greatly enhanced our
understanding of how this pathogen co-opts the host cytoskeleton, we will
discuss the machinery used by Chlamydia to coordinate the reorganization of
actin and microtubules.

Open Peer Review

Referee Status: «" " « +"

Invited Referees
1 2 3 4

version 1 v v v

published
29 Nov 2017

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000
Faculty. In order to make these reviews as
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

1 Richard Hayward, University of
Cambridge, UK

o Kenneth Fields, University of Kentucky,
USA

3 Joanne Engel, University of California,

San Francisco, USA

4 Thomas Meyer, Max Planck Institute for
Infection Biology, Germany
Munir Al-Zeer, Max Planck Institute for

Infection Biology, Germany

Page 1 of 8


http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/6-2058/v1
https://f1000research.com/articles/6-2058/v1
https://orcid.org/0000-0003-4466-6966
https://f1000research.com/articles/6-2058/v1
http://dx.doi.org/10.12688/f1000research.12316.1
http://dx.doi.org/10.12688/f1000research.12316.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.12316.1&domain=pdf&date_stamp=2017-11-29

FIOOOResearch F1000Research 2017, 6(F1000 Faculty Rev):2058 Last updated: 01 DEC 2017

5 Rey Carabeo, Washington State
University, USA

Discuss this article

Comments (0)

Corresponding author: Fabienne Paumet (Fabienne.Paumet@jefferson.edu)

Author roles: Wesolowski J: Conceptualization, Methodology, Writing — Review & Editing; Paumet F: Conceptualization, Data Curation, Formal
Analysis, Funding Acquisition, Project Administration, Writing — Original Draft Preparation, Writing — Review & Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Wesolowski J and Paumet F. Taking control: reorganization of the host cytoskeleton by Chlamydia [version 1;
referees: 5 approved] F1000Research 2017, 6(F1000 Faculty Rev):2058 (doi: 10.12688/f1000research.12316.1)

Copyright: © 2017 Wesolowski J and Paumet F. This is an open access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: This work was supported by National Institutes of Health grant Al116983 to Fabienne Paumet
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 29 Nov 2017, 6(F1000 Faculty Rev):2058 (doi: 10.12688/f1000research.12316.1)

Page 2 of 8


http://dx.doi.org/10.12688/f1000research.12316.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.12316.1

Introduction

The Chlamydiaceae constitute a family of obligate intracellular
bacteria that encompasses numerous species. With ~92 million
new cases/year worldwide, Chlamydia trachomatis is the most
frequent cause of bacterial sexually transmitted infections and
is the leading cause of preventable infectious blindness called
trachoma'=. Trachoma is a significant problem in the develop-
ing world, where access to healthcare is limited and antibiotics
are scarce. Chlamydia infections are also associated with chronic
diseases and increased risk for cervical cancer*’, making this
infection a significant socioeconomic and medical burden in both
developed and developing countries.

Chlamydiae exhibit a unique biphasic life cycle, cycling between
a metabolically inactive but infectious small elementary body
(EB ~200 nm) and a noninfectious metabolically active and divid-
ing large reticulate body (RB ~800 nm)°. Chlamydia spends the
majority of its life as an intracellular RB. Soon after invasion, EBs
differentiate into RBs and replicate within a membrane-bound
compartment called an “inclusion”. This obligate intracellular
lifestyle required Chlamydia to develop an effective strategy to
manipulate host cell pathways in order to ensure its survival and
replication. Among the many pathways that Chlamydia co-opts, a
common and intriguing target for all Chlamydia species has emerged:
the host cytoskeleton’. We will discuss the recent advances con-
cerning the role played by the host cytoskeleton in the growth and
structural maintenance of the chlamydial inclusion (see Figure 1).

Chlamydia trachomatis recruits actin to enter its

host cell and uses microtubules to travel to the
microtubule-organizing center

Because of their obligate intracellular nature, Chlamydiae have
evolved very efficient ways to enter eukaryotic cells (Figure 1A).
During infection, EBs attach to the host cell surface via a relatively
weak electrostatic interaction with heparan sulfate moieties®. Then
a stronger and more specific binding to a cellular receptor takes
place, during which the majority of the EBs are internalized via
an actin-dependent event’. While a number of receptors have been
identified, including PDGFR B, B1-integrin, and Ephrin A2, deple-
tion of a single receptor is not sufficient to block entry, suggesting
that Chlamydia utilizes more than one receptor to invade its host
Cellli),] 1 .

To promote entry into non-phagocytic epithelial cells, C. tracho-
matis delivers a translocated actin-recruiting phosphoprotein (Tarp,
also known as CT456)>""* into the host cytoplasm (Figure 1A). Ina
phosphorylation-dependent manner, Tarp recruits guanine nucleotide
exchange factors that activate Racl, a member of the Rho family of
GTPases”'"'*1>, Whereas Chlamydia caviae uses both Racl and
Cdc42 to promote its entry, C. trachomatis recruits only Racl, and
not Cdc42 or RhoA'®". Hijacking only one Rho GTPase family
member is unique to C. trachomatis, as other intracellular bacteria
including Salmonella and Shigella usually use multiple isoforms
such as RhoA and Cdc42'*". In addition to its Racl recruitment
function, Tarp also directly binds to actin monomers and nucleates
new unbranched actin filaments®'*>. These linear filaments are then
branched via the host Arp2/3 complex, which is activated by the
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Racl signaling pathway”'?. Thus, Tarp functions as both an actin
nucleator and a signaling platform to locally remodel the actin
cytoskeleton and promote Chlamydia invasion.

Nascent C. trachomatis-containing inclusions then use the
minus-end-directed microtubule motor dynein to move from the
cell periphery to the microtubule-organizing center (MTOC),
where the inclusion resides for the duration of the life cycle”
(Figure 1B). This is a pathogen-driven event in which the inclu-
sion protein CT850 is involved through its interaction with
the dynein light chain DYNLTI1*. At the MTOC, Src fam-
ily kinases control the tight association between inclusions and
centrosomes™. Additional inclusion proteins including IncB,
CT101, and CT222 are concentrated at these contact points
between inclusions and centrosomes, suggesting their potential
contribution to the transport of the inclusion’. In fact, during
Chlamydia psittaci infection, IncB has been shown to interact
with Snapin, which also binds dynein, thus connecting the inclu-
sion to the microtubule network”. The association of inclusions
with the MTOC is a common characteristic for a number of
Chlamydia species, suggesting that this event is essential for
Chlamydia’s life cycle. One possibility is that the MTOC brings
host organelles and chlamydial inclusions in close proximity, thus
facilitating the transfer of nutrients and lipids from the host to
the inclusion. Additionally, the clustering of the inclusions at the
MTOC is necessary for the homotypic fusion of inclusions to
take place during C. trachomatis infection, as the dissociation of
the inclusions from the MTOC inhibits this fusion event’’. Homo-
typic fusion is critical for C. trachomatis pathogenicity, as non-
fusing mutants grow significantly slower than their wild-type
counterparts”™®. In particular, C. trachomatis strains that do not
undergo homotypic fusion are also replication-defective and cause
significantly milder disease in humans®*~’. Given the importance
of microtubule-based transport of the inclusion in Chlamydia
development, additional unidentified Chlamydia effectors are
likely involved in this process.

Chlamydia creates microtubule cages to support the
development of its inclusion

Around 12 hours post-infection (PI), microtubules likely assem-
ble around the inclusion under the control of the chlamydial
effector CT223/IPAM, which has been shown to alter micro-
tubule organization through the host centrosomal protein of
170 kDa (CEP170) in transfected cells’' (Figure 1C). There, micro-
tubules encasing the inclusion are stabilized, which allows them to
undergo post-translational modifications (PTMs), including
detyrosination and acetylation®*** (Figure 1D). These PTMs influ-
ence microtubule structure and depolymerization rates* and
have been implicated in the relocation of the Golgi apparatus
around the chlamydial inclusion***. In most cells, dynamic micro-
tubules have a half-life of about 5-10 minutes, while modified
microtubules can persist for hours®™, suggesting that Chlamydia
uses these PTM microtubules to establish a stable long-term
relationship with its host. Detyrosination is the best-characterized
modification and involves the removal of the carboxy-terminal
tyrosine from a-tubulin by tubulin carboxypeptidase, thus exposing
a glutamic acid as the new C-terminus™.
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Figure 1. Reorganization of the host cytoskeleton during Chlamydia trachomatis infection. (A) Entry during which a translocated actin-
recruiting phosphoprotein (Tarp) induces actin polymerization; (B) transport of the nascent inclusion to the microtubule-organizing center
(MTOC) using CT850; (C) formation of microtubule cages around the inclusion, in which CT223 is likely involved, and microtubule-dependent
movement of lipid droplets (LDs) and multi-vesicular bodies (MVBs) towards the inclusion; (D) post-translational modifications of microtubule
cages and positioning of Golgi mini-stacks around the inclusion controlled by CT813/InaC; (E) structural scaffolds of actin, septins, and
intermediate filaments reinforce the growing inclusion membrane in a CT813-dependent manner; (F) Chlamydia exits the host cell using

CT228-dependent extrusion (left) or through cell lysis (right).

Interestingly, stable microtubules are involved in the reposition-
ing of organelles. During infection, the Golgi is a major source
of host lipids, including sphingomyelin and cholesterol’’—".
To enhance access to these lipids, Chlamydia induces the frag-
mentation of the Golgi into mini-stacks, which are then recruited
around the inclusion in a microtubule-dependent manner*
(Figure 1D). In addition to controlling Golgi positioning,
detyrosinated microtubules are involved in other trafficking
events, including the recycling of endocytosed transferrin®

and the dispersal of lipid droplets*, which are also co-opted
by Chlamydia®*. Lipid droplets and multi-vesicular bodies
are redirected towards the chlamydial inclusion along microtu-
bules to provide fatty acids, which are important for Chlamydia
replication®****% (Figure 1C). The endoplasmic reticulum (ER)
has also been associated with stable microtubules, in particular
acetylated microtubules, along which ER tubules slide®.
Chlamydia hijacks the ER and promotes the formation of
ER-inclusion contact sites, which are important for the transfer
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of lipids to the inclusion*’*. During Chlamydia infection, the
acetylated microtubules that surround the inclusion could enable
the ER to slide towards the inclusion, thus allowing IncD/CERT
to interact with the ER-resident proteins VAPA/VAPB and form
ER-inclusion contact sites*’**. Although treatment with noco-
dazole, which disrupts microtubules, failed to prevent ER accu-
mulation around the inclusion®, acetylated microtubules are
notoriously resistant to nocodazole treatment and may still be
present following treatment.

Recently, we have shown that the chlamydial protein CT813 (also
called InaC”) is critical for promoting microtubule modifica-
tions during infection through its interaction with and activation
of the small host GTPases ARF1 and ARF4*, supporting prior
data showing interactions between CT813 and ARF proteins™
(Figure 1D). It is unclear how the CT813:ARF complex is
able to influence microtubule PTMs. However, inhibitors of
RhoA and ROCK (Rho-associated protein kinase) decrease the
number of inclusions associated with stable microtubules, sug-
gesting that both of these proteins are involved in this process™.
There is evidence demonstrating that RhoA triggers microtubule
stabilization via its interaction with the mammalian homolog of
Diaphanous (mDia). The activation of mDia generates capped
microtubules, thus preventing catastrophic  microtubule
disassembly”'~?. Interestingly, DIAPH2 was identified in an
RNAI screen in Drosophila S1 cells as important for chlamydial
inclusion development'’. It would be interesting to determine
whether C. trachomatis co-opts mDia to stabilize microtubules
and generate the post-translationally modified microtubule cages
around the inclusion, particularly since mDia is also involved
in actin polymerization™.

Chlamydia trachomatis builds actin scaffolds around
its inclusion to promote inclusion stability

As the inclusion continues to grow, actin and intermediate fila-
ments associate with the inclusion™ (Figure 1E). This associa-
tion increases progressively from ~20 hours PI until the end of
Chlamydia’s intracellular life cycle. Disruption of the actin
cytoskeleton results in the rupture of the inclusion membrane and
the leakage of C. trachomatis into the host cytoplasm, demon-
strating that the maintenance of the inclusion’s integrity requires
intact actin cages’. Interestingly, RhoA—but not ROCK—also
plays a major role in this event, as it is recruited to the inclusion
and its depletion results in a substantial loss of actin scaffolds
around the inclusion™.

The chlamydial protein CT813 is the only effector identified to
date to regulate actin recruitment around the inclusion®*"
(Figure 1E). Interestingly, this function of CT813 appears to be
independent of its role in regulating post-translationally modi-
fied microtubule cages, as the overexpression of CT813 in wild-
type Chlamydia results in the loss of post-translationally modified
microtubules but not actin cages®. Together, these data suggest
that both CT813 and RhoA participate in actin cage formation
and microtubule stabilization. While microtubule stabilization
also depends on ARF1/ARF4 and ROCK, actin polymerization
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does not require ROCK. The role of ARF in the formation of actin
cages remains unclear, as depletion of ARF does not affect actin
polymerization®.

Recently, the actin cytoskeleton has been implicated in Golgi
reorganization during infection. Using chemical mutagenesis,
it has been suggested that CT813 organizes Golgi mini-stacks
around the inclusion through the formation of actin cages™.
However, a CT813-overexpressing Chlamydia strain that has
actin but no post-translationally modified microtubule cages
displays a defect in Golgi organization around the inclusion.
This suggests that it is the CT813-dependent induction of post-
translationally modified microtubule cages that controls Golgi
organization®’. Therefore, the exact role of the actin cytoskeleton
in organelle repositioning during Chlamydia infection is still
unclear.

Chlamydia uses the actin cytoskeleton to exit host
cells by extrusion

Chlamydia exits the host cell through two mutually exclusive
mechanisms: extrusion and cell lysis (Figure 1F, left and right,
respectively). Note that to exit their host cells using the lytic
process, Chlamydia must extricate themselves from the cytoskel-
eton structures that encase the inclusion, in particular the
actin scaffold”. Pgp4, a transcription factor encoded by the
chlamydial plasmid, is essential for actin depolymerization prior
to cell exit, as the deletion of this regulatory gene prevents
actin disassembly and completely blocks Chlamydia exit™. The
chlamydial protease activity factor, which cleaves intermediate
filaments, is also involved in cell exit, but it does not play a role in
actin disassembly™ .

While the lytic pathway requires actin depolymerization to
proceed, extrusion is regulated by an acto-myosin-mediated
mechanism’’~*, Extrusion involves the protrusion of the intact
membrane-bound inclusion out of the cell and the pinching
off of the inclusion into a separate compartment. The result-
ing extruded inclusion is surrounded by the actin cytoskel-
eton”, the host plasma membrane, and a thin layer of cytoplasm
between plasma and inclusion membranes”’. Extrusion requires
N-WASP-mediated actin polymerization and myosin II-depend-
ent contraction of stable actin filaments”’~*. The septin family of
cytoskeletal proteins regulates actin fiber formation on the inclu-
sion membrane® through an unknown mechanism. Interestingly,
RhoA is also involved in this process, where it specifically regu-
lates the final stage of extrusion—pinching off and separation of the
extrusion from the host cell’’.

The signals that dictate whether Chlamydia exits the host cell by
lysis or extrusion are not well understood. However, the Chlamy-
dial inclusion protein CT228 has been shown to play a central
role in this process™. CT228 recruits the MYPTI subunit of myosin
phosphatase to microdomains on the inclusion membrane early
during infection. MYPTI-mediated phosphorylation of myosin
light chain II (MLC2) favors extrusion-mediated exit, while
the depletion or dephosphorylation of MLC2 shifts the balance

Page 5 of 8



towards the lytic pathway. Thus, Chlamydia establishes local
cytoskeletal signaling networks on the inclusion membrane to
direct its escape from the host cell.

Concluding remarks

Chlamydia has evolved efficient mechanisms to hijack essential
components of the host cytoskeleton. The successful estab-
lishment of Chlamydia’s intracellular niche and dissemination
of infectious progeny relies on the proper spatial and tempo-
ral control of both actin and microtubules. To orchestrate this
balance, Chlamydia employs effector proteins to recruit host
proteins to the inclusion membrane and modulate the activity of
host cytoskeletal signaling networks. Recent work has only begun
to shed light on the identity of these chlamydial effector proteins.

Almost a decade ago, an RNAi screen in C. trachomatis-
infected Drosophila cells revealed the importance of numerous
host cytoskeleton-associated proteins in inclusion development,
supporting the critical role of the cytoskeleton during infection'.
However, limited mechanistic information regarding the role
of chlamydial effector proteins in this process was available
owing to the intractability of Chlamydia to genetic manipulation.
Recent advances in Chlamydia genetics and the expansion of the
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Chlamydia genetic toolbox now provide the tools necessary to
dissect the molecular pathways and the chlamydial effectors that
control the interactions between the chlamydial inclusion and the
host cytoskeleton. Identifying these mechanisms is important not
only for understanding Chlamydia pathogenesis and developing
novel therapeutics but also because it has the potential to identify
new host cellular pathways that regulate the cytoskeleton.
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