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We consider the problem of weakly supervised segmentation on chest radiographs. The

chest radiograph is the most common means of screening and diagnosing thoracic

diseases. Weakly supervised deep learning models have gained increasing popularity

in medical image segmentation. However, these models are not suitable for the critical

characteristics presented in chest radiographs: the global symmetry of chest radiographs

and dependencies between lesions and their positions. These models extract global

features from the whole image to make the image-level decision. The global symmetry

can lead these models to misclassification of symmetrical positions of the lesions.

Thoracic diseases often have special disease prone areas in chest radiographs. There

is a relationship between the lesions and their positions. In this study, we propose a

weakly supervised model, called Chest L-Transformer, to take these characteristics into

account. Chest L-Transformer classifies an image based on local features to avoid the

misclassification caused by the global symmetry. Moreover, associated with Transformer

attention mechanism, Chest L-Transformer models the dependencies between the

lesions and their positions and pays more attention to the disease prone areas. Chest

L-Transformer is only trained with image-level annotations for lesion segmentation. Thus,

Log-Sum-Exp voting and its variant are proposed to unify the pixel-level prediction with

the image-level prediction. We demonstrate a significant segmentation performance

improvement over the current state-of-the-art while achieving competitive classification

performance.

Keywords: weakly supervised, lesion segmentation, transformer, local feature, chest radiograph

1. INTRODUCTION

The chest radiograph is widely applied for the diagnosis of thoracic diseases. Diagnostic
imaging often requires the classification of findings, as well as their geometrical information.
Segmentation of lesions is an indispensable part of clinical diagnosis (1). Deep learning models
have achieved considerable success in chest radiograph segmentation (2–4). Unfortunately,
these supervised models require substantial pixel-level annotated data to locate the
lesions (3–5). The pixel-level annotated medical data are prohibitively expensive to acquire
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with long working hours of expert radiologists. On the contrary,
image-level annotations can be relatively easy to access with
the text analysis techniques on radiological reports (6, 7). Thus,
a good alternative to supervised learning is weakly supervised
learning, which leverages image-level annotations to search the
segmentation prediction (8). Existing deep learning models for
weakly supervised medical segmentation class the images with
features extracted with convolutions (9–12). The pixel-level and
image-level predictions are unified with algorithms based on
Multiple-instance learning (MIL) (9, 10, 13) or class activation
map (CAM) (11, 12, 14). Moreover, the attention mechanism
is adopted to promote their performances (9–12). However,
these weakly supervised models do not consider the critical
characteristics of chest radiographs: the global symmetry of lungs
and dependencies between lesions and their positions.

There is an imperfect symmetry between the left and right
lungs (15), which the existing weakly supervised models don’t
take into account. They extract global features from the whole
image and it is unclear how the latent feature space is related
to the pixel space (9–12). The global symmetry of the lungs can
lead these models to contrast symmetrical positions in the left
and right lungs to classify the lesions (9). As a result, features of
lesions appear at the symmetrical positions of the lesions in the
feature space, and the symmetrical positions are misclassified as
lesions (9).

Convolutional neural networks (CNNs) with restricted
receptive fields have been applied to relate the feature space and
the pixel space exactly (16–18). In these models, the images are
sliced into patches and the features are extracted within local
patches (16–18). The class evidences produced by local features
are averaged across all patches to infer the image-level labels with
the softmax activation (16–18). However, the selection of the
patch size is a hard problem for CNNs with restricted receptive
fields to apply in weakly supervised segmentation. Increasing
the patch size expands the receptive field and leads to better
local features for classification, but coarsens the segmentation
output (16–18). Another problem is the way to aggregate pixel-
level evidences to the image-level decision. Unlike the images
used in (16–18), all of which contact objects, the medical image
datasets contain an extra class: no lesion. Averaging the class
evidences, patches have the same weight to infer the image-
level class. In the abnormal images, the patches with no lesion
are more than those with lesions. To assign the right label
to the images with lesions, many patches with no lesion may
be classed as lesions. The patch with more evidence of lesion
should have larger weights in the aggregation. There is another
common function for aggregation: the max function, which
encourages the model to just consider the most-likely lesion
patch (13). But training with just one patch of the whole image,
the model is hard to converge (19). Moreover, chest radiographs
contain special areas, like the muscle and the black background,
which are unrelated to thoracic diseases. It is necessary to filter
them out in the aggregation of patches. Moreover, the softmax
activation is designed for mutual exclusion. But different diseases
can appear in one chest radiograph and may even have an
overlapping region.

Another characteristic of chest radiographs is the
dependencies between lesions and their positions. Thoracic
diseases often have special disease prone areas in chest
radiographs. This fact implies a relationship between the lesions
and their positions. Weakly supervised deep learning models
highlight salient parts of feature maps and separate redundant
information with CNN attention modules to promote their
performance (9–12). These CNN attention modules treat areas
of the whole image equally, with the same convolution and
pooling operations (9–12). But the salient parts are more likely
located in the disease prone areas and extra attention should be
paid to these areas. These models lack the ability to model the
position information present in chest radiographs.

To tackle the aforementioned problems, we propose a weakly
supervised deep learning model, called Chest L-Transformer,
for lesion segmentation and disease classification on chest
radiographs. Chest L-Transformer completes these two tasks
only using image-level annotations. We present a new restricted
receptive field CNN, called Restricted ResNeXt, as the backbone
of Chest L-Transformer. Restricted ResNeXt extracts local
features with a restricted receptive field and relates the feature
space and the pixel space exactly. Hence, the features of
lesions only appear at nearby positions of themselves, and
the misclassification caused by the symmetry is avoided.
Furthermore, Restricted ResNeXt extracts the local features not
only from image patches but also from a limited nearby area
around them. It can expand the receptive field while maintaining
the fine scale of the segmentation output. A particular voting
function, called Log-Sum-Exp voting, is proposed to aggregate
pixel-level evidences.With this function, patches with differential
evidences will have different weights to infer the image-level
classes. Furthermore, a variant of Log-Sum-Exp voting is
proposed to filter the unrelated areas. To ensure that multiple
diseases can be detected simultaneously, the sigmoid activation
takes place of the softmax one. Finally, Transformer attention
mechanism (20) is introduced into the attention block of Chest
L-Transformer to utilize the dependencies between the lesions
and their positions. The attention block focuses on the disease
prone areas with additional learnable positional embeddings (20,
21). We demonstrate a significant segmentation performance
improvement over the current state of the art with competitive
classification performance.

2. METHODS

With image-level annotated images, we aim to design a
deep learning model that simultaneously produces disease
classification and lesion segmentation. The proposed architecture
is shown in Figure 1. It consists of three components: backbone,
position attention block, and classifier. The backbone extracts the
local features with Restricted ResNeXt. The local feature maps
are downsampled and each pixel of the feature maps represents
a small patch in the original image. The features of the region of
interest are highlighted by the position attention block, which is
mainly realized by two attention layers. The classifier first assigns
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FIGURE 1 | Overview of Chest L-Transformer. A backbone with restricted receptive field CNNs is utilized to extract the local features. The position attention is added

to Chest L-Transformer to highlight the features of the region of interest with positional embeddings. The local features are passed to a classifier for the prediction of

the image labels as well as the lesion segmentation.

each patch a probability of the lesion for the segmentation task
by the fully convolutional network (FCN). Then, Log-Sum-Exp
voting allocating patches with differential evidences differential
weights are used by the classifier in inferring the image-level
classes with the probabilities of patches.

2.1. Backbone
We propose a variant of ResNeXt architecture as the backbone
given its dominant performance in image analysis (22). Our
backbone, Restricted ResNeXt, differs from ResNeXt (22) mainly
in the replacement of many 3 × 3 by 1 × 1 convolutions for
a restricted receptive field (see Figure 2). Restricted ResNeXt
addresses the gradient vanish problem with the residual
learning (23) and reduces the model complexity with the
split-transform-merge strategy (24). After removing the final
classification and pooling layers, an input image with shape h ×

w × c produces a local feature tensor with shape h′ × w′ × c′.
Here, h, w, and c are the height, width, and number of channels
of the input image respectively while h′ = h/16, w′ = w/16,
and c′ = 2, 048. The output of this network encodes the images
into a set of abstracted feature maps. Each pixel of the feature
maps represents a small patch (size 16×16) in chest radiographs.
The receptive field size of the topmost convolutional layer of
Restricted ResNeXt is limited to 39 × 39 pixels. The size of
the receptive field can be increased by reducing the number
of replaced 3 × 3 convolutions, while the scale of the output
remains unchanged.

2.2. Position Attention
The position attention block (see Figure 3) highlights local
features of the region of interest with Transformer attention
mechanism (20). In the position attention block, the local features
x are mapped into a d-dimensional (d = 1, 024) embeddings z0
with position information (Equation 1). The local features x ∈

R
h′×w′×c′ are reshaped into a sequence of flattened 2D features

xp ∈ R
(h′·w′)×c′ . The flattened features xp are mapped into a

latent d-dimensional embedding space using a trainable linear
projection. To use position information, learnable positional
embeddings (25) are added to the feature embeddings to retain
position information as follows:

z0 = xp × E+ Epos, (1)

where E ∈ R
c′×d denotes the patch embedding projection and

Epos ∈ R
(h′·w′)×d denotes the positional embeddings. Then, d-

dimensional embeddings z0 are put into a stack of L = 2
identical attention layers. Each layer has two sub-layers including
a multi-head self-attention (MSA) mechanism and a small multi-
layer perceptron (MLP) with one hidden layer. The MSA is
an extension of “Scaled Dot-Product Attention” (20). We run
M = 12 “Scaled Dot-Product Attention” operations and project
their concatenated outputs in the MSA. We employ a residual
connection (23) around each of the two sub-layers, followed by
layer normalization (26). Therefore the output features of the l-th
layer can be written as follows:

z
′
l
= MSA

(

LN
(

zl−1

))

+ zl−1, (2)

zl = MLP
(

LN
(

z
′
l

))

+ z
′
l
, (3)

where l ∈ {1, 2} is the layer number, zl denotes the output by
the l-th layer, and LN denotes the layer normalization operator.
At last, the 2D features z2 are reshaped back into 3D features
x
′ ∈ R

h′×w′×d.

2.3. Segmentation and Classification
Our model divides the input image into h′ × w′ patch grid. Each
patch is assigned a probability of the diseases by a small FCN (27)

with features x′ ∈ R
h′×w′×d as the segmentation result. The small
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FIGURE 2 | The overall structure of Restricted ResNeXt. Restricted ResNeXt is a variant of ResNeXt architecture. The modification is mainly in the replacement of

many 3× 3 by 1× 1 convolutions. Moreover, Restricted ResNeXt addresses the gradient vanish problem with the residual learning and reduces the model complexity

with the split-transform-merge strategy. 7× 7 conv denotes the 7× 7 convolution layer. 1× 1 conv denotes the 1× 1 convolution layer. 3× 3 conv denotes the 3× 3

convolution layer. s and g denote the stride and group number of the convolution layer, respectively. cin and cout in the split-transform-merge block denote the

channel numbers of its convolutions.

FCN consists of two pointwise convolution layers and sigmoid
activation.

Chest L-Transformer is only trained with image-level
annotations. To aggregate the pixel-level evidences to an image-
level decision, a smooth and convex approximation of the max
and average functions (28) is chosen to build Log-Sum-Exp
voting as follows:

pk = 1
r log

1
h′×w′

∑

0<i≤h′

0<j≤w′

exp
(

r × pki,j

)

,
(4)

where pk is the probability of the k-th class for an image and pki,j
is the probability of the k-th class for the patch at location (i, j).
r is a positive hyper-parameter controlling the smoothness. Log-
Sum-Exp voting will be a max function for r → ∞ and be an
average function for r → 0. With r, the voting function assigns
larger weights to the more important patches.

In chest radiographs, not all the areas are related to thoracic
diseases. Although increasing r can decrease the weight of
these unrelated areas in the voting process, the weight of less
important areas of lesions will also be turned to a small value.
The model may just focus on the more related areas of the
lesions and ignore the less related ones. Moreover, a big value
of r may lead to an overflow in the calculation. To ignore
the unrelated areas, we propose adaptive Log-Sum-Exp voting
as follows:

pk = 1
r log







1
h′×w′

∑

0<i≤h′

0<j≤w′

I × exp
(

r × pki,j

)






,

I =

{

1, if pki,j ≥ t ×maxi,j(p
k
i,j)

0, otherwise
, 0 < t ≤ 1.

(5)
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FIGURE 3 | The overall structure of the position attention block. First, the 3D

local features are flattened and mapped into a latent d-dimensional embedding

space. Moreover, learnable positional embeddings are added to the feature

embeddings. Then added embeddings are put into a stack of L = 2 identical

attention layers. The attention layer mainly consists of a MSA mechanism and

a MLP. The MSA consists of M = 12 concatenated “Scaled Dot-Product

Attention”. At last, the flattened features are reshaped back into 3D features.

We filter the unrelated areas with an adaptive threshold
t × maxi,j(p

k
i,j). The patches with similar evidences will have

similar probabilities. With the threshold t ×maxi,j(p
k
i,j), only the

patches similar to the most likely abnormal patch participate in
the voting. Adaptive Log-Sum-Exp voting adapts the range of
voting patches according to their class evidences automatically.
t controls how similar the voting patches should be to the most
likely abnormal patch. Adaptive Log-Sum-Exp voting guarantees
only the patches related to diseases involve in the production of
image-level probability pk. For the images of diseases, the model
will ignore the unrelated areas with this voting function. For the
images of normal persons, the model will take more attention to
assigning the areas, which are easier to misclassify as lesions, a
correct label.

At last, we combine Log-Sum-Exp voting (including adaptive
Log-Sum-Exp voting) with the α-balanced focal loss (29) as the
weakly supervised loss:

L =
∑

k[−αyk(1− pk)γ log
(

pk
)

− (1− α)

(

1− yk
)

(pk)γ log
(

1− pk
)

],

(6)

where yk is the binary label of the k-th class. The focal loss
is initially applied in the object detection task to deal with
the foreground-background imbalance. Here, we introduce it to
the weakly supervised loss of Chest L-Transformer. Parameter
γ is used to down-weight easy cases and focus training on
hard-classified cases. Parameter α balances the importance of
positive/negative cases.

3. EXPERIMENTS

3.1. Datasets
We utilize the SIIM-ACR Pneumothorax Segmentation
dataset (30) to verify the proposed method. The dataset
contains 12,047 frontal-view chest radiographs with pixel-
level annotations, in which 2,669 chest radiographs contain
lung pneumothorax and 9,378 chest radiographs have no
pneumothorax. The chest radiographs were directly extracted
from the DICOM file and resized as 1, 024 × 1, 024 bitmap
images. Six board-certified radiologists participated in the
annotation process. All annotations were then independently
reviewed by 12 thoracic radiologists followed by adjudication by
an additional thoracic radiologist.

3.2. Metrics
To assess the classification performance of Chest L-Transformer,
we compute the area under the receiver operating characteristic
curve (AUC), sensitivity, specificity, and F1 score on the testing
set. Intersection over union (IoU) is computed to assess the
segmentation performance.

Sensitivity and specificity are statistical measures of the
performance of a binary classification test. The F1 score is used
to measure the test accuracy. AUC is equal to the probability that
a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one.

sensitivity = TP
TP+FN , (7)

specificity = TN
TN+FP , (8)

F1 = 2TP
2TP+FP+FN , (9)

where true positive, false positive, true negative, and false
negative are denoted as TP, FP, TN, and FN, respectively.

IoU, also known as the Jaccard similarity coefficient, is a
statistic used for gauging the similarity and diversity of sample
sets. IoU can be used to compare the pixel-wise agreement
between a predicted segmentation and its corresponding ground
truth:

J(A,B) = |A∩B|
|A∪B| . (10)

A is the predicted set of pixels and B is the ground truth.
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TABLE 1 | Comparison of Chest L-Transformer with the state-of-the-art models (classification).

Model Main method AUC F1 Sensitivity Specificity

Mask R-CNN Supervised 0.84 0.60 0.63 0.87

U-net Supervised 0.85 0.54 0.43 0.85

ResNeXt Classification 0.84 0.53 0.43 0.95

Chest L-Transformer Weakly Supervised 0.81 0.57 0.67 0.79

3.3. Experimental Settings
The SIIM-ACR Pneumothorax dataset is used to evaluate the
classification and segmentation performance of the proposed
Chest L-Transformer with 7:1:2 training:validation:test set split
with no intersection. We performed an ablation study to show
the effects of different blocks of Chest L-Transformer. First, we
train a model with ResNeXt-50 as the backbone without position
attention. The second model is Restricted ResNeXt without
position attention. The third model is Restricted ResNeXt with
position attention. Adaptive Log-Sum-Exp voting is utilized
for the three models. The models are named as RNX50-LVT,
rRNX50-LVT, and rRNX50-LVT-PA, respectively. Finally, we
perform an ablation study for different versions of voting.
We compare four voting functions: rRNX50-LVT-PA (adaptive
Log-Sum-Exp voting), rRNX50-LV-PA (Log-Sum-Exp voting),
rRNX50-AV-PA (average voting), and rRNX50-MV-PA (max
voting). As shown in (9), we also train Chest L-Transformer with
400 radiographs with pixel-level annotations and the rest of the
dataset with image-level annotations. The binary cross-entropy
loss and Dice loss are used for the pixel-level annotated data (4).

The stochastic gradient descent (SGD) optimizer with
momentum (0.9) (31) is used to train 500 epochs with an
initial learning rate of 0.001. The learning rate is reduced by
0.3 when the training loss stops. We train our model with a
batch size of 8 and resize the original images to 512 × 512
as the input. The parameters r, t, α, and γ are set to 8,
0.6, 0.6, and 2, respectively. In our experiments, we determine
them with a search on 10% of the training and validation set.
Chest L-Transformer is implemented in Python using PyTorch
framework. Referring to the experiment in (3), we initialize the
backbones with pre-trained weights.

4. RESULTS

4.1. Classification
We conduct an experiment to evaluate the performance on
the classification task and compare it to the state-of-the-
art segmentation models on the SIIM-ACR Pneumothorax
dataset. As few weakly supervised segmentation models on chest
radiographs are available, we compare Chest L-Transformer
with some supervised models: Mask R-CNN (2, 32) and U-
net (2, 3, 33). Chest L-Transformer is trained only with
image-level annotations in a weakly supervised manner. The
supervised segmentation methods are trained with pixel-level
annotations in a supervised manner. We used the maximum
probability of lesion areas in a radiograph as the classification
probability of supervised segmentation models (2). Moreover,

FIGURE 4 | ROC curve of Chest L-Transformer on the testing set.

Chest L-Transformer is compared with the classification model
ResNeXt (22). The classification performance of Chest L-
Transformer is shown in Table 1. Chest L-Transformer achieve
an AUC of 0.81, slightly worse than supervised segmentation
models (Mask R-CNN AUC = 0.84, U-net AUC = 0.85)
and classification model (ResNeXt AUC = 0.84). The receiver
operating characteristic (ROC) curve of Chest L-Transformer
is illustrated in Figure 4. The results validate the classification
effectiveness of Chest L-Transformer.

4.2. Segmentation
To evaluate the performance of Chest L-Transformer for
segmentation, we computed IoU on the testing set, compared
withMask R-CNN (2, 32), U-net (2, 3, 33), which are trained with
pixel-level annotations, and Tiramisu with CNN attention (9),
which is trained with image-level annotations, shown in Table 2.
Chest L-Transformer achieves an effective result (IoU of 0.70).
It performs slightly worse than Mask R-CNN (IoU = 0.75)
and U-net (IoU = 0.76) with supervised training. Moreover,
Chest L-Transformer outperforms the state-of-the-art weakly
supervised model (9) (Tiramisu IoU = 0.13). After added pixel-
level annotations, Chest L-Transformer outperforms the state-
of-the-art weakly supervised model (9) with IoU increased by
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10.4%. Figure 5 shows a few examples of the weakly supervised
predictions output by Chest L-Transformer.

4.3. Ablation Study
For the ablation study, we study the effectiveness of our
modified backbone, position attention block, and proposed
voting function.

Table 3 shows the classification results of the ablation
study of the architecture of Chest L-Transformer (backbone
and position attention block) with the AUC, F1 score,
sensitivity, and specificity, while segmentation results of

TABLE 2 | Comparison of Chest L-Transformer with the state-of-the-art

segmentation models (segmentation).

Model Main method IoU

Mask R-CNN Supervised 0.75

U-net Supervised 0.76

Tiramisu Weakly supervised 0.13

Tiramisu Weakly supervised + 400 pixel-level

annotated radiographs

0.67

Chest L-Transformer Weakly supervised 0.70

Chest L-Transformer Weakly supervised + 400 pixel-level

annotated radiographs

0.74

“+ 400 pixel-level annotated radiographs” means that the model is trained with 400

radiographs with pixel-level annotations and the rest of the dataset with image-level

annotations.

IoU are shown in Table 4. Compared with RNX50-LVT
(AUC = 0.80, IoU = 0.62), the classification result of
rRNX50-LVT (AUC = 0.74) is worse, but the segmentation
result is significantly improved (IoU = 0.69). Although
the classification performance decreases, a remarkable
improvement in segmentation is achieved by applying
Restricted ResNeXt to extract the local features. Compared
with rRNX50-LVT, rRNX50-LVT-PA achieves improvements
in both classification (AUC = 0.81) and segmentation
(IoU = 0.70) with the addition of position attention by
9.5% and 1.4%, respectively. Moreover, rRNX50-LVT-
PA outperforms RNX50-LVT in both classification and
segmentation.

Table 5 shows the classification results of the ablation study
of voting functions of Chest L-Transformer with the AUC,
F1 score, sensitivity, and specificity, while segmentation results
of IoU are shown in Table 6. Among the compared models,
rRNX50-MV-PA achieves the worst AUC of 0.66 and IoU of 0.61.
rRNX50-AV-PA achieves an AUC of 0.78 and an IoU of 0.66.
With Log-Sum-Exp voting, rRNX50-LV-PA (AUC = 0.78, IoU
= 0.68) performs better than rRNX50-AV-PA and rRNX50-AV-
PA. rRNX50-LVT-PA achieved the best result (AUC = 0.81, IoU
= 0.70).

5. DISCUSSION

We propose Chest L-Transformer for the weakly chest
radiograph segmentation and classification. Chest L-
Transformer is designed with a restricted receptive field

FIGURE 5 | Examples of segmentation visualization on the testing set. The visualization is generated by rendering the pixel-level outputs as heatmaps and overlapping

on the original images. The left image in each pair is the original chest radiograph with highlighted masks and the right one is the segmentation visualization.
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TABLE 3 | Analyzing different architectures of Chest L-Transformer (classification).

Model AUC F1 Sensitivity Specificity

RNX50-LVT 0.80 0.60 0.62 0.80

rRNX50-LVT 0.74 0.41 0.35 0.90

rRNX50-LVT-PA 0.81 0.57 0.67 0.79

Numbers in bold indicate the best result among the models.

TABLE 4 | Analyzing different architectures of Chest L-Transformer

(segmentation).

Model IoU

RNX50-LVT 0.62

rRNX50-LVT 0.69

rRNX50-LVT-PA 0.70

Numbers in bold indicate the best result among the models.

backbone to analyze the contribution of each patch to the
final image-level decision. Furthermore, Chest L-Transformer
focuses on disease prone areas and highlights salient features
useful for the diagnostic task by adding Transformer
attention mechanism. Log-Sum-Exp voting and its variant
are proposed to aggregate the pixel-level evidences to an
image-level decision. Chest L-Transformer outperforms the
state-of-the-art weakly supervised model and is comparable
to the supervised segmentation and classification models
(Tables 1, 2).

Extracting features from the whole image makes the
pixel assignments difficult (16). The weakly supervised
segmentation accuracy is depressed by the misclassification
of the symmetrical positions of the lesions (9). Thus,
we propose Restricted ResNeXt to extract local features
with a simple modification of ResNeXt. Compared with
RNX50-LVT, although the classification performance of
rRNX50-LVT decreases (Table 3), it achieves remarkable
improvement in segmentation (Table 4). Given the simplicity
modification, the architecture of Restricted ResNeXt can
be easily generalized to other deep learning models to
trade a bit of classification accuracy for better weakly
supervised segmentation.

The attention mechanism is an effective feature learning
technique shown to be helpful in promoting the performances
of image analysis models. The diseases often have special
disease prone areas. But CNN attention modules treat
areas of the whole image equally and fail to model the
relationship between the lesions and their position (9–12).
To make use of the position information, we introduce
Transformer attention mechanism into our model for the
position attention block. Learned positional embeddings
are added to the feature embeddings to make the position
attention block sensitive to certain positions. The prediction
ability of Chest L-Transformer is enhanced with additional
position attention. This is demonstrated in the comparison
of the rRNX50-LVT and rRNX50-LVT-PA (Tables 3, 4).
Moreover, the enhanced prediction of Chest L-Transformer

TABLE 5 | Analyzing different voting functions of Chest L-Transformer

(classification).

Model AUC F1 Sensitivity Specificity

rRNX50-AV-PA 0.78 0.53 0.55 0.85

rRNX50-MV-PA 0.66 0.38 0.40 0.79

rRNX50-LV-PA 0.78 0.51 0.49 0.88

rRNX50-LVT-PA 0.81 0.57 0.67 0.79

Numbers in bold indicate the best result among the models.

TABLE 6 | Analyzing different voting functions of Chest L-Transformer

(segmentation).

Model IoU

rRNX50-AV-PA 0.66

rRNX50-MV-PA 0.61

rRNX50-LV-PA 0.68

rRNX50-LVT-PA 0.70

Numbers in bold indicate the best result among the models.

outperforms the model with global features, RNX50-
LVT (Tables 3, 4). The classification accuracy depressed
by local features is offset by position attention. Chest L-
Transformer can serve physicians in thoracic disease diagnosis
with the effective classification and position information
of findings.

To unify classification and segmentation into the same
underlying prediction model, we proposed Log-Sum-Exp voting
and its variant. In the ablation study, we compare the
performance of different voting functions. The average voting
used by the previous models achieves high accuracy in
classification (Table 5) but low segmentation results (Table 6).
It assigns the same weight to all patches of the image in the
voting. This may lead to the misclassification of no lesion
patches in the abnormal image. The model with the maximum
voting is difficult to converge and achieves disappointing results
in both classification and segmentation (Tables 5, 6). Log-
Sum-Exp voting is proposed to take the place of the two
frequently-used functions. It assigns more important patches
larger weights than the less important ones. The Log-Sum-Exp
voting outperforms these two functions in both classification
and segmentation (Tables 5, 6). Chest radiographs contain some
patches which are unrelated to the disease. To ignore the
unrelated areas, we proposed adaptive Log-Sum-Exp voting,
which adapts the range of voting patches with their class
evidences automatically. With an adaptive threshold, Chest L-
Transformer achieves further improvement in the two prediction
tasks (Tables 5, 6).

Chest L-Transformer predicts rough areas of the lesions
automatically. The mistakes are mainly led by therapeutic
equipment, such as catheters and lines (see Figure 5). Because
most of the radiographs with lesions contain therapeutic
equipment, this kind of mistake can hardly be avoided with
only image-level annotations. Most of the mistakes caused by
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equipment would be checked out by radiologists quickly. Chest
L-Transformer provides good initial areas for the pixel-level
annotation and thus reduces the workload of radiologists on
this work (30). Chest L-Transformer can speed up the progress
of the diagnosis and treatment planning. Moreover, Chest L-
Transformer will contribute to the development of medical image
data for segmentation, because it reduces the cost of pixel-
level annotation.

6. CONCLUSIONS

In this study, Chest L-Transformer is proposed for weakly
supervised segmentation and classification on chest radiographs.
The proposed backbone, Restricted ResNeXt, circumvents
the misclassification of the symmetrical positions of the
lesions. The position attention block embedded into Chest L-
Transformer can model the position information and further
provide improvement for predictions. Moreover, the Log-
Sum-Exp voting and its variant aggregate the pixel-level
evidences effectively. We have shown that Chest L-Transformer
obtains accurate segmentation and classification predictions with
image-level annotations. Therefore, Chest L-Transformer can
contribute to the auxiliary diagnosis of thoracic diseases and
the development of chest radiograph segmentation datasets.
Moreover, the architecture of Chest L-Transformer can be
easily generalized to other deep learning models for weakly
supervised segmentation.
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