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Abstract
The picture fuzzy set (PFS) just appeared in 2014 and was introduced by Cuong, which is a generalization of intuitionistic
fuzzy sets (Atanassov in Fuzzy Sets Syst 20(1):87–96, 1986) and fuzzy sets (Zadeh Inf Control 8(3):338–353, 1965). The
picture fuzzy number (PFN) is an ordered value triple, including a membership degree, a neutral-membership degree, a
non-membership degree, of a PFS. The PFN is a useful tool to study the problems that have uncertain information in real
life. In this paper, the main aim is to develop basic foundations that can become tools for future research related to PFN
and picture fuzzy calculus. We first establish a semi-linear space for PFNs by providing two new definitions of two basic
operations, addition and scalar multiplication, such that the set of PFNs together with these two operations can form a semi-
linear space. Moreover, we also provide some important properties and concepts such as metrics, order relations between
two PFNs, geometric difference, multiplication of two PFNs. Next, we introduce picture fuzzy functions with a real domain
that is also known as picture fuzzy functions with time-varying values, called geometric picture fuzzy function (GPFFs). In
this framework, we give definitions about the limit of GPFFs and sequences of PFN. The important limit properties are also
presented in detail. Finally, we prove that the metric semi-linear space of PFNs is complete, which is an important property
in the classical mathematical analysis.
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1 Introduction

In 1965, Zadeh (1965) first introduced the concept of fuzzy
sets (FS) to deal with the uncertainties that appear in many
real-world phenomena. It has become the focus of much
research in both theoretical and applied fields. In 1986,
Atanassov (1986) presented about intuitionistic fuzzy sets
(IFS), he came up with the idea of defining a fuzzy set
by giving a membership function and a non-member func-
tion such that the total between degrees of membership and
non-membership is no more than 1. It is a generalization of
Zadeh’s fuzzy sets that can be a great idea when describing a
problemwith a variable language (fuzzy) and is pretty useful
in situations when a description of a problem by a linguis-
tic variable is given in terms of a membership function only
seems too rough. Due to the flexibility of intuitionistic fuzzy
sets in handling uncertainty, they are tools for human con-
sistent reasoning under imperfectly defined facts and vague.
In 1984, Takeuti and Titani (1984) by using the same ter-
minology of “intuitionistic fuzzy sets” but with differences
in meaning built the concept of intuitionistic fuzzy logic
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and intuitionistic fuzzy sets. In 1989, Atanassov and Gargov
(1989) presented the concept of interval-valued intuitionis-
tic fuzzy sets. In recent years, the intuitionistic fuzzy theory
has been applied to many fields, such as decision-making
(Atanassov et al. 2005; Chen 2011), medical diagnosis (De
et al. 2001; Shinoj and Sunil 2012). Based on the intuition-
istic fuzzy sets (IFS), Xu and Yager (2006) introduced the
concept of intuitionistic fuzzy number (IFN), which is an
ordered non-negative value pair consisting of a membership
degree and the non-membership degree of an IFS, and their
basic operations. From IFNs and their basic operations, Lei
and Xu (2017) developed the fundamental theories of cal-
culus, which are called intuitive fuzzy-calculus. Phu et al
(2018, 2019, 2021) continued to develop a semi-linear space
for IFNs and introduced its applications.

In 2014, Cuong (2014) introduced the concept of picture
fuzzy sets (PFS), which is a generalization of the traditional
fuzzy sets (FS) and the intuitionistic fuzzy sets (IFS). The
PFS defines a fuzzy set by giving a membership function,
a non-member function, and a neutral-membership function
with a membership degree, a non-membership degree, and
a neutral-membership degree, respectively. Although many
uncertain problems in the real world have been effectively
handled by the tools of Zadeh’s fuzzy theory andAtanassov’s
intuitionistic fuzzy sets, many of them still need the tools
of the picture fuzzy theory. Cuong (2014) gave a practical
example, which is voting. The idea of the three membership
degrees of a PFS can be seen in the case when a voter has
to make his or her decision involving more answers like yes,
abstain, no. In recent years, there have been many research
directions on PFS such as: logical operations and algebraic
(Cuong 2014; Cuong and Kreinovich 2013; Dutta and Ganju
2017), fuzzy clustering (Son 2016; Thong and Son 2015),
decision-making (Khan et al. 2019; Si et al. 2019;Wei 2017),
nonlinear programmingPhu et al. (2021).As in a similarway,
based on the PFS, we also get the definition of picture fuzzy
number (PFN) as an ordered non-negative triple consisting
of a membership degree, a non-membership degree, and a
neutral-membership degree of a PFS. A PFN is a basic ele-
ment of a PFS and is a useful tool to help us studymore deeply
the characteristics and properties of PFS. The PFNs are used
to study decision-making theories in the picture fuzzy envi-
ronment. For example, Wei (2017) studied multiple attribute
decision-making (MADM) problems based on picture fuzzy
information in the formof PFNs.Khan et al. (2019) presented
a logarithmic approach to MADM problems with PFNs.

As we know along with the development of logic and
algebraic theory for fuzzy-theory, then calculus-theory also
had many powerful strides in recent years. For Zadeh’s
fuzzy theory, the calculus-theory in this fuzzy environment
is also known by the name, fuzzy mathematics. In which,
fuzzy numbers [can see Diamond and Kloeden (2000)] are
basic and the main tool to develop for this field. For intu-

itionistic fuzzy theory, Lei and Xu (2017) used IFN as a
tool for developing calculus theory in an intuitionistic fuzzy
environment. For picture fuzzy-theory, development for the
calculus-theory in picture fuzzy environments is still very
new. Because basic operations (most importantly, addition
and scalar multiplication) in Zadeh’s fuzzy environment and
Atanassov’s intuitionistic environment have been defined and
perfected in recent years [(can see in Dubois and Prade
(1982), Phu et al. (2019), Xu and Yager (2006)], it has helped
calculus theory that has a basis for development. Meanwhile,
there are not perfect definitions for the basic operations in
the picture fuzzy environment. Although Wei (2017) pro-
vided the basic operations of picture fuzzy numbers based
on Xu’s operation Xu and Yager (2006) for intuitionistic
fuzzy number, some of them, namely scalar multiplication
and addition, have some limitations. In this paper, we will
show the limitation of Wei’s two operations, addition, and
scalar multiplication, and will provide two new operations
with more advantages. The highlight is that the set of pic-
ture fuzzy numbers together with these two new operations
can become a semi-linear space. This will be the framework
for the development of future studies on picture fuzzy cal-
culus theory. At the same time, we define the metric space
for PFNs and present the concepts of limits and their proper-
ties because the limit is an important basis of picture fuzzy
calculus. Finally, to confirm that the limit operators are well-
defined, we have verified the completeness in metric space
of PFNs.

The paper is organized as follows: In Sect. 2, we recall
some knowledge to prepare for the next section. In Sect. 3,
we divide the content into two subsections: For the first
subsection, we point out some limitations in Wei’s two oper-
ations and proceed to construct two new operations, addition
and scalar multiplication, such that the set of PFNs together
these operations becomes a semi-linear space for PFNs. On
the other hand, we also present some related concepts and
their properties such as order relations between two PFNs,
metrics, geometric difference, multiplication of two PFNs.
For the second subsection, we first define a function whose
value changes over time, called the geometric picture fuzzy
function. Next, we introduce the definition of limit for this
function and the sequence of PFNs. Their properties are also
shown. Finally, we prove that the metric space of PFNs is
complete.

2 Preliminaries

For a start, we recall the concept of picture fuzzy sets, which
was introduced by Cuong (2014).

Definition 2.1 (Cuong 2014) Let � be a universe set, then
a set called a picture fuzzy set (PFS), which is defined as
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follows:

X = {(ω,μX (ω), ηX (ω), νX (ω)) | ω ∈ � }

where μX :�→[0, 1] is called a membership function,
νX :�→[0, 1] is called a non-membership function, ηX :
�→[0, 1] is called a neutral-membership function with a
membership degreeμX (ω), a non-membership degree νX (ω)

and a neutral-membership degree of element ω ∈ �, respec-
tively, such that

0 ≤ μX (ω) + ηX (ω) + νX (ω) ≤ 1.

Definition 2.2 a picture fuzzy number (PFN) x , which is
defined as follows:

x = (μx , ηx , νx )

whereμx , ηx , and νx are nonnegative real numbers such that
0 ≤ μx , ηx , νx ≤ 1 and

0 ≤ μx + ηx + νx ≤ 1.

PFNs have been researched in recent years. For example,
Wei (2017) researched multiple attribute decision-making
(MADM) problems based on picture fuzzy information in the
form of PFNs. He developed picture fuzzy aggregation oper-
ators for PFNs from geometric and arithmetic operations,
then he used them to solve the picture fuzzy MADM prob-
lems. Khan et al. (2019) presented a logarithmic approach to
MADM problem with picture fuzzy information in the form
of PFNs. They developed a series of picture fuzzy logarith-
mic aggregation operators for PFNs and provided a novel
algorithm technique to solve the MADM problems with pic-
ture fuzzy information. Si et al. (2019) provided a method
for comparing and ranking PFNs. Furthermore, Wei (2017)
also defined some basic operators of PFNs as follows:

Definition 2.3 (Wei 2017) Let x = (μx , ηx , νx ) and y =(
μy, ηy, νy

)
be two PFNs, then

1. x = (νx , ηx , μx ) is called the reverse element of x;
2. x ⊕ y = (

μx + μy − μxμy, ηxηy, νxνy
) ;

3. x ⊗ y = (
μxμy, ηx + ηy − ηxηy, νx + νy − νxνy

) ;
4. λx = (

1 − (1 − μx )
λ, ηλ

x , νλ
x

)
with λ > 0;

5. xλ = (
μλ
x , 1 − (1 − ηx )

λ, 1 − (1 − νx )
λ
)
with λ > 0;

6. x ∩ y = (
min{μx , μy}, max{ηx , ηy}, max{νx , νy}

) ;
7. x ∪ y = (

max{μx , μy}, min{ηx , ηy}, min{νx , νy}
)
.

Next, we recall the common definition of a linear space
(or vector space) over a scalar field (which may be real or
complex).

Definition 2.4 Let F be a scalar field, then a linear space
(or vector space) over the field F is a set A together with
two operations, which addition and scalar multiplication are
defined:

(addition) + : A × A −→ A

x, y ∈ A 	−→ x + y ∈ A

(scalar multiplication) · : F × A −→ A

λ ∈ F, x ∈ A 	−→ λx ∈ A

that satisfy the eight axioms listed below. Let x, y, and z be
belong to A, and λ and β scalars in F .

1. x + (y + z) = (x + y) + z;
2. x + y = y + x;
3. x + 0 = x with 0 ∈ A, called a neutral element of A;
4. x + (x) = 0 with x ∈ A, called a reverse element of x;
5. λ(βx) = (λβ)x;
6. 1x = x, which 1 is identity element of F;
7. λ(x + y) = λx + λy;
8. (λ +F β)x = λx +F βx, where +F is addition of the

field F .

Remark 2.5 In fact, there are many sets with their two oper-
ations (addition and scalar multiplication) that do not satisfy
the axiom in item (4.) of Definition 2.4. For example, for the
set of interval numbers, let X = [X , X ] be a interval num-
ber with X < X and −X = [−X ,−X ] be reverse element
of X , then X + (−X) 
= 0 = [0, 0] [(can see in Moore
et al. (2009)]. The same for the set of Zadeh’s fuzzy num-
bers, let ω = (a, b, c) be a triangular fuzzy number with
a < b < c and −ω = (−c,−b,−a) be also reverse element
of ω, then ω + (−ω) 
= 0 = (0, 0, 0) [can see in Dijkman
et al. (1983)]. If the axiom in item (4.) of Definition 2.4 does
not satisfy, which is x+(x) 
= 0, then the set Awill be called
a semi-linear space. We provide the following definition for
a semi-linear space [can see in Galanis (2009); Phu et al.
(2019); Worth (1970)] with scalar field F , which is the real
number field R.

Definition 2.6 (Galanis 2009; Phu et al. 2019;Worth 1970)A
semi-linear space is a set B together two operations, addition
and scalar multiplication with nonnegative reals, are defined:

• The first operation: addition, denoted by +, such that to
every pair x, y ∈ B, there correspond a element x + y ∈
B,

• The second operation: scalar multiplication of x ∈ B
with an element λ ∈ R

+, denoted by λx ∈ B,

such that satisfy the following properties for every x, y ∈ B
and λ, β ∈ R

+ :
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(1) x + (y + z) = (x + y) + z;
(2) x + y = y + x;
(3) x + 0 = x with 0 ∈ B, called a neutral element of B;
(4) λ(x + y) = λx + λy;
(5) (λ +R β)x = λx +R βx, where +R is addition of the

field R

(6) (λβ)x = λ(βx);
(7) 1x = x and 0∗x = 0 with 1 ∈ R

+ and 0∗ ∈ R
+ are iden-

tity element and neutral element of scalar multiplication,
respectively.

Remark 2.7 FromDefinition 2.6 and Remark 2.5, we can see
that the set of interval numbers and the set of fuzzy num-
bers in Zadeh’s sense together their two operations (addition
and scalarmultiplication) are semi-linear spaces.We recently
defined the new addition and scalar multiplication for intu-
itionistic fuzzy numbers (IFNs), which are the basic elements
of Atanassov’s fuzzy sets Atanassov (1986) so that the set
of IFNs becomes a semi-linear space [(can see in Phu and
Hung (2018); Phu et al. (2019)]. In the next section, we
will extend these two operations for picture fuzzy numbers
(PFNs), which are also the basic elements of picture fuzzy
sets, such that the set of PFNs also becomes a semi-linear
space.

Definition 2.8 (Rudin 1976) A metric space is a set C
together a metric or a distance function, which is defined:

a mapping δ : C × C −→ R

x, y ∈ C 	−→ δ(x, y) ∈ R

such that satisfy the following properties for every x, y ∈ C :

(1) δ(x, y) > 0 if x 
= y and δ(x, y) = 0 if x = y;
(2) δ(x, y) = δ(y, x);
(3) δ(x, y) ≤ δ(x, z) + δ(z, y) with z ∈ C

Definition 2.9 (Rudin 1976) Let x ∈ D ⊂ R, Suppose the
real-valued function f (x) is defined when x is near the num-
ber x0 ∈ D. Then, we define lim

x→x0
f (x) = L, or f (x) → L

as x → x0, and say that the limit of f (x), as x approaches
x0, equals L. Simultaneously, lim

x→x0
f (x) = L if and only

if for every ε > 0 there is a number δ > 0 such that if
0 ≤ |x − x0| ≤ δ then | f (x) − L| ≤ ε.

Definition 2.10 (Rudin 1976) Let {xn} ⊂ R be a sequence of
n real numberswith n ∈ N. Then,we define that the sequence
{xn} has the limit L and is denoted by lim

n→+∞ xn = L or xn →
L as n → +∞. Simultaneously, if for every ε > 0 there is a
positive integer N such that if n > N then |xn − L| ≤ ε.

Fig. 1 The image illustrating for D∗
g, which is the set of PFNs and

where the PFSs get values

3 Main result

3.1 Themetric semi-linear space for PFNs

In this subsection, we will introduce some new concepts and
definitions such as a set of PFNs, a neutral element and a
reverse element of this set, new addition and scalar multi-
plication for PFNs. Then, we will prove this set together the
new two operations to become a semi-linear space by veri-
fying that these two new operations satisfy the seven axioms
in Definition 2.6.

For convenience, we put x = (x1, x2, x3) instead of x =
(μx , ηx , νx ) in Definition 2.2.

Definition 3.1 Let x = (x1, x2, x3) be an any PFN, then the
following set

D∗
g = {x = (x1, x2, x3)| 0 ≤ x1 + x2 + x3 ≤ 1} , (3.1)

is called the set of PFNs.Where x1 = μx ∈ [0, 1] correspond
to a membership degree of x , x2 = ηx ∈ [0, 1] correspond
to neutral-membership degree of x, and x3 = νx ∈ [0, 1]
correspond to non-membership degree of x .

In this study, we describe a PFN as an ordered non-negative
triples (x1, x2, x3) in D∗

g ⊂ [0, 1]3. In addition, any PFN
x = (x1, x2, x3), we have a box Bx ⊂ D∗

g and is defined as
the following form:

Bx = {(v,w, u)|0 ≤ v ≤ x1, 0 ≤ w ≤ x2, 0 ≤ u ≤ x3} .

Illustrations for D∗
g and an element x = (x1, x2, x3) in D∗

g
are shown in Figs. 1 and 2 .

Definition 3.2 The reverse element of x = (x1, x2, x3) in D∗
g

is the element x = (x3, x2, x1) in D∗
g . Simultaneously, the

neutral element in D∗
g is θ = (0, 0, 0).
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Fig. 2 The box Bx and a geometric interpretation of PFN x =
(x1, x2, x3) in D∗

g

For two base operations of PFNs, addition and scalar mul-
tiplication,Wei provided these twooperations in item (2.) and
(4.) of Definition 2.3 [(can see inWei (2017)]. However, they
have many limitations to help the set of PFNs that become a
semi-linear space. To see these limitations, we will test these
two operations with the seven axioms in Definition 2.6.

Proposition 3.3 Let two operations, addition and scalarmul-
tiplication with nonnegative reals, be defined:

• The addition: every two PFNs x, y ∈ D∗
g with x =

(x1, x2, x3) and y = (y1, y2, y3), there correspond a ele-
ment x ⊕ y ∈ D∗

g and x ⊕ y = (x1 + y1 − x1y1, x2y2,
x3y3) , where addition is denoted by ⊕,

• The scalar multiplication: for a PFN x ∈ D∗
g with

λ > 0, there correspond a element λx ∈ D∗
g and

λx = (
1 − (1 − x1)λ, xλ

2 , xλ
3

)
.

Then, they satisfy the following properties for every x, y, z ∈
D∗
g and λ, β > 0 :

(1.) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;
(2.) x ⊕ y = y ⊕ x;
(3.) λ(x ⊕ y) = λx ⊕ λy;
(4.) (λβ)x = λ(βx);
(5.) 1x = x .

Proof Let x = (x1, x2, x3), y = (y1, y2, y3), and z =
(z1, z2, z3) be the PFNs and λ, β > 0. We obtain

(1.) x ⊕ (y ⊕ z) = x ⊕ (y1 + z1 − y1z1, y2z2, y3z3)

= (x1 + (y1 + z1 − y1z1)

− x1(y1 + z1 − y1z1), x2y2z2, x3y3z3)

= (x1 + y1 + z1 − y1z1

− x1y1 − x1z1 + x1y1z1, x2y2z2, x3y3z3)

= ((x1 + y1 − x1y1) + z1

− z1(x1 + y1 − x1y1), x2y2z2, x3y3z3)

= (x ⊕ y) ⊕ z;

(2.) x ⊕ y = (x1 + y1 − x1y1, x2y2, x3y3)

= (y1 + x1 − y1x1, y2x2, y3x3) = y ⊕ x;

(3.) λ(x ⊕ y) = λ (x1 + y1 − x1y1, x2y2, x3y3)

=
(
1 − (1 − x1 − y1 + x1y1)

λ, (x2y2)
λ, (x3y3)

λ
)

=
(
1 − ((1 − x1)(1 − y2))

λ, (x2y2)
λ, (x3y3)

λ
)

=
(
1 − (1 − x1)

λ(1 − y2)
λ, xλ

2 y
λ
2 , xλ

3 y
λ
3

)

=
(
1 + [1 − (1 − x1)

λ − (1 − y2)
λ − 1 + (1 − x1)

λ

+ (1 − y2)
λ] − (1 − x1)

λ(1 − y2)
λ, xλ

2 y
λ
2 , xλ

3 y
λ
3

)

=
(
1 − (1 − x1)

λ, xλ
2 , xλ

3

)

⊕
(
1 − (1 − y1)

λ, yλ
2 , yλ

3

)

= λx ⊕ λy;

(4.) (λβ)x =
(
1 − (1 − x1)

λβ, xλβ
2 , xλβ

3

)

=
(
1 − (1 − x1)

λβ, xλβ
2 , xλβ

3

)

=
(
1 − (1 − 1 + (1 − x1))

βλ,
(
xβ
2

)λ
,

(
xβ
3

)λ
)

= λ(βx);

(5.) 1x = (
1 − (1 − x1)1, x12 , x13

) = (x1, x2, x3) = x . ��
Remark 3.4 In Proposition 3.3, we show the five axioms that
Wei’s two operations satisfy in the seven axioms of Def-
inition 2.6. We now analyze the limitations of these two
operations. Firstly, (D∗

g,⊕) is not a commutative cancel-
lation semi-group with its neutral element because the D∗

g
together the addition ⊕ in Proposition 3.3 has no a neutral
element in D∗

g . This means that there is no neutral element
0∗ in D∗

g such that x ⊕ 0∗ = x with x ∈ D∗
g . Indeed, let

us assume that there exists a 0∗ element in D∗
g such that

x ⊕ 0∗ = x with 0∗ = (μ0∗, η0∗, ν0∗) and x = (x1, x2, x3).
We get

⎧
⎪⎨

⎪⎩

x1 + μ0∗ − x1μ0∗ = x1
x2η0∗ = x2
x3ν0∗ = x3

⇒

⎧
⎪⎨

⎪⎩

μ0∗ = 0

η0∗ = 1

ν0∗ = 1

However, 0∗ does not belong to D∗
g since μ0∗ + η0∗ +

ν0∗ = 2 > 1, this contradicts the original assumption.
Therefore, the neutral element does not exist in (D∗

g,⊕).

Secondly, because 0∗ = (0, 1, 1) /∈ D∗
g, 0x /∈ D∗

g,
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where 0 is neutral element of field R. Indeed, we see that
0x = (

1 − (1 − x1)0, x02 , x03
) = (0, 1, 1) = 0∗. Finally,

the scalar multiplication in Proposition 3.3 does not satisfy
the axiom “distributivity of scalar multiplication concerning
field addition”, which means that the axiom (v) of Defini-
tion 2.6 does not satisfy. Indeed, let x = (x1, x2, x3) be a
PFN and λ, β > 0. Then,

(λ +R β)x =
(
1 − (1 − x1)

(λ+Rβ), x (λ+Rβ)
2 , x (λ+Rβ)

3

)
.

=
(
1 − (1 − x1)

(λ+β), x (λ+β)
2 , x (λ+β)

3

)
.

λx +R βx = (
1 − (1 − x1)

λ, xλ
2 , xλ

3

)

+R

(
1 − (1 − x1)

β, xβ
2 , xβ

3

)

=
(
2 − (1 − x1)

λ − (1 − x1)
β, xλ

2 + xβ
2 ,

xλ
3 + xβ

3

)
.

Therefore, (λ +R β)x 
= λx +R βx in general. For example,
let x = (0.25, 0.25, 0.25) and λ = β = 2. We get

(2 + 2)x =
(
1 − (1 − 0.25)4, 0.254, 0.254

)

= (0.6836, 0.0039, 0.0039).

2x + 2x =
(
1 − (1 − 0.25)2, 0.252, 0.252

)

+
(
1 − (1 − 0.25)2, 0.252, 0.252

)

= (0.4375, 0.0625, 0.0625)

+ (0.4375, 0.0625, 0.0625)

= (0.875, 0.125, 0.125)

and (2 + 2)x 
= 2x + 2x . Thus, from the above limitations,
we come to the conclusion that the set D∗

g together two base
operations, addition and scalar multiplication, in Proposi-
tion 3.3 is not semi-linear space. Therefore, we will provide
new two operations that make D∗

g to become a semi-linear
space in what follows.

Definition 3.5 Let m elements x (1), x (2), x (3), . . . , x (m) in
D∗
g . Then, the geometric addition, denoted by ⊕g , of these

m elements is a PFN y = x (1) ⊕g x (2) ⊕g ... ⊕g x (m), if it
exists, such that

y =
(

x (1)
1 +x (2)

1 +···+x (m)
1

2m−p−1 ,
x (1)
2 +x (2)

2 +···+x (m)
2

2m−p−1 ,

x (1)
3 +x (2)

3 +···+x (m)
3

2m−p−1

)
,

where p is the number of elements x (k) = (0, 0, 0) = θ, k =
1, 2, ...,m and satisfy

(a)
(
x (1) ⊕g x

(2) ⊕g ... ⊕g x
(n)

)
⊕g x

(n+1) ⊕g .... ⊕g x
(m)

=
(
x (1)
1 + x (2)

1 + · · · + x (m)
1

2m−p−1 ,

x (1)
2 + x (2)

2 + · · · + x (m)
2

2m−p−1 ,
x (1)
3 + x (2)

3 + · · · + x (m)
3

2m−p−1

)

,

(b) x (1) ⊕g x
(2) ⊕g ... ⊕g x

(n−1) ⊕g

(
x (n) ⊕g .... ⊕g x

(m)
)

=
(
x (1)
1 + x (2)

1 + · · · + x (m)
1

2m−p−1 ,

x (1)
2 + x (2)

2 + · · · + x (m)
2

2m−p−1 ,
x (1)
3 + x (2)

3 + · · · + x (m)
3

2m−p−1

)

,

with n ≤ m.

Corollary 3.6 If the geometric addition in Definition 3.5 of m
elements x (1), x (2), x (3), . . . , x (m) in D∗

g exists, then

(1) We have a binary addition operation of two elements x =
(x1, x2, x3) and y = (y1, y2, y3) in D∗

g as follows:

x ⊕g y =
(
x1 + y1
21−p

,
x2 + y2
21−p

,
x3 + y3
21−p

)
, (3.2)

where p is the number of neutral elements θ = (0, 0, 0)
in this addition, p = 2 when x = y = θ, p = 1 when
x = θ, y 
= θ or x 
= θ, y = θ, and p = 0 when x 
= θ

and y 
= θ.

(2) Let x = (x1, x2, x3), y = (y1, y2, y3), and z =
(z1, z2, z3) be PFNs, then we have

(x ⊕g y) ⊕g z = x ⊕g (y ⊕g z).

Proof Let us suppose that the geometric addition in Defini-
tion 3.5 ofm elements x (1), x (2), x (3), . . . , x (m) in D∗

g exists.
(1) with m = 2, we get

x (1) ⊕g x
(2) =

(
x (1)
1 + x (2)

1

22−p−1 ,
x (1)
2 + x (2)

2

22−p−1 ,
x (1)
3 + y(2)

3

22−p−1

)

=
(
x (1)
1 + x (2)

1

21−p
,
x (1)
2 + x (2)

2

21−p
,
x (1)
3 + y(2)

3

21−p

)

,

we substitute x (1) = x = (x1, x2, x3) and x (2) = y =
(y1, y2, y3). Thus, we obtain

x ⊕g y =
(
x1 + y1
21−p

,
x2 + y2
21−p

,
x3 + y3
21−p

)
.
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(2) From conditions (a) and (b) with m = 3 and n = 2, we
obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x (1) ⊕g x (2)

) ⊕g x (3)

=
(
x (1)
1 + x (2)

1 + x (3)
1

23−p−1 ,
x (1)
2 + x (2)

2 + x (3)
2

23−p−1 ,
x (1)
3 + x (2)

3 + x (3)
3

23−p−1

)

x (1) ⊕g
(
x (2) ⊕g x (3)

)

=
(
x (1)
1 + x (2)

1 + x (3)
1

23−p−1 ,
x (1)
2 + x (2)

2 + x (3)
2

23−p−1 ,
x (1)
3 + x (2)

3 + x (3)
3

23−p−1

)

⇒
(
x (1) ⊕g x

(2)
)

⊕g x
(3) = x (1) ⊕g

(
x (2) ⊕g x

(3)
)

we substitute x (1) = x = (x1, x2, x3), x (2) = y =
(y1, y2, y3), x (3) = z = (z1, z2, z3) and the proof is com-
pleted. ��

Theorem 3.7 Letm elements x (1), x (2), x (3), . . . , x (m) in D∗
g .

Then, there is an element y in D∗
g such that y = x (1) ⊕g

x (2) ⊕g ... ⊕g x (m) with

y =
(
x (1)
1 + x (2)

1 + · · · + x (m)
1

2m−p−1 ,
x (1)
2 + x (2)

2 + · · · + x (m)
2

2m−p−1 ,

x (1)
3 + x (2)

3 + · · · + x (m)
3

2m−p−1

)

,

where p is the number of elements x (k) = (0, 0, 0) = θ, k =
1, 2, ...,m.

Proof Wewill prove this theorem bymathematical induction
method. Indeed, withm = 1, this theorem is true because we
always have x = (x1, x2, x3) ∈ D∗

g and 0 ≤ x1+x2+x3 ≤ 1.
Next, let us assume that this theorem is also true for m − 1
elements x (1), x (2), x (3), . . . , x (m−1) in D∗

g . Finally, we need
to prove the theorem is true for m elements. From inductive
assumption, we obtain an element z in D∗

g such that z =
x (1) ⊕g x (2) ⊕g ... ⊕g x (m−1) with

z =
(
x(1)
1 + x(2)

1 + · · · + x(m−1)
1

2(m−1)−p−1
,
x(1)
2 + x(2)

2 + · · · + x(m−1)
2

2(m−1)−p−1
,

x(1)
3 + x(2)

3 + · · · + x(m−1)
3

2(m−1)−p−1

)

,

where p is the number of elements x (k) = (0, 0, 0) = θ, k =
1, 2, ...,m − 1. Because z ∈ D∗

g, we have

0 ≤ x (1)
1 + x (2)

1 + · · · + x (m−1)
1

2(m−1)−p−1
+ x (1)

2 + x (2)
2 + · · · + x (m−1)

2

2(m−1)−p−1

+ x (1)
3 + x (2)

3 + · · · + x (m−1)
3

2(m−1)−p−1
≤ 1. (3.3)

To prove an element y in D∗
g such that y = x (1) ⊕g x (2) ⊕g

... ⊕g x (m−1) ⊕g x (m) with

y =
(
x (1)
1 + x (2)

1 + · · · + x (m)
1

2m−p−1 ,
x (1)
2 + x (2)

2 + · · · + x (m)
2

2m−p−1 ,

x (1)
3 + x (2)

3 + · · · + x (m)
3

2m−p−1

)

,

where p is the number of elements x (k) = (0, 0, 0) = θ, k =
1, 2, ...,m − 1,m. We need to show that

0 ≤ x (1)
1 + x (2)

1 + · · · + x (m)
1

2m−p−1 + x (1)
2 + x (2)

2 + · · · + x (m)
2

2m−p−1

+ x (1)
3 + x (2)

3 + · · · + x (m)
3

2m−p−1 ≤ 1.

Indeed, with case p = m : We have

x (1) = x (2) = x (3) = · · · = x (m−1) = x (m) = θ = (0, 0, 0)

⇒ y = x (1) ⊕g x
(2) ⊕g x

(3) ⊕g · · · ⊕g x
(m−1) ⊕g x

(m)

= θ = (0, 0, 0)

⇒ y = θ ∈ D∗
g .

With case p = m − 1 : We have

x (1) = x (2) = · · · = x ( j−1) = x ( j+1) = · · · = x (m)

= θ = (0, 0, 0) and x ( j) 
= θ, j ∈ 1,m

⇒ y =
(
0 + · · · + x ( j)

1 + · · · + 0

2m−(m−1)−1
,

0 + · · · + x ( j)
2 + · · · + 0

2m−(m−1)−1
,

0 + · · · + x ( j)
3 + · · · + 0

2m−(m−1)−1

)

=
(
x ( j)
1 , x ( j)

2 , x ( j)
3

)

⇒ y = x (1) ⊕g x
(2) ⊕g x

(3)

⊕g · · · ⊕g x
(m−1) ⊕g x

(m) = x ( j)

⇒ y = x ( j) ∈ D∗
g with j ∈ 1,m.

With case 0 ≤ p ≤ m − 2 : From Eq 3.4, we have (Fig.
3)

0 ≤ x (1)
1 + x (2)

1 + · · · + x (m−1)
1

2(m−1)−p−1

+ x (1)
2 + x (2)

2 + · · · + x (m−1)
2

2(m−1)−p−1

+ x (1)
3 + x (2)

3 + · · · + x (m−1)
3

2(m−1)−p−1
≤ 1.
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Fig. 3 Geometric interpretation of binary addition operation x ⊕G y =
z ∈ D∗

g of the GPFNs in Definition 3.5, with both x and y are different
θ

⇒ 0 ≤ x (1)
1 + x (2)

1 + · · · + x (m−1)
1 + (x (m)

1 − x (m)
1 )

2(m−1)−p−1+(1−1)

+ x (1)
2 + x (2)

2 + · · · + x (m−1)
2 + (x (m)

2 − x (m)
2 )

2(m−1)−p−1+(1−1)

+ x (1)
3 + x (2)

3 + · · · + x (m−1)
3 + (x (m)

3 − x (m)
3 )

2(m−1)−p−1+(1−1)
≤ 1.

⇒ 0 ≤ x (1)
1 + x (2)

1 + · · · + x (m−1)
1 + (x (m)

1 − x (m)
1 )

2m−p−1.2−1

+ x (1)
2 + x (2)

2 + · · · + x (m−1)
2 + (x (m)

2 − x (m)
2 )

2m−p−1.2−1

+ x (1)
3 + x (2)

3 + · · · + x (m−1)
3 + (x (m)

3 − x (m)
3 )

2m−p−1.2−1 ≤ 1.

⇒ 0 ≤ x (1)
1 + x (2)

1 + · · · + x (m−1)
1 + (x (m)

1 − x (m)
1 )

2m−p−1

+ x (1)
2 + x (2)

2 + · · · + x (m−1)
2 + (x (m)

2 − x (m)
2 )

2m−p−1

+ x (1)
3 + x (2)

3 + · · · + x (m−1)
3 + (x (m)

3 − x (m)
3 )

2m−p−1 ≤ 1

2
.

⇒ 0 ≤ x (1)
1 + x (2)

1 + · · · + x (m−1)
1 + x (m)

1

2m−p−1

+ x (1)
2 + x (2)

2 + · · · + x (m−1)
2 + x (m)

2

2m−p−1

+ x (1)
3 + x (2)

3 + · · · + x (m−1)
3 + x (m)

3

2m−p−1

≤ x (m)
1 + x (m)

2 + x (m)
3

2m−p−1 + 1

2
.

⇒ 0 ≤ x (1)
1 + x (2)

1 + · · · + x (m−1)
1 + x (m)

1

2m−p−1

+ x (1)
2 + x (2)

2 + · · · + x (m−1)
2 + x (m)

2

2m−p−1

+ x (1)
3 + x (2)

3 + · · · + x (m−1)
3 + x (m)

3

2m−p−1

≤ 1

2m−p−1 + 1

2
≤ 1.

So the proof is completed. ��

Definition 3.8 Let x = (x1, x2, x3) be a PFN and λ ∈ R
+,

then the scalar multiplication, denoted by �g , is a PFN y =
λ �g x such that

y = (λx1, λx2, λx3)

and 0 ≤ λx1 + λx2 + λx3 ≤ 1.

In our first idea, when we came up with this scalar mul-
tiplication, we only consider λ ∈ [0, 1], because we want to
make sure λ �g x ∈ D∗

g . However, we realize that there are
many cases λ ∈ R

+ (maybe expand further), but the results
still belong to D∗

g, for a simple example, with λ = 10 and
x = (x1, x2, x3) = (0.004, 0.0065, 0.0009) ∈ D∗

g then λ�g

x = (λ.x1, λ.x2, λ.x3) = (10 × 0.004, 10 × 0.0065, 10 ×
0.0009) = (0.04, 0.065, 0.009) = (z1, z2, z3) = z, we can
see that z belongs to D∗

g because 0 ≤ z1 + z2 + z3 ≤ 1.

Theorem 3.9 Let x = (x1, x2, x3), y = (y1, y2, y3), and
z = (z1, z2, z3) be three PFNs and λ, β ∈ R

+, then

(1) x ⊕g y = y ⊕g x;
(2) (x ⊕g y) ⊕g z = x ⊕g (y ⊕g z);
(3) x ⊕g θ = x;
(4) λ �g (x ⊕g y) = λ �g x ⊕g λ �g y;
(5) (λ + β) �g x = λ �g x + β �g x;
(6) (λ.β) �g x = λ �g (β �g x);
(7) 1 �g x = x and 0 �g x = θ.

Proof From the addition in Definition 3.5 and scalar multi-
plication in Definition 3.8, we have:

(1) According to the item (i) of Corollary 3.6, we get

x ⊕g y =
(
x1 + y1
21−p

,
x2 + y2
21−p

,
x3 + y3
21−p

)

=
(
y1 + x1
21−p

,
y2 + x2
21−p

,
y3 + x3
21−p

)

= y ⊕g x .

(2) This is the result of the item (ii) of Corollary 3.6.
(3) According to the item (i) of Corollary 3.6 with x 
= θ =

(0, 0, 0). Because in the formula x ⊕g θ , there is a zero
element (θ = (0, 0, 0) ∈ D∗

g) so p = 1 and we get

x ⊕g θ =
(
x1 + 0

21−1 ,
x2 + 0

21−1 ,
x3 + 0

21−1

)

= (x1, x2, x3) = x .

(4) According to the item (i) of Corollary 3.6 and scalar
multiplication in Definition 3.8, we get

λ �g (x ⊕g y) = λ �g

(
x1 + y1
21−p

,
x2 + y2
21−p

,
x3 + y3
21−p

)
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=
(

λ
x1 + y1
21−p

, λ
x2 + y2
21−p

, λ
x3 + y3
21−p

)

=
(

λx1 + λy1
21−p

,
λx2 + λy2

21−p
,
λx3 + λy3

21−p

)

= λ �g x ⊕g λ �g y.

(5) According to the scalar multiplication in Definition 3.8,
we get

(λ + β) �g x = ((λ + β)x1, (λ + β)x2, (λ + β)x3)

= (λx1 + βx1, λx2 + βx2, λx3 + βx3)

= (λx1, λx2, λx3) + (βx1, βx2, βx3)

= λ �g x + β �g x .

(6) According to the scalar multiplication in Definition 3.8,
we get

(λβ) �g x = ((λβ)x1, (λβ)x2, (λβ)x3)

= (λβx1, λβx2, λβx3)

= λ �g (βx1, βx2, βx3)

= λ �g (β �g x)

(7) According to the scalar multiplication in Definition 3.8,
we get 1 �g x = (1.x1, 1.x2, 1.x3) = (x1, x2, x3) = x
and 0 �g x = (0.x1, 0.x2, 0.x3) = (0, 0, 0) = θ.

The theorem has completed proof. ��
Theorem 3.10 Let the set of PFNs D∗

g in Definition 3.1, the
geometric addition ⊕g in Definition 3.5 and the scalar mul-
tiplication �g in Definition 3.8. Then, (D∗

g,⊕g,�g) is a
semi-linear space.

Proof From Definition 2.6, we see that Theorem 3.10 is a
direct result of Theorem 3.9. ��
Theorem 3.11 Let a mapping, denoted by HD∗

g
, be defined:

HD∗
g

: D∗
g × D∗

g −→ R

(x, y) 	−→ HD∗
g
(x, y) = sup

i∈1,3
{|xi − yi |} .

Then,
(
D∗
g, HD∗

g

)
is a metric semi-linear space.

Proof First of all, we need to prove that the mapping HD∗
g

is a metric on D∗
g . Indeed, for any x, y ∈ D∗

g with x =
(x1, x2, x3) and y = (y1, y2, y3), we have

(1)

HD∗
g
(x, y) = sup {|x1 − y1| , |x2 − y2|,

|x3 − y3|} > 0

with x 
= y and if x = y,

HD∗
g
(x, y) = sup {|x1 − y1| , |x2 − y2|,

|x3 − y3|} = sup {0, 0, 0} = 0;

(2) HD∗
g
(x, y) = sup

i∈1,3
{|xi − yi |} = sup

i∈1,3
{|yi − xi |} =

HD∗
g
(y, x);

(3)

HD∗
g
(x, y)= sup

i∈1,3
{|xi − yi |}= sup

i∈1,3
{|xi −zi +zi − yi |}

≤ sup
i∈1,3

{|xi − zi | + |zi − yi |}

≤ sup
i∈1,3

{|xi − zi |} + sup
i∈1,3

{|zi − yi |}

= HD∗
g
(x, z) + HD∗

g
(z, y) with

z = (z1, z2, z3) ∈ D∗
g .

From Definition 2.8, we obtain that the mapping HD∗
g
is a

metric on D∗
g . Thus,

(
D∗
g, HD∗

g

)
is a metric space. ��

Definition 3.12 Let x = (x1, x2, x3) and y = (y1, y2, y3) be
two PFNs. We define the order relations between these two
PFNs as follows:

Type 1: x ≺1 y in D∗
g iff it satisfies x1 ≤ y1, x2 ≤ y2, and

x3 ≤ y3.And, D1 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺1 y

}
.

Type 2: x ≺2 y in D∗
g iff it satisfies y1 ≤ x1, x2 ≤ y2, and

x3 ≤ y3.And, D2 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺2 y

}
.

Type 3: x ≺3 y in D∗
g iff it satisfies x1 ≤ y1, y2 ≤ x2, and

x3 ≤ y3.And, D3 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺3 y

}
.

Type 4: x ≺4 y in D∗
g iff it satisfies x1 ≤ y1, x2 ≤ y2, and

y3 ≤ x3.And, D4 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺4 y

}
.

Type 5: x ≺5 y in D∗
g iff it satisfies y1 ≤ x1, y2 ≤ x2, and

x3 ≤ y3.And, D5 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺5 y

}
.

Type 6: x ≺6 y in D∗
g iff it satisfies y1 ≤ x1, x2 ≤ y2, and

y3 ≤ x3.And, D6 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺6 y

}
.

Type 7: x ≺7 y in D∗
g iff it satisfies x1 ≤ y1, y2 ≤ x2, and

y3 ≤ x3.And, D7 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺7 y

}
.

Type 8: x ≺8 y in D∗
g iff it satisfies y1 ≤ x1, y2 ≤ x2, and

y3 ≤ x3.And, D8 =
{
(x, y) ∈ D∗

g × D∗
g |x ≺8 y

}
.

Definition 3.13 Let x = (x1, x2, x3) and y = (y1, y2, y3) be
two PFNs.We define the geometric difference between these
two PFNs as follows:

123



5490 N. D. Phu et al.

Case 1 If (x, y) ∈ D1 and 0 ≤ ∑3
i=1 |yi − xi | ≤ 1, there

correspond a element y �g1 x ∈ D∗
g and y �g1 x =

(y1 − x1, y2 − x2, y3 − x3) , where geometric differ-
ence denoted by �g1;
Case 2 If (x, y) ∈ D2 and 0 ≤ ∑3

i=1 |yi − xi | ≤ 1, there
correspond a element y �g2 x ∈ D∗

g and y �g2 x =
(x1 − y1, y2 − x2, y3 − x3) , where geometric differ-
ence denoted by �g2;
Case 3 If (x, y) ∈ D3 and 0 ≤ ∑3

i=1 |yi − xi | ≤ 1, there
correspond a element y �g3 x ∈ D∗

g and y �g3 x =
(y1 − x1, x2 − y2, y3 − x3) , where geometric differ-
ence denoted by �g3;
Case 4 If (x, y) ∈ D4 and 0 ≤ ∑3

i=1 |yi − xi | ≤ 1, there
correspond a element y �g4 x ∈ D∗

g and y �g4 x =
(y1 − x1, y2 − x2, x3 − y3) , where geometric differ-
ence denoted by �g4;
Case 5 If (x, y) ∈ D5 and 0 ≤ ∑3

i=1 |yi − xi | ≤ 1, there
correspond a element y �g5 x ∈ D∗

g and y �g5 x =
(x1 − y1, x2 − y2, y3 − x3) , where geometric differ-
ence denoted by �g5;
Case 6 If (x, y) ∈ D6 and 0 ≤ ∑3

i=1 |yi − xi | ≤ 1, there
correspond a element y �g6 x ∈ D∗

g and y �g6 x =
(x1 − y1, y2 − x2, x3 − y3) , where geometric differ-
ence denoted by �g6;
Case 7 If (x, y) ∈ D7 and 0 ≤ ∑3

i=1 |yi − xi | ≤ 1, there
correspond a element y �g7 x ∈ D∗

g and y �g7 x =
(y1 − x1, x2 − y2, x3 − y3) , where geometric differ-
ence denoted by �g7;
Case 8 If (x, y) ∈ D8 and 0 ≤ ∑3

i=1 |yi − xi | ≤ 1, there
correspond a element y �g8 x ∈ D∗

g and y �g8 x =
(x1 − y1, x2 − y2, x3 − y3) , where geometric differ-
ence denoted by �g8.

In conclusion, every two PFNs (x, y) ∈
8⋃

k=1

Dk and there

exists a element y�gk x ∈ D∗
g with k ∈ {1, 2, 3, 4, 5, 6, 7, 8},

then we say that there exists a geometric difference y �g x
(with symbol �g).

Definition 3.14 Let x = (x1, x2, x3) and y = (y1, y2, y3) be
any two PFNs. Then, the geometric difference, denoted by
�g , between these two PFNs is a PFN z = y�g x, if it exists,
such that

z = (|y1 − x1|, |y2 − x2|, |y3 − x3|)

Theorem 3.15 The concepts of geometric difference in Defi-
nition 3.13 and in Definition 3.14 are the same.

Proof Let x = (x1, x2, x3) and y = (y1, y2, y3) be any
two PFNs. Assume that the geometric difference between
these two PFNs in Definition 3.17 exists, this means that

there is a PFN z = y �g x belonging to D∗
g and z =

(|y1 − x1|, |y2 − x2|, |y3 − x3|) . Because z ∈ D∗
g, we have

0 ≤ ∑3
i=1 |yi − xi | ≤ 1 and

Case 1 z = (y1 − x1, y2 − x2, y3 − x3) if x1 ≤ y1,
x2 ≤ y2, and x3 ≤ y3 are equivalent to (x, y) ∈ D1;
Case 2 z = (x1 − y1, y2 − x2, y3 − x3) if y1 ≤ x1,
x2 ≤ y2, and x3 ≤ y3 are equivalent to (x, y) ∈ D2;
Case 3 z = (y1 − x1, x2 − y2, y3 − x3) if x1 ≤ y1,
y2 ≤ x2, and x3 ≤ y3 are equivalent to (x, y) ∈ D3;
Case 4 z = (y1 − x1, y2 − x2, x3 − y3) if x1 ≤ y1,
x2 ≤ y2, and y3 ≤ x3 are equivalent to (x, y) ∈ D4;
Case 5 z = (x1 − y1, x2 − y2, y3 − x3) if y1 ≤ x1,
y2 ≤ x2, and x3 ≤ y3 are equivalent to (x, y) ∈ D5;
Case 6 z = (x1 − y1, y2 − x2, x3 − y3) if y1 ≤ x1,
x2 ≤ y2, and y3 ≤ x3 are equivalent to (x, y) ∈ D6;
Case 7 z = (y1 − x1, x2 − y2, x3 − y3) if x1 ≤ y1,
y2 ≤ x2, and y3 ≤ x3 are equivalent to (x, y) ∈ D7;
Case 8 z = (x1 − y1, x2 − y2, x3 − y3) if y1 ≤ x1,
y2 ≤ x2, and y3 ≤ x3 are equivalent to (x, y) ∈ D8.

Therefore, the concept of geometric difference in Defini-
tion 3.13 and Definition 3.14 is equivalent. ��
Theorem 3.16 Let x = (x1, x2, x3) and y = (y1, y2, y3) be
two PFNs. Then, we have the following properties:

(1) x �g x = θ ;
(2) If z = y �g x exists, it is unique;
(3) If y�g x exists, then x �g y exists and y�g x = x �g y;
(4) If y �g x = x �g y = θ, then y = x;

Proof For property (1), we have x �g x = (|x1 − x1|,
|x2 − x2|, |x3 − x3|) = (0, 0, 0) = θ. For property (ii),
assume that we have two PFNs h = y �g x, g = y �g

x and h 
= g, then (|y1 − x1|, |y2 − x2|, |y3 − x3|) 
=
(|y1 − x1|, |y2 − x2|, |y3 − x3|) . For convenience, we
rewrite |yi − xi | 
= |yi − xi | with i ∈ {1, 2, 3}. Case 1,
if xi ≤ yi , then

|yi − xi | 
= |yi − xi | ⇒ yi − xi 
= yi − xi ⇒ 0 
= 0 with

i ∈ {1, 2, 3}.

Case 2, if yi ≤ xi , then

|yi − xi | 
= |yi − xi | ⇒ xi − yi 
= xi − yi ⇒ 0 
= 0 with

i ∈ {1, 2, 3}.

both cases 1 and 2 contradict the above assumption. Thus,
we get h = g. For property (3), suppose that y �g x exists,
we have

y �g x = (|y1 − x1|, |y2 − x2|, |y3 − x3|)
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= (|x1 − y1|, |x2 − y2|, |x3 − y3|) = x �g y.

To property (iv), suppose that y �g x = θ, we have

(|y1 − x1|, |y2 − x2|, |y3 − x3|) = (0, 0, 0) ⇒ |yi − xi |
= 0 ⇒ yi

= xi with i ∈ {1, 2, 3}.

Thus, we get x = y. ��
Definition 3.17 Let x and y be two PFNs with x =
(x1, x2, x3) and y = (y1, y2, y3), then there correspond a
element x ⊗g y ∈ D∗

g and x ⊗g y = (x1y1, x2y2, x3y3) ,

where multiplication of two PFNs is denoted by ⊗g .

Theorem 3.18 ⊗g in Definition 3.17 is well defined, i.e., let
x and y be two PFNs, then x ⊗g y also is a PFN.

Proof To prove this theorem, we need to prove that if a ∈
[0, 1] and b ∈ [0, 1], where a and b are two real numbers
then a.b ∈ [0, 1]. Indeed, Putting a = n

m and b = p
q , which

n, m, p, and q are positive integers. Since a ∈ [0, 1] and
b ∈ [0, 1], we obtain n ≤ m and p ≤ q. Simultaneously,
we also have n.p ≤ m.q because they are positive integers.
Thus, we obtain a.b = n

m .
p
q = n.p

m.q ∈ [0, 1].Hence, let x and
y be two PFNs with x = (x1, x2, x3) and y = (y1, y2, y3),
we have 0 ≤ x1 + x2 + x3 ≤ 1, 0 ≤ y1 + y2 + y3 ≤ 1, and
0 ≤ (x1 + x2 + x3).(y1 + y2 + y3) ≤ 1. With (x1 + x2 +
x3).(y1 + y2 + y3) = ∑3

i=1
∑3

j=1 xi y j , we have

0 ≤ x1y1 + x2y2 + x3y3 ≤
3∑

i=1

3∑

j=1

xi y j ≤ 1.

Furthermore, since xi ∈ [0, 1] and yi ∈ [0, 1] with
i ∈ {1, 2, 3}, we get xi yi ∈ [0, 1]. Therefore, x ⊗g y =
(x1y1, x2y2, x3y3) is a PFN. ��

3.2 The geometric picture fuzzy functions

In this subsection, we study the picture fuzzy functions
(PFFs), which are the functions related to PFNs, with a real
domain. Let

f : I ⊂ R −→ D∗
g

t 	−→ f (t) = ( f1(t), f2(t), f3(t)) ,

where 0 ≤ f1(t) + f2(t) + f3(t) ≤ 1. We call f (t) is geo-
metric picture fuzzy functions (GPFFs) in D∗

g . In classical
mathematics, the limit of a functionor sequenceof numbers is
a fundamental concept in calculus and analysis that involves
the behavior of that function or sequence of numbers near a
particular input. It is the main tool for the development of

important properties in the theory of calculus such as conti-
nuity, differentiable, integrable, etc. In the following, we will
present definitions and properties for the limit of GPFFs and
the sequence of PFNs in detail.

Definition 3.19 Let f (t) = ( f1(t), f2(t), f3(t)) be a GPFF
for t ∈ I ⊂ R. If the limits of component functions exist,
i.e., lim

t→t0
f1(t) = L1, lim

t→t0
f2(t) = L2, and lim

t→t0
f3(t) = L3,

such that (L1, L2, L3) ∈ D∗
g , then we define the limit of

f (t) as follows:

lim
t→t0

f (t) =
(
lim
t→t0

f1(t), lim
t→t0

f2(t), lim
t→t0

f3(t)

)

= (L1, L2, L3) = L.

Lemma 3.20 Let f (t) = ( f1(t), f2(t), f3(t)) be a GPFF
for t ∈ I ⊂ R. If the limit of f (t) exists for all t ∈ I and
lim
t→t0

f (t) = a∗, where a∗ = (a1, a2, a3) , then a∗ is PFN.

Proof Suppose that the limit of f (t) exists for all t ∈ I and
lim
t→t0

f (t) = a∗. From Definition 3.19, we have lim
t→t0

f1(t) =
a1, lim

t→t0
f2(t) = a2, and lim

t→t0
f3(t) = a3. Because f (t) is a

GPFF for all t ∈ I , we get 0 ≤ f1(t) + f2(t) + f3(t) ≤ 1
and 0 ≤ f1(t) ≤ 1, 0 ≤ f2(t) ≤ 1, 0 ≤ f3(t) ≤ 1. Putting
g(t) = f1(t) + f2(t) + f3(t), then g(t) is a real-valued
function and 0 ≤ g(t) ≤ 1 for all t ∈ I . Thus, with t0 ∈ I
we have

0 ≤ lim
t→t0

g(t) ≤ 1 ⇔ 0 ≤ lim
t→t0

( f1(t) + f2(t) + f3(t)) ≤ 1

⇔ 0 ≤ lim
t→t0

f1(t) + lim
t→t0

f2(t) + lim
t→t0

f3(t)

≤ 1 ⇒ 0 ≤ a1 + a2 + a3 ≤ 1

At the same time, since 0 ≤ f1(t) ≤ 1, 0 ≤ f2(t) ≤ 1, and
0 ≤ f3(t) ≤ 1, then 0 ≤ lim

t→t0
f1(t) ≤ 1, 0 ≤ lim

t→t0
f2(t) ≤

1, and 0 ≤ lim
t→t0

f3(t) ≤ 1 with t0 ∈ I . Thus, we obtain

0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1, and 0 ≤ a3 ≤ 1. Therefore,
a∗ = (a1, a2, a3) is a PFN. ��
Theorem 3.21 Let f (t) = ( f1(t), f2(t), f3(t)) be a GPFF
with t ∈ I ⊂ R and L = (L1, L2, L3) be a PFN. Then,
lim
t→t0

f (t) = L if and only if for every ε > 0 there is a

number δ > 0 such that if 0 ≤ |t − t0| ≤ δ, then

HD∗
g
( f (t), L) ≤ ε.

Proof Let f (t) = ( f1(t), f2(t), f3(t)) be a GPFF and L =
(L1, L2, L3) be a PFN.
Necessity: Suppose that lim

t→t0
f (t) = L, then lim

t→t0
f (t)

exists, by Definition 3.19 we get

lim
t→t0

f (t) =
(
lim
t→t0

f1(t), lim
t→t0

f2(t), lim
t→t0

f3(t)

)
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= (L1, L2, L3) = L

and lim
t→t0

f1(t) = L1, lim
t→t0

f2(t) = L2, and lim
t→t0

f3(t) = L3.

Because these limits of the component functions are limit
of real-valued function, by Definition 2.9, for every ε > 0
there exists δ1 > 0, δ2 > 0, and δ3 > 0 such that if 0 ≤
|t − t0| ≤ δ1 then | f1(t) − L1| ≤ ε, if 0 ≤ |t − t0| ≤ δ2 then
| f2(t)−L2| ≤ ε, and if 0 ≤ |t− t0| ≤ δ3 then | f3(t)−L3| ≤
ε. Putting δ = min{δ1, δ2, δ3}, then if 0 ≤ |t − t0| ≤ δ, we
have

HD∗
g
( f (t), L) = sup

i∈1,3
{| fi − Li |} ≤ sup {ε, ε, ε} = ε.

Thus, for every ε > 0 there exists δ > 0 such that if 0 ≤
|t − t0| ≤ δ, then HD∗

g
( f (t), L) ≤ ε.

Necessity: Suppose that for every ε > 0 there exists δ > 0
such that if 0 ≤ |t − t0| ≤ δ, then

HD∗
g
( f (t), L) = sup

i∈1,3
{| fi − Li |} ≤ ε.

Thus, if 0 ≤ |t−t0| ≤ δ, then | f1 − L1| ≤ ε, | f2 − L2| ≤ ε,

and | f3 − L3| ≤ ε. By Definition 2.9, we have lim
t→t0

f1(t) =
L1, lim

t→t0
f2(t) = L2, and lim

t→t0
f3(t) = L3. And, by Defini-

tion 3.19,

lim
t→t0

f (t) =
(
lim
t→t0

f1(t), lim
t→t0

f2(t), lim
t→t0

f3(t)

)

= (L1, L2, L3) = L.

��
Definition 3.22 Let f (n) = ( f1(n), f2(n), f3(n)) be a
GPFF with n ∈ N and put x (n) = f (n), then we define
that a sequence of PFNs, {x (1), x (2), x (3), ...}, is denoted by{
x (n)

}
n∈N or

{
x (n)

}
for short.

Definition 3.23 Let
{
x (n)

} ⊂ D∗
g be a sequence of PFNs

with n ∈ N and x (n) =
(
x (n)
1 , x (n)

2 , x (n)
3

)
. If the lim-

its of component sequences exist, i.e., lim
n→+∞ x (n)

1 = x (0)
1 ,

lim
n→+∞ x (n)

2 = x (0)
2 , and lim

n→+∞ x (n)
3 = x (0)

3 , then we define

the limit of sequence
{
x (n)

}
as follows:

lim
n→+∞ x (n) =

(
lim

n→+∞ x (n)
1 , lim

n→+∞ x (n)
2 , lim

n→+∞ x (n)
3

)

=
(
x (0)
1 , x (0)

2 , x (0)
3

)
= x (0).

On the other hands, the sequence
{
x (n)

}
is convergent in D∗

g

if there exist x (0) ∈ D∗
g such that lim

n→+∞ x (n) = x (0).

Corollary 3.24 Let
{
x (n)

}
be a sequence of PFNs with n ∈ N

and x (n) =
(
x (n)
1 , x (n)

2 , x (n)
3

)
. Then, we have:

(1) If the limit of sequence
{
x (n)

}
exists and lim

n→+∞ x (n) =
x (0) =

(
x (0)
1 , x (0)

2 , x (0)
3

)
, then x (0) is a PFN;

(2) lim
n→+∞ x (n) = x (0) if and only if for every ε > 0 there is

a number N ∈ N such that if n > N , then

HD∗
g

(
x (n), x (0)

)
≤ ε.

Proof The item (1) is a direct result of Lemma 3.20 when we
replace t ∈ I with n ∈ N and put f (n) = x (n). For the item
(ii), suppose that lim

n→+∞ x (n) = x (0), then the limit of
{
x (n)

}

exists, by Definition 3.23 we obtain lim
n→+∞ x (n) = x (0),

where x (0) =
(
x (0)
1 , x (0)

2 , x (0)
3

)
, and lim

n→+∞ x (n)
1 = x (0)

1 ,

lim
n→+∞ x (n)

2 = x (0)
2 , and lim

n→+∞ x (n)
3 = x (0)

3 . Because these

limits of the component sequences are limit of real numbers
sequence, by Definition 2.10, for every ε > 0 there exists
N1 ∈ N, N2 ∈ N, and N3 ∈ N such that if n > N1 then
|x (n)

1 −x (0)
1 | ≤ ε, if n > N2 then |x (n)

2 −x (0)
2 | ≤ ε, and if n >

N1 then |x (n)
3 − x (0)

3 | ≤ ε, Putting N = min{N1, N2, N3},
then if n > N , we have

HD∗
g

(
x (n), x (0)

)
= sup

i∈1,3

{∣∣∣x (n)
i − x (0)

i

∣∣∣
}

≤ sup {ε, ε, ε} = ε.

Thus, for every ε > 0 there exists N ∈ N such that if n > N ,

then HD∗
g

(
x (n), x (0)

) ≤ ε.

On the contrary, suppose that for every ε > 0 there exists
N ∈ N such that if n > N , then

HD∗
g

(
x (n), x (0)

)
= sup

i∈1,3

{∣∣∣x (n)
i − x (0)

i

∣∣∣
}

≤ ε.

Thus, if n > N , then
∣∣
∣x (n)

1 − x (0)
1

∣∣
∣ ≤ ε,

∣∣
∣x (n)

2 − x (0)
2

∣∣
∣ ≤

ε, and
∣
∣∣x (n)

3 − x (0)
3

∣
∣∣ ≤ ε. By Definition 2.10, we have

lim
n→+∞ x (n)

1 = x (0)
1 , lim

n→+∞ x (n)
2 = x (0)

2 , and lim
n→+∞ x (n)

3 =
x (0)
3 . And, by Definition 3.23,

lim
n→+∞ x (n) =

(
lim

n→+∞ x (n)
1 , lim

n→+∞ x (n)
2 , lim

n→+∞ x (n)
3

)

=
(
x (0)
1 , x (0)

2 , x (0)
3

)
= x (0).

��
Theorem 3.25 Let

{
x (n)

}
,

{
y(n)

}
, and

{
z(n)

}
be the

sequences of PFNswith n∈N,where x (n) =
(
x (n)
1 ,x (n)

2 ,x (n)
3

)
,
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y(n) =
(
y(n)
1 , y(n)

2 , y(n)
3

)
, and z(n) =

(
z(n)
1 , z(n)

2 , z(n)
3

)
,

respectively. We have the following properties:

(1) If the limit of
{
x (n)

}
exists, then it is unique;

(2) If x (n) ≺i y(n) with i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and n ≥ N ,

which N is a fixed positive integer, and lim
n→+∞ x (n) =

x (0), lim
n→+∞ y(n) = y(0), then x (0) ≺i y(0).

(3) If x (n) ≺i y(n) ≺i z(n) with i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
and n ≥ N , which N is a fixed positive integer,
and lim

n→+∞ x (n) = lim
n→+∞ z(n) = L, where L =

(L1, L2, L3), then lim
n→+∞ y(n) = L.

Proof For (i), suppose that x (0), y(0) ∈ D∗
g and x (0) 
= y(0)

are two limits of
{
x (n)

}
.For every ε > 0, since lim

n→+∞ x (n) =
x (0), there exists N1 ∈ N such that if ∀n ≥ N1, then
HD∗

g

(
x (n), x (0)

) ≤ ε, and lim
n→+∞ x (n) = y(0), there exists

N2 ∈ N such that if ∀n ≥ N2, then HD∗
g

(
x (n), y(0)

) ≤ ε.

Let ε = 1

2
HD∗

g

(
x (0), y(0)

)
and N = max{N1, N2}, then

∀n ≥ N , we obtain

HD∗
g

(
x (0), y(0)

)
≤ HD∗

g

(
x (n), x (0)

)

+HD∗
g

(
x (n), y(0)

)
< 2ε

= HD∗
g

(
x (0), y(0)

)
.

This is a contradiction, so x (0) = y(0).

For (2), we first consider the case i = 1, suppose that
x (n) ≺1 y(n) and n ≥ N , which N is a fixed positive integer,
and lim

n→+∞ x (n) = x (0), lim
n→+∞ y(n) = y(0), where x (0) =

(
x (0)
1 , x (0)

2 , x (0)
3

)
and y(0) =

(
y(0)
1 , y(0)

2 , y(0)
3

)
, respectively.

From Definition 3.23, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
n→+∞ x (n)

1 = x (0)
1

lim
n→+∞ x (n)

2 = x (0)
2

lim
n→+∞ x (n)

3 = x (0)
3

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
n→+∞ y(n)

1 = y(0)
1

lim
n→+∞ y(n)

2 = y(0)
2

lim
n→+∞ y(n)

3 = y(0)
3 .

(3.4)

Because the component sequences
{
x (n)
j

}
and

{
y(n)
j

}
with

j ∈ {1, 2, 3} are sequences in [0, 1] ⊂ R, so they converge
as sequence of real numbers. At the same time, x (n) ≺1 y(n),

i.e., x (n)
1 ≤ y(n)

1 , x (n)
2 ≤ y(n)

2 , and x (n)
3 ≤ y(n)

3 . Therefore,

we obtain x (0)
1 ≤ y(0)

1 , x (0)
2 ≤ y(0)

2 , and x (0)
3 ≤ y(0)

3 , this
implies that x (0) ≺1 y(0). In a similar way, we can prove
cases i ∈ {2, 3, 4, 5, 6, 7, 8}.
For (iii), let us first consider the case i = 1, suppose that
x (n) ≺1 y(n) ≺1 z(n) and n ≥ N , which N is a fixed positive

integer, and lim
n→+∞ x (n) = lim

n→+∞ z(n) = L, where L =
(L1, L2, L3) . From Definition 3.23, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
n→+∞ x (n)

1 = lim
n→+∞ z(n)

1 = L1

lim
n→+∞ x (n)

2 = lim
n→+∞ z(n)

2 = L2

lim
n→+∞ x (n)

3 = lim
n→+∞ z(n)

3 = L3.

(3.5)

Since the component sequences
{
x (n)
j

}
,
{
y(n)
j

}
and

{
z(n)
j

}

with j ∈ {1, 2, 3} are sequences in [0, 1] ⊂ R, so they con-
verge as sequence of real numbers. Besides, x (n) ≺1 y(n) ≺1

z(n), i.e., x (n)
1 ≤ y(n)

1 ≤ z(n)
1 , x (n)

2 ≤ y(n)
2 ≤ z(n)

2 , and

x (n)
3 ≤ y(n)

3 ≤ z(n)
3 . Thus, we obtain lim

n→+∞ y(n)
1 = L1,

lim
n→+∞ y(n)

2 = L2, and lim
n→+∞ y(n)

3 = L3. From the item (i)

of Corollary 3.24, we obtain L ∈ D∗
g and Definition 3.23 we

get lim
n→+∞ y(n) = L. In a similar way, we can prove cases

i ∈ {2, 3, 4, 5, 6, 7, 8}. ��
Theorem 3.26 Let

{
x (n)

}
and

{
y(n)

}
be the sequences of

PFNs with n ∈ N that possess limits as n → +∞, where

x (n) =
(
x (n)
1 , x (n)

2 , x (n)
3

)
and y(n) =

(
y(n)
1 , y(n)

2 , y(n)
3

)
,

respectively. Then,

1. lim
n→+∞

[
x (n) ⊕g y(n)

]
= lim

n→+∞ x (n) ⊕g lim
n→+∞ y(n);

2. lim
n→+∞

[
x (n) �g y(n)

]
= lim

n→+∞ x (n) �g lim
n→+∞ y(n);

3. lim
n→+∞

[
λ �g x

(n)
]

= λ �g

[
lim

n→+∞ x (n)

]
;

4. lim
n→+∞

[
x (n) ⊗g y(n)

]
= lim

n→+∞ x (n) ⊗g lim
n→+∞ y(n).

Proof In each item of this theorem, the basic procedure is to
use Definition 3.23 and then, analyze the individual compo-
nent sequences using the limit properties which have already
been used to develop the real-valued functions. For (1.), from
the item (i) of Corollary 3.6, we get

lim
n→+∞

[
x (n) ⊕g y(n)

]
= lim

n→+∞

(
x (n)
1 + y(n)

1

21−p
,

x (n)
2 + y(n)

2

21−p
,
x (n)
3 + y(n)

3

21−p

)

=
(

lim
n→+∞

x (n)
1 + y(n)

1

21−p
,

lim
n→+∞

x (n)
2 + y(n)

2

21−p
, lim
n→+∞

x (n)
3 + y(n)

3

21−p

)

=
⎛

⎝
lim

n→+∞ x (n)
1 + lim

n→+∞ y(n)
1

21−p
,

lim
n→+∞ x (n)

2 + lim
n→+∞ y(n)

2

21−p
,

lim
n→+∞ x (n)

3 + lim
n→+∞ y(n)

3

21−p

⎞

⎠
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=
(

lim
n→+∞ x (n)

1 , lim
n→+∞ x (n)

2 , lim
n→+∞ x (n)

3

)

⊕g

(
lim

n→+∞ y(n)
1 , lim

n→+∞ y(n)
2 , lim

n→+∞ y(n)
3

)

= lim
n→+∞ x (n) ⊕g lim

n→+∞ y(n).

For (2.), from Definition 3.13, we get

Case 1 If
(
x (n), y(n)

) ∈ D1 for all n ∈ N, then x (n)
1 ≤

y(n)
1 , x (n)

2 ≤ y(n)
2 , and x (n)

3 ≤ y(n)
3 and

lim
n→+∞

[
x (n) �g y(n)

]
= lim

n→+∞
(
y(n)
1 − x (n)

1 , y(n)
2

−x (n)
2 , y(n)

3 − x (n)
3

)
=

(
lim

n→+∞ y(n)
1 − lim

n→+∞ x (n)
1 ,

lim
n→+∞ y(n)

2 − lim
n→+∞ x (n)

2 , lim
n→+∞ y(n)

3 − lim
n→+∞ x (n)

3

)

=
(

lim
n→+∞ x (n)

1 , lim
n→+∞ x (n)

2 , lim
n→+∞ x (n)

3

)
�g

(
lim

n→+∞ y(n)
1 , lim

n→+∞ y(n)
2 , lim

n→+∞ y(n)
3

)

= lim
n→+∞ x (n) �g lim

n→+∞ y(n).

Case 2 If
(
x (n), y(n)

) ∈ D2 for all n ∈ N, then y(n)
1 ≤

x (n)
1 , x (n)

2 ≤ y(n)
2 , and x (n)

3 ≤ y(n)
3 and

lim
n→+∞

[
x(n) �g y(n)

]

= lim
n→+∞

(
x(n)
1 − y(n)

1 , y(n)
2 − x(n)

2 , y(n)
3 − x(n)

3

)

=
(

lim
n→+∞ x(n)

1 − lim
n→+∞ y(n)

1 , lim
n→+∞ y(n)

2 − lim
n→+∞ x(n)

2 ,

lim
n→+∞ y(n)

3 − lim
n→+∞ x(n)

3

)
=

(
lim

n→+∞ x(n)
1 , lim

n→+∞ x(n)
2 ,

lim
n→+∞ x(n)

3

)
�g

(
lim

n→+∞ y(n)
1 , lim

n→+∞ y(n)
2 , lim

n→+∞ y(n)
3

)

= lim
n→+∞ x(n) �g lim

n→+∞ y(n).

Case 3, 4, 5, 6, 7, 8With
(
x (n), y(n)

) ∈ D3,
(
x (n), y(n)

) ∈
D4,

(
x (n), y(n)

) ∈ D5,
(
x (n), y(n)

) ∈ D6,
(
x (n), y(n)

) ∈
D7, and

(
x (n), y(n)

) ∈ D8, respectively. We also demon-
strate a similar way.

For (3.), from Definition 3.8, we get

lim
n→+∞

[
λ �g x

(n)
]

= lim
n→+∞

(
λx (n)

1 , λx (n)
2 , λx (n)

3

)

=
(

lim
n→+∞ λx (n)

1 , lim
n→+∞ λx (n)

2 , lim
n→+∞ λx (n)

3

)

=
(

λ lim
n→+∞ x (n)

1 , λ lim
n→+∞ x (n)

2 , λ lim
n→+∞ x (n)

3

)

= λ �g

(
lim

n→+∞ x (n)
1 , lim

n→+∞ x (n)
2 , lim

n→+∞ x (n)
3

)

= λ �g

[
lim

n→+∞ x (n)

]
.

For (4.), from Definition 3.17, we get

lim
n→+∞

[
x (n) ⊗g y(n)

]
= lim

n→+∞
(
x (n)
1 y(n)

1 , x (n)
2 y(n)

2 , x (n)
3 y(n)

3

)

=
(

lim
n→+∞ x (n)

1 y(n)
1 , lim

n→+∞ x (n)
2 y(n)

2 ,

lim
n→+∞ x (n)

3 y(n)
3

)

=
(

lim
n→+∞ x (n)

1 . lim
n→+∞ y(n)

1 ,

lim
n→+∞ x (n)

2 . lim
n→+∞ y(n)

2 , lim
n→+∞ x (n)

3 . lim
n→+∞ y(n)

3

)

=
(

lim
n→+∞ x (n)

1 , lim
n→+∞ x (n)

2 ,

lim
n→+∞ x (n)

3

)
⊗g

(
lim

n→+∞ y(n)
1 , lim

n→+∞ y(n)
2 ,

lim
n→+∞ y(n)

3

)

= lim
n→+∞ x (n) ⊗g lim

n→+∞ y(n).

��
In classical mathematics, the completeness of a metric

space is an important property because if this space is incom-
plete, then the limit operation will be meaningless and it is
not entirely well-behaved metric space. Therefore, we will
demonstrate that the metric semi-linear space of PFNs is
complete in the following.

Definition 3.27 Let
{
x (n)

}
be a sequence of PFNs with

n ∈ N. In the metric space
(
D∗
g, HD∗

g

)
,
{
x (n)

}
is a Cauchy

sequence if for every ε > 0 there is a number N ∈ N such
that if m, n > N , then

HD∗
g

(
x (m), x (n)

)
< ε.

Theorem 3.28
(
D∗
g, HD∗

g

)
is a complete metric space.

Proof Suppose that
{
x (n)

}
n∈N is a Cauchy sequence of PFNs

in
(
D∗
g, HD∗

g

)
, where x (n) =

(
x (n)
1 , x (n)

2 , x (n)
3

)
. Since the

component sequences
{
x (n)
i

}
with i ∈ {1, 2, 3} are sequences

in [0, 1] ⊂ R under the absolute-value metric, so we have
|x (m)

i − x (n)
i | ≤ HD∗

g

(
x (m), x (n)

) ∀m, n ≥ 1. Besides,
{
x (n)

}

is a Cauchy sequence, i.e, for every ε > 0 there is a number
N ∈ N such that if m, n > N , then

|x (m)
i − x (n)

i | ≤ HD∗
g

(
x (m), x (n)

)
< ε.
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Thus,
{
x (n)
i

}
with i ∈ {1, 2, 3} are Cauchy sequences in

[0, 1] ⊂ R that [0, 1] is a complete metric space under
the absolute-value metric. So the component sequences{
x (n)
i

}
with i ∈ {1, 2, 3} are convergent in [0, 1], i.e,

there exist x (0)
i ∈ D∗

g such that lim
n→+∞ x (n)

i = x (0)
i .

Therefore, by Definition 3.23 we obtain limn→+∞ x (n) =(
limn→+∞ x (n)

1 , limn→+∞ x (n)
2 , limn→+∞ x (n)

3

)
=

(
x (0)
1 ,

x (0)
2 , x (0)

3

)
. At the same time, by the item (i) of Corol-

lary 3.24, we get
(
x (0)
1 , x (0)

2 , x (0)
3

)
∈ D∗

g . So
(
D∗
g, HD∗

g

)

is a complete metric space. ��

Remark 3.29 For the picture fuzzy set, we have a realistic
illustration of the voting problem, which is given by Cuong
in (Cuong 2014). His idea was to divide the voters into four
groups (including voting in favor, abstaining from voting,
voting against, refusal of the voting). For the picture fuzzy
number which is the main object in this study, we only need
to consider three groups of subjects participating in voting,
namely voting for, abstaining, and voting against. To relate
the results of this study to real-life such as a matter of voting
for something, for example, a new law, a new administrator,
a certain choice, and so on. We concretize this problem as
follows: Given A and B are two places holding the vote about
something in a certain area X , tomake this easier to visualize,
we assume that A and B are two provinces of country X and
these two provinces are organizing people vote to pass or
reject a new regulation. Now, for the space D∗

g, without loss
of generality, we consider A and B to be two picture fuzzy
numberswith A = (x1, x2, x3) and B = (y1, y2, y3).Where,
x1, x2, x3 and y1, y2, y3 are the ratio of the number of votes
of the three groups: vote for, abstain and vote against of A and
B compared to the population of each province, respectively.
From the results in this study, the following can be inferred:
Firstly, the sum between A and B in the space D∗

g exists.
If people in two provinces A and B both participate in the
vote, then from Definition 3.5, this means that m = 2, p 
=
0 and the sum of A and B in the space D∗

g is A + B =
( x1+y1

2 ,
x2+y2

2 ,
x3+y3

2

)
, means the sum of the proportions of

the votes of the population that voted in favor of provinces A
and B to the population of each province is x1+y1

2 , similarly
for the total ratio of abstaining and voting against of A and
B. If province A organizes for people to vote and province
B does not, that is, B is the zero element in the space D∗

g ,
then we have m = 2 and p = 1. Therefore, A+ B = A, this
result is true because province B does not organize people to
vote.
Secondly, multiplying a scalar value k ∈ R

+ by an element
A in the space D∗

g, will show the impact of objective or
subjective factors on the value of the element A.For example,
in voting, province A decided not to hold direct voting due to

the appearance of theCovid-19 epidemic. Thismeans that the
value of the three groups: voting for, abstaining, and voting
against of province A in the space D∗

g is A = (0, 0, 0). in
the space D∗

g, we can explain this as follows: suppose that
the values of the three groups: voting for, abstaining, voting
against of province A is A = (x1, x2, x3), if province A
allows people to vote, then obviously A 
= 0. However, with
k = 0 representing the Covid-19 epidemic appears, then we
will now have k A = (kx1, kx2, kx3) = (0x1, 0.x2, 0.x3) =
(0, 0, 0). Hence, the result of the multiplication scalar k A
reflects the fact that the voting results of the three groups:
voting for, abstain, and vote against in province A is (0, 0, 0).
because this province did not vote.
Finally, from a mathematical point of view, the limit is
the value a function approaches when the input variable
approaches a certain value.Corresponding to the voting prob-
lem, the limit of the voting process will give us a result that
the sum of the proportions of the votes of the three groups
voting for, abstaining, and voting against compared to the
number of voters will not bemore than 1. This is true because
if the result of the election process is that the sum of votes
of the three groups voting for, abstaining, and voting against
is greater than 1, then it is clear that this voting process has
fraud on the number of votes.

4 Conclusions

In this paper, we establish the concept of the limit and study
its properties on themetric semi-linear space of PFNs. Firstly,
we propose two new operations, addition and scalar multi-
plication, to replace two ofWei’s operations.We also discuss
some limitations of Wei’s two operations. These are also the
reason that we want to replace them with two new oper-
ations with more advantages. The highlight is that the set
of PFNs together with these two new operations becomes
a semi-linear space. Along with that we also provide some
related concepts on this semi-linear space such as metric,
order relations between two PFNs, geometric difference,
multiplication of two PFNs. Next, we define a type of func-
tion whose value is in this semi-linear space. It called the
geometry picture fuzzy function and used to give the con-
cept of limit for it and the sequences of PFNs in the metric
semi-linear space of PFNs. Finally, to ensure that the limit
operations are well-defined over the metric semi-linear space
of PFNs, we proved that this space is complete.
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