
����������
�������

Citation: Almeida, C.; Teixeira, A.L.;

Dias, F.; Machado, V.; Morais, M.;

Martins, G.; Palmeira, C.; Sousa, M.E.;

Godinho, I.; Batista, S.; et al.

Extracellular Vesicles Derived-LAT1

mRNA as a Powerful Inducer of

Colorectal Cancer Aggressive

Phenotype. Biology 2022, 11, 145.

https://doi.org/10.3390/

biology11010145

Academic Editor: Pilar Roca

Received: 9 December 2021

Accepted: 7 January 2022

Published: 15 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Extracellular Vesicles Derived-LAT1 mRNA as a Powerful
Inducer of Colorectal Cancer Aggressive Phenotype
Cristina Almeida 1,2,†, Ana Luísa Teixeira 1,3,*,† , Francisca Dias 1,† , Vera Machado 1, Mariana Morais 1 ,
Gabriela Martins 4, Carlos Palmeira 4,5,6, Maria Emília Sousa 4, Inês Godinho 4, Sílvia Batista 7,
Bruno Costa-Silva 7 and Rui Medeiros 1,2,3,6,8

1 Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ RISE@CI-IPOP
(Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive
Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
cristina.almeida@ipoporto.min-saude.pt (C.A.); francisca.carvalho.dias@ipoporto.min-saude.pt (F.D.);
vera.pereira.machado@ipoporto.min-saude.pt (V.M.); mariana.gomes.morais@ipoporto.min-saude.pt (M.M.);
ruimedei@ipoporto.min-saude.pt (R.M.)

2 Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN),
Estrada da Circunvalação 6657, 4200-177 Porto, Portugal

3 ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228,
4050-513 Porto, Portugal

4 Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino
de Almeida, 4200-072 Porto, Portugal; gmartins@ipoporto.min-saude.pt (G.M.);
carlospalmeira@ipoporto.min-saude.pt (C.P.); emilia.sousa@ipoporto.min-saude.pt (M.E.S.);
ines.godinho@ipoporto.min-saude.pt (I.G.)

5 Pathology and Experimental Therapeutic Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP
(Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive
Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal

6 Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP),
Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal

7 Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília,
1400-038 Lisbon, Portugal; silvia.batista@research.fchampalimaud.org (S.B.);
bruno.costadasilva@research.fchampalimaud.org (B.C.-S.)

8 Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
* Correspondence: ana.luisa.teixeira@ipoporto.min-saude.pt; Tel.: +351-225-084-000 (ext. 5410)
† These authors contributed equally to this work.

Simple Summary: The metastatic spread of tumor cells to the liver is one of the most common
causes of mortality in CRC. Extracellular vesicles are currently considered vehicles of metastization,
playing a role in the modification of the recipient cell’s phenotype. LAT1 and ASCT2 are amino
acids transporters associated with increased proliferation in CRC. This study analyzed the effect of
LAT1 and ASCT2 mRNAs derived from CRC-EVs in the phenotype modulation of recipient cells. In
this study we demonstrate LAT1-EVs mRNA involvement in recipient cells’ phenotype modulation,
conferring advantages in cell migration and proliferation.

Abstract: Colorectal cancer (CRC) is the third most common cancer in the world and represents the
third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment
of diagnosis, the liver being the most common site of metastization. Therefore, the development of
new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters,
LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis.
Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability
to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this
study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in
phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8).
We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by
recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1
mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity
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and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA
involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.

Keywords: colorectal cancer (CRC); mRNAs; LAT1; ASCT2; extracellular vesicles (EV’s)

1. Introduction

Colorectal cancer (CRC) represents 10% of all diagnosed cancers, being the third most
frequent cancer worldwide [1]. According to World Health Organization (WHO), CRC
is also the third most deadly cancer [2]. In fact, patients that are diagnosed at advanced
stages of CRC present 5-year survival rates of 12%, compared to the 90% observed in
patients diagnosed at early stages of the disease [3]. However, approximately 15–25% of
CRC patients present a metastatic disease at diagnosis, with an increase to 50% during the
course of the disease. The liver is the most frequent initial site of metastases establishment,
and although extremally rare, kidney metastasis formation can also occur [4–7]. Therefore,
the definitions of new prognosis, follow-up molecular biomarkers and therapeutic agents
are imperative to improve CRC patients’ care and promote a more individualized and
precise follow-up.

In 2011, metabolic reprogramming was defined as a cancer “hallmark”, being essen-
tial to support tumor cells’ growth and progression in response to altered microenviron-
ments [8]. In fact, cancer cells present plasticity and adaptative capacity in response to
microenvironment alterations to continue to proliferate and adapt to dynamic changes, the
amino acid (AA) bioavailability being an important necessity to answer the high demand
of nutrients during the cancer progression [9]. Thus, solute carriers’ transporters (SLCs)
present a key role in CRC progression, since these transmembrane carriers are involved
in the transport of several solutes such as AA, lipids and inorganic solutes, participating
in key carcinogenesis processes, such as proliferation, apoptosis, invasion and metastases
formation [10,11].

Recently, the overexpression of some AA transporters was associated with the in-
creased AA demand of cancer cells [12]. LAT1 and ASCT2 are two of the SLCs deregu-
lated during CRC progression [10,13,14]. LAT1 is a sodium (Na+) and pH independent
transporter, involved in the essential amino acids’ (EAAs) transport [14–16]. It forms a
heterodimer complex with CD98 to import large and neutral AAs, in exchange for the
efflux of intracellular substrates, including EAAs and glutamine [12,15–17]. On the other
hand, ASCT2 is a Na+ and pH dependent transporter, responsible for the transport of
glutamine inside of cells [18–21]. The overexpression of LAT1 and ASCT2 is related with
patients’ poor prognosis [18,22–24]. Furthermore, the upregulation of LAT1 is frequently
observed in CRC, liver and kidney cancers [15,16,22,24–26], and its knockdown has been
associated with the reduction of leucine uptake and cell proliferation [16]. ASCT2 over-
expression has also been reported in several cancers, including breast, lung cancer and
hepatocellular carcinoma, and its expression levels were also associated with tumor depth
and the vascular invasion in KRAS-mutant CRC [27–31]. Interestingly, Toda and co-workers
observed that ASCT2-knockdown presents a more suppressive effect on cell growth than
glutamine depletion [27]. Namikawa and co-workers showed that the overexpression of
both transporters in hepatocellular carcinoma was associated with metastases development
and disease aggressiveness [32].

Extracellular vesicles (EV’s) have been recognized as key mediators of cell communi-
cation and microenvironment modulation. They can transfer molecular information (such
as DNA, RNA and protein) between cells and modify their phenotype [33]. EVs are small
nanovesicles surrounded by a membrane composed by a lipid bilayer and hydrophilic
proteins, being released by numerous cell types, both in physiologic and pathologic con-
ditions [34–38]. EVs play an important role in the pre-metastatic niche establishment,
promoting the upregulation of inflammatory molecules, immune suppression, increasing
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angiogenesis and vascular permeability, and determining organotropism metastases [39].
In fact, Chiba and co-workers have reported that the EVs secreted from human CRC cells
can transfer RNAs to liver cells, and modify their phenotype features, inducing invasion,
intravasation and metastatic capacity [40]. Thus, considering the EVs’ ability to modify
the phenotype of recipient cells, our aim was to analyze the effect of LAT1 and ASCT2
mRNA derived CRC-cells’ EVs on the phenotype modulation of recipient cells to clarify
their potential tropism.

2. Materials and Methods
2.1. Cell Culture

A panel of five cell lines was used: HCT 116 and HCA-7 (CRC cell lines), SK-HEP-1
and HEPG-2 (hepatocellular carcinoma cell lines) and HKC-8 (human-derived normal
renal proximal epithelial tubular cell line). HCT 116 and SK-HEP-1 cells were kindly
provided by the Biomedicine Department of Faculty of Medicine of Porto University
and HKC-8 was obtained from the Department of Genetics of University Medical Cen-
ter of Groningen. HEPG-2 cell line was provided by the Basic and Clinical Research on
Iron Biology Group from I3S. HCA-7 was obtained from American Type Culture Collec-
tion (ATCC® RRID: CVCL_0289). Briefly, HCT 116 cells were maintained in McCoy’s 5a
medium (Sigma-Aldrich®, St. Louis, MO, USA), supplemented with 2.2 g/L sodium bicar-
bonate (Merck®, Darmstadt, Germany), 6 g/L Hepes (Sigma-Aldrich®), 10% fetal bovine
serum (FBS) (Gibco-Thermo Fisher Scientific®, Waltham, MA, USA) and 1% of pen-strep
(penicillium-streptomycin mixture) (Gibco®, Thermo Fisher Scientific®). The SK-HEP-1
cells were maintained in RPMI medium (Sigma-Aldrich®), with 2.2. g/L sodium bicarbon-
ate (Merck®), 6 g/L Hepes (Sigma-Aldrich®), 10% FBS (Gibco®, Thermo Fisher Scientific®)
and 1% of pen-strep (Gibco®, Thermo Fisher Scientific®). The HCA-7 and HEPG-2 cells
were maintained in DMEM medium (Gibco®, Thermo Fisher Scientific®), supplemented
with 10% of FBS (Gibco®, Thermo Fisher Scientific®) and 1% of pen-strep (Gibco®, Thermo
Fisher Scientific®). Additionally, HKC-8 cells were maintained in DMEM/F12 medium
supplemented with ITS (Insulin-Transferrine-Selenum) (Sigma-Aldrich®), EGF (Epider-
mal Growth Factor) (Sigma-Aldrich®), Hepes buffer (Sigma-Aldrich®), pen-strep (Gibco®,
Thermo Fisher Scientific®) and hydrocortisone (Sigma-Aldrich®). The cell lines were kept
in an incubator at 37 ◦C with 5% of CO2. All cells were routinely tested for mycoplasma
presence every two weeks, being free from contamination.

2.2. EVs’ Isolation

The HCT 116 cell line was used as EVs’ producer. Briefly, the HCT 116 cell line was
cultured in the normal medium until it reached 80–90% of confluence. The medium was
then replaced by McCoy’s 5A supplemented with 10% of exosome-depleted (exo-free) FBS
(Thermo Fisher Scientific®) (McCoy’s Exo-free) for 48 h. Then, the cell culture medium was
harvested and centrifuged for 30 min at 3500 rpm at 4 ◦C. Subsequently, the supernatant
was filtered with a 0.22 µm filter (GE Healthcare WhatmanTM, Chicago, IL, USA). The
purified supernatant and the EV’s isolation reagent (Total Exosome Isolation Reagent)
(Thermo Fisher Scientific®) were mixed in a 2:1 proportion and incubated overnight at 4 ◦C.
The mixture was then centrifuged at 10,000× g, at 4 ◦C, for 1 h and the pellet (EVs’ fraction)
was resuspended in filtered PBS (Gibco®, Thermo Fisher Scientific®).

2.3. EVs’ Characterization

The HCT 116-EVs were analyzed for size distribution by the NS300 Nanoparticle Track-
ing Analysis (NTA) system (NanoSight—Malvern Panalytical, Malvern, UK). Samples were
pre-diluted in filtered PBS 1X (Gibco®, Thermo Fisher Scientific®) to achieve a concentration
within the range for optimal NTA analysis. Video acquisitions were made using a camera
level of 16 and a threshold between 5 and 7. Five to nine videos of 30 s were captured
per sample. Analysis of particle size distribution was performed with NTA software v3.4
(Figure 2A). EVs’ quantification in our isolates was made using a CFSE (Carboxyfluorescein
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succinimidyl ester) (ab113853—Abcam®, Cambridge, UK) staining protocol, optimized
for a conventional flow cytometer, using a BD FACS Canto II flow cytometer (BD Bio-
sciences, Franklin Lakes, NJ, USA). Before acquisition, an intensive distilled water cleaning
of the fluidic system of the cytometer was performed. We defined the cytometer settings
for EVs’ analysis using Megamix-Plus SSC beads (BioCytex, Marseille, France), a mix of
fluorescent beads of different diameters that cover a variety of microparticle size ranges
(0.16 to 0.40 µm) (Figure 2B) and use side scatter (SSC) as a size-related parameter. The
EVs’ suspension was stained with CFSE at a final concentration of 2 µM and incubated
in the dark at 37 ◦C for 45 min. Finally, EVs’ morphology and shape were analyzed by
Transmission Electron Microscopy (TEM) (Figure 2E).

2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The mRNA from all the cell lines and HCT 116-EVs was isolated using the GRS
Total RNA Kit- Blood & Cultured Cells (Gibco®, Thermo Fisher Scientific®), according
to the manufacturer’s protocol. When the cells reached a confluence of 80–90%, the
culture medium was collected for EVs’ isolation and, subsequently, 3 × 106 cells were
used for mRNA extraction. For each condition used in this study, the procedure was
replicated three times. The mRNA samples were used as templates for complementary
cDNA synthesis, using the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems®, Thermo Fisher Scientific®, Waltham, MA, USA), according to the man-
ufacturer’s protocol. The mRNA expression levels were analyzed by Real Time PCR
and the reactions were carried out on a StepOneTMqPCR Real-Time PCR machine, con-
taining 1X TaqmanTM Fast advanced master mix (Applied Biosystems®, Thermo Fisher
Scientific®), with 1X probes (TaqMan®mRNA Expression Assays: LAT1 (Hs01001186_m1),
ASCT2 (Hs01056542_m1), HIF1-A (Hs00153153_m1), EGFR (Hs01076078_m1), VEGFA
(Hs00900055_m1), CXCR4 (Hs00607978_s1) and cDNA sample (≈50 ng). B2M (Beta-2-
Macroglobulin (Hs99999907_m1)) was used as endogenous control for mRNA data normal-
ization and data analysis was made using StepOneTM Sofware v2.2 (Applied Biosystems®,
Thermo Fisher Scientific®). All quantification reactions were performed in duplicate and
negative controls were included in each run.

2.5. EVs’ Uptake Studies

The internalization of HCT 116-EVs by the recipient cells (HCA-7, SK-HEP-1, HEPG-2
and HKC-8) was analyzed through fluorescence analysis. Additionally, their impact in the
recipient cells was analyzed in terms of cell proliferation, migration capacity, transcription,
and protein levels.

Thus, 2 × 105 cells of recipient cells were seeded in a 6 multi-well plate and main-
tained, according to the conditions previously described. When the cells reached 60–70%
of confluence, the medium was changed to exo-free medium and the HCT 116-EVs were
administrated in two different concentrations: (1) 5.3 × 108 EVs/mL (HCT 116-EVs condi-
tion 1) and 15.9 × 108 EVs/mL (HCT 116-EVs condition 2).

2.5.1. EVs’ Uptake by Recipient Cells

Firstly, the HCT 116-EVs were labeled with 0.5 µL of CFSE membrane-permeable
fluorescent dye (ab113853—Abcam®), for 45 min, in the dark, at 37 ºC. Then, the labeled
HCT 116-EVs’ conditions 1 and 2 were resuspended in fresh culture medium and added to
the HCA-7, SK-HEP-1, HEPG-2 and HKC-8 cell lines which were cultured in cover slips in
6 multi-well plates, for 24 h. Subsequently, each well was washed with PBS 1X (Gibco®,
Thermo Fisher Scientific®), three times, and the cells were incubated with 4% paraformalde-
hyde for 15 min, followed by three washes with PBS 1X (Gibco®, Thermo Fisher Scientific®).
Then, 1 mL of DAPI (4′,6′-diamino-2-fenil-indol) (Thermo Fisher Scientific®) was added to
each well for 5 min to stain the cell’s nucleus. Finally, Kaiser’s glycerol gelatin (Merck®)
was added to the cover slip and then preparations were analyzed using an Olympus® IX51
microscope.



Biology 2022, 11, 145 5 of 18

2.5.2. Cell Phenotypic Assays

To evaluate the cell migration capacity, we performed a wound healing assay. Briefly,
2 × 106 cells of recipient cells were cultured, in a 6-multi well plate and, after 24 h, a
scratch was performed in the confluent cell monolayer and the HCT 116-EVs’ conditions
1 and 2 were added with 1.5 mL of exo-free medium. The scratch distances and wound
closure was evaluated using the beWound software (beWound-Cell Migration tool (Version
1.5)) [41]. The relative migration distances were calculated according to the following
formula: % of wound closure = 100 × (d0 − dt)/mean of d0, where d0 is the width of
cell wounds at time point 0 h, and dt is the width of cell wounds at different time points.
Additionally, in the moment of scratch closure, a proliferation assay was made. To analyze
cell proliferation, 2 × 105 recipient cells were plated per well in a 96 multi-well and, after
24 h, the HCT 116-EVs were administrated in the two concentrations (5.3 × 108 EVs/mL
and 15.9 × 108 EVs/mL), as described above. After 24 h of incubation, the WST-1 reagent
(Abcam®, Cambridge, United King) was added and incubated for 1 h and the absorbance
was read at 450 nm.

2.5.3. EVs’ Impact on Transcriptional Profile of Recipient Cells

To analyze the effect of EVs’ mRNA cargo in the recipient cells, 2 × 106 cells (of each
of the recipient cells analyzed) were seeded in a 6 multi-well plate and, after 24 h, the
medium was replaced by exo-free medium and the HCT 116-EVs’ conditions 1 and 2 were
administrated. Following 24 h, the cells were trypsinized and the total of 7 × 106 cells of
each cell line were recovered for mRNA extraction. The protocol used for mRNA extraction,
quantification, and analysis was as previously described in Section 2.4.

2.5.4. LAT1 and ASCT2 Protein Levels’ Analysis

To quantify the protein levels of LAT1 and ASCT2, we performed a Western blot assay.
For protein extraction, 2 × 106 cells were cultured in the respective culture medium. When
cells reached a confluence of 80–90%, they were trypsinized and centrifuged for 10 min at
2500× g, at 4 ◦C. The pellet was then lysed with 150 µL of RIPA buffer (Radioimmunopre-
cipitation Assay Buffer) (Santa Cruz Biotechnology®, Dallas, TX, USA) and supplemented
with 1.5 µL of phosphatase inhibitor cocktail (Thermo Fisher Scientific®). Subsequently,
the cell lysates were centrifugated for 15 min at 14,000× g, at 4 ◦C, and the supernatant
was recovered for protein quantification using a DC Protein Assay (BioRad Laboratories®,
Hercules, CA, USA), measuring the solution’s absorbance at 750 nm. The electrophoretic
separation of proteins (20 µg) was performed in Mini-Protean TGX Gels (4–20%) (BioRad
Laboratories®). The separated proteins were electrotransferred to polyvinylidene difluoride
(PVDF) membranes (BioRad Laboratories®) and blocked using 5% BSA (Albumin Bovine
Fraction V) (Enzytech®, Lisbon, Portugal) in Tris-buffered saline with Tween20 (TBS-T). Fol-
lowing on, the membranes were incubated with primary antibodies (LAT1 (5347S) (1:250)
(Cell Signaling Technology®, Danvers, MA, USA), ASCT2 (8057S) (1:800) (Cell Signaling
Technology®), GAPDH (1:800) (sc-365062) (Santa Cruz Biotechnology®)), overnight at
4 ◦C. Subsequently, the membranes were incubated with conjugated secondary antibod-
ies (anti-mouse (sc-2005) (1:10,000) (Santa Cruz Biotechnology®) and anti-rabbit (7074S)
(1:3000) (Cell Signaling Technology®)) for 1 h at room temperature. The chemiluminescence
was evaluated using ECLTM Prime Western Blotting System (CytivaTM, Amersham, UK),
according to manufacturer’s instructions. The experiment was replicated 2 times.

2.6. Statistical Analysis

Statistical analysis was made using IBM®SPSS®Statisticals for Windows v23. To
evaluate the statistic differences in the normalized expression levels of the mRNAs, the
2−∆∆Cq method, along with the Student’s t-test were used [42]. Data are expressed as
the mean ± standard error for each group. One-way analysis of variance was used to
analyze the difference between groups and the least significance difference test was used
for comparisons between two groups. p < 0.01 and p < 0.05 were considered to indicate a
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statistically significant difference. Additionally, GraphPad Prism 8 was used for graphical
presentation of the data.

3. Results
3.1. Cell Lines Transcriptional Profile Characterization

As previously mentioned, the transcriptional levels of LAT1 and ASCT2 mRNA were
quantified by real-time qPCR in the HCT 116, SK-HEP-1, HEPG-2, HCA-7 and HKC-8 cell
lines. Moreover, we also analyzed the levels of EGFR, VEGFA, CXCR4 and HIF1-A mRNAs,
considering their oncogenic potential role. We found higher expression levels of LAT1
mRNA in the HCT 116 cell line compared to SK-HEP-1 (p < 0.001) and HKC-8 (p = 0.001)
cell lines (Figure 1A). The HCT 116 cell line also presented higher levels of ASCT2 mRNA
compared to HCA-7 (p < 0.001), SK-HEP-1 (p < 0.001), HEPG-2 (p = 0.035) and HKC-8
(p < 0.001) (Figure 1A).
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Figure 1. The bars represent the fold change of the mRNAs’ expression, normalized to B2M. Expres-
sion levels shown are means of three technical replicates for each sample. (A) The graphs show the
increase of LAT1 and ASCT2 mRNA and (B) EGFR, VEGFA, CXCR4 and HIF1–A mRNAs expression
levels in HCT 116 cells, compared to the others cell lines in the analyzed panel. (Mean ± Std. Error,
** p < 0.001, * p < 0.05).

Regarding the EGFR mRNA levels, we also found an increase in the expression levels
in the HCT 116 cell line compared to the HEPG-2 (p < 0.001) and HKC-8 (p = 0.001) cell
lines. We also observed higher mRNA levels of VEGFA, CXCR4 and HIF1-A mRNAs in
the HCT 116 cell line compared to the SK-HEP-1 and HKC-8 cell lines. Concerning the
VEGF (p = 0.001) and HIF1-A (p = 0.020) mRNAs, higher levels were also found in the HCT
116 compared to the other CRC cell line, HCA-7. The HEPG-2 cell line presented lower
levels of CXCR4 (p = 0.002) mRNA compared to the HCT 116 (Figure 1B).

3.2. HCT 116-EVs’ Characterization

The EVs were characterized according to size, shape, and quantity. The NTA analysis
indicated that the vast majority of isolated EVs presented a mean size of 128 nm, which
is consistent with the size of small EVs (Figure 2A). These results are consistent with the
flow cytometry analysis, where were found the presence of EVs smaller than 160 nm
(Figure 2B–D). The Transmission Electron Microscopy (TEM) image (Figure 2E) shows
the variability of morphology presented in HCT 116-EVs. Additionally, we validated the
presence of LAT1, ASCT2, EGFR, HIF1-A, CXCR4 and VEGFA mRNAs in HCT 116-EVs
(Figure 2F).
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Figure 2. (A) NTA analysis of HCT 116-EVs showing the size distribution of EVs. (B) Megamix-Plus
SSC beads used to define the cytometer settings for EVs’ acquisition, with the following diameters:
0.5 µm (gate P1), 0.24 µm (gate P2), 0.20 µm (gate P3) and 0.16 µm (gate P4); (C) Fluorescent EVs
(approximately 2.6× 105/200 µL) as observed by flow cytometry from a sample of EVs isolate derived
from HCT 116 cell line stained with CFSE (gate P7); (D) Negative control of EVs isolate derived from
HCT 116 cell line without previous staining (gate P7). (E) Transmission electron microscopy (TEM) of
EVs derived from HCT 116 cell line (scale 200 nm). The TEM image was acquired in the Histology
and Electron Microscopy platform from I3S Porto using a Transmission Electron Microscope Jeol JEM
1400. (F) The bars represent the –∆Cq of the mRNAs’ expression, normalized to B2M. The graph
shows the presence of intracellular and EVs related mRNAs levels (LAT1, ASCT2, EGFR, HIF1-A,
CXCR4 and VEGFA) derived from HCT 116 cell line. (Mean ± Std. Error).

3.3. HCT 116-EVs’ Uptake Effect on HCA-7, SK-HEP-1, HEPG-2 and HKC-8 Recipient Cells

Firstly, we analyzed the internalization/uptake of HCT 116-EVs in HCA-7, HEPG-2,
SK-HEP-1 and HKC-8 recipient cell lines. As we can observe in Figure 3, the CFSE la-
beled HCT 116-EVs were internalized by all recipient cell lines (right images of Figure 3),
validating the concept of cellular communication through EVs’ networks.
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Figure 3. Representative immunofluorescence image shows the internalization of HCT 116-EVs
labeled with CFSE (green dye) by HCA-7, SK-HEP-1, HEPG-2 and HKC-8 cells. The cell’s nucleus is
stained with DAPI (blue dye). (10X Olympus® IX51 microscope).

We then evaluated the HCT 116-EV’s effect (condition 1: 5.3 × 108 EV’s/mL and
condition 2: 15.9 × 108 EV’s/mL) on cell proliferation and migration (Figure 4A–D) and
proliferation capacity (Figure 4G–J) of the recipient cells: HCA-7 (Figure 4A,G); SK-HEP-1
(Figure 4B,H); HEPG-2 (Figure 4C,I) and HKC-8 (Figure 4D,J).
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Figure 4. HCT 116-EVs’ uptake in HCA-7 (A), SK-HEP-1 (B), HEPG-2 (C) and HKC-8 (D), respectively,
affects cell migration capacity of recipient cells, with HCT 116-EVs condition 1 being able to induce
an increase in gap closure in SK-HEP-1 and HKC-8 recipient cells. Representative images of wound
healing assay in (E) SK-HEP-1 and (F) HKC-8 cells with internalization of HCT 116-EVs (conditions
1 and 2). Additionally, the HTC 116-EVs’ uptake induces a higher proliferation rate in receptor
cells SK-HEP-1 (H) and HKC-8 cells (J). However, this effect was not found in HCA-7 (G) or in
HEPG-2 (I). The represented phenotypic assays were replicated three times for each sample. The
statistical analysis was performed between the control group (recipient cells) and recipient cells after
uptake of HCT 116-EVs (condition 1 and condition 2) in cells, at the same time point. (Mean ± Std.
Error, ** p < 0.001, * p < 0.05). (E) Scale bar = 20 µm; (F) Scale bar = 50 µm.

The figures of the wound healing assays of all recipient cells can be observed in
the Supplementary Material (Figure S1). All the represented statistical analyses were
performed between the control condition (recipient cells) and the uptake internalization
(HCT 116-EVs 1 or HCT 116-EVs 2), at the same time point. According to the results, the
uptake of HCT 116-EVs 1 by the SK-HEP-1 (p = 0.002) and HKC-8 (p = 0.0017) cells was
able to induce a migration advantage with a significantly higher percentage of wound
closure when compared with the control condition (Figure 4A,C,D). Moreover, we also
observed that the uptake of HCT 116-EVs condition 1 was able to induce a higher migration
capacity in SK-HEP-1 in comparison to the internalization of HCT 116-EVs condition 2.
Additionally, we also saw the effect of HCT 116-EVs condition 2 in HKC-8 cells, with
an increase of their proliferation and migration capacity. Concerning HEPG-2 cells, we
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observed cell detachment in HCT 116-EVs condition 2, which did not allow the analysis
of this experimental condition. Regarding the HCA-7 cells, after 48 h of the HCT 116-EVs’
incubation, an increase of migration capacity was observed, when compared to the control
condition.

The proliferation results are in agreement with the results observed for the migration
capacity since we observed a higher proliferation rate in SK-HEP-1 (p < 0.001) after HCT
116-EVs condition 1’s uptake (Figure 4B). Additionally, there was also a significant increase
of proliferation capacity of SK-HEP-1 (p = 0.003) and HKC-8 (p = 0.002) after stimulus with
HCT 116-EVs 2. Thus, these results demonstrated that HCT 116-EVs promote cell migration
capacity and proliferation of specific recipient cells, namely of SK-HEP-1 and HKC-8.

Considering the impact of the EVs’ cargo on recipient cells, we also analyzed the effect
of HCT 116-EVs on the transcriptional profile of the different recipient cells (Figure 5).
In SK-HEP-1 cell line, we observed an increase of LAT1 (p = 0.049) mRNA levels after
HCT 116-EVs 1’s uptake, and a decrease of VEGFA mRNA levels (p < 0.001) after HCT
116-EVs 2’ uptake (Figure 5B,F). Concerning the effect of the EVs’ uptake in the HKC-8
cell line (Figure 5D,H), we observed a decrease of HIF1-A (p = 0.019) mRNA levels after
HCT 116-EVs 2’s uptake. Regarding the other cell lines, we did not find any statistically
significant differences after HCT 116-EVs’ uptake.
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Figure 5. The bars represent the fold change of the mRNAs expression, normalized to B2M. Vari-
ation of levels of LAT1, ASCT2, EGFR, VEGFA, CXCR4 and HIF1-A mRNAs in recipient cells after
HCT 116-EVs’ uptake. Three biological replicates of each cell line were used for this experiment.
(A,C,E,G) The graphs demonstrate that the HCT 116-EVs condition 1’s uptake leads to an increase of
LAT1 mRNA expression level by SK-HEP-1 cells. (B,D,F,H) Additionally, the HCT 116-EVs condition
2’s uptake decreases the expression level of VEGFA mRNA in SK-HEP-1 recipient cells. In HKC-8
recipient cells, the HCT 116-EVs condition 2 uptake induces a decrease of HIF-1A mRNA expression
level. (Mean ± Std. Error, ** p < 0.001, * p < 0.05).
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Regarding the protein levels, the bands were quantified, as exemplified in Figure 6E,F.
According to the results, we found a decrease of LAT1 and ASCT2’s protein level, when the
HCA-7 cells were submitted to HCT 116-EVs’ (conditions 1 and 2) stimulus (Figure 6A,E).
Concerning the SK-HEP-1 cells, we observed an increase of LAT1’s protein level after
stimulus with HCT 116-EVs 1, compared to the control condition (Figure 6B,E). We also
observed a change in the glycosylation status of ASCT2 after HCT 116-EVs’ (conditions
1 and 2) stimulus in SK-HEP-1 cells, which led to ASCT2’s protein expression in its non-
glycosylated form, contrary to what happens in the control condition, where the ASCT2
protein is expressed in its glycosylated form. In HEPG-2 cells, we detected an increase of
LAT1’s protein levels, and a decrease of ASCT2’s protein levels (Figure 6C,F). Additionally,
we also found that in HCA-7 and HEPG-2, the glycosylation pattern of ASCT2 didn’t
change after the EVs’ uptake, the ASCT2 protein being expressed mostly in its glycosylated
form. In the HKC-8 cell line, we observed that the uptake of HCT 116-EVs (conditions
1 and 2) decreased LAT1’s protein levels compared to the control condition. Regarding
ASCT2, we found an increased trend of the protein levels after HCT 116-EVs 1 stimulus.
Furthermore, we observed that in the HKC-8’s basal condition and after HCT 116-EVs
(1 and 2) stimulus, the ASCT2 expression is mostly expressed in its non-glycosylated form
(Figure 6D,F).
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and HCT 116-EVs’ uptake effects in (A) HCA-7, (B) SK-HEP-1, (C) HEPG-2 and in (D) HKC-8 cell
lines. Fold-change of the pixels’ volume adjusted intensity of (E) LAT1 and (F) ASCT2 protein
levels, in recipient cells after HCT 116-EVs’ uptake. The bands show that HCT 116-EVs condition
1 internalized by SK-HEP-1 induce an increase of LAT1 protein level. Similarly, in HEPG-2 recipient
cells, after HCT 116-EVs’ (condition 1 and 2) uptake, there is an increase of LAT1 protein levels. On
the other hand, the internalization of HCT 116-EVs 1 by HKC-8 cells leads to an increase of ASCT2
protein levels.

4. Discussion

One of the major concerns of CRC management is the fact that a high number of
patients are diagnosed in advanced stages of disease, and that, in 50% of patients diagnosed
with local diseases, metastasis eventually develops. In 30–50% of CRC patients, the liver
is the predominant site of metastatic disease, in consequence of its drainage from the
gastrointestinal tract [4,6,43,44]. In these cases, the only curative approach is surgery.
However, a limited number of patients are considered eligible [44].

It is well established that the tumor microenvironment represents a complex network,
in which tumor cells communicate with others cell types, including fibroblasts, endothelial
cells and immune cells [45,46]. In recent years, the scientific community have focused on
EVs’ intercellular communication role, and their potential as vehicles and mediators of
cell communication and cellular microenvironment modulation has already been demon-
strated [47,48]. Studies demonstrated that cancer derived EVs participate in critical steps
of pre-metastatic niche formation in the primary tumor by delivering cargo to recipient
cells in target organs [39,49]. The pivotal role of EVs in regulating several immune-related
pathways leading to activation, differentiation and expression of immune cells and mod-
ulation of the tumor microenvironment has already been demonstrated, as well as its
significant role in CRC progression and metastasis [50]. Increasing evidence shows that
mRNAs can be transferred to the surrounding microenvironment, via EVs’ pathways, and
influence the metabolism of recipient cells to favor cancer progression [49,51]. In fact,
according to Chiba and colleagues, EVs derived from three CRC cells (HCT-15, SW480 and
WiDr) showed the capacity to transfer mRNAs into 2D A549 cells (lung cancer cells) and
HEPG-2 cell lines, validating that EVs-derived RNAs can be shuttled between cells, and
can be involved in the regulation of gene expression in recipient cells [40]. Furthermore,
Shao and co-workers described that CRC derived EVs present a pivotal role in promoting
liver metastasis, by inducing a premetastatic niche through miR-21-TLR7-IL-6 axis [43].
These authors described that CRC-EVs can specifically target liver tissue and induce liver
macrophages toward an IL-6 proinflammatory phenotype [43]. Additionally, the study
mentions miR-21 as highly enriched in CRC-EVs, this miRNA being essential for creating
a proinflammatory phenotype in the liver and creating liver metastasis in CRC [43]. Fi-
nally, the authors also demonstrate that silencing either miR-21 in CRC-EVs, or TLR-7 in
macrophages, abolished the CRC-EVs’ induction of proinflammatory macrophages [43].
Costa-Silva and co-workers described, for the first time, the sequential steps responsible
for the formation of liver pre-metastatic niches (LPMN) supportive of PC metastasis, which
involved binding of Macrophage Migration inhibitory factor (MIF)+ PC-derived EVs to
liver Kupffer cells, followed by TGF-β production by these cells. TGF-β, in turn, promoted
fibronectin production by hepatic stellate cells, that supported the accumulation of bone
marrow-derived macrophages, completing the LPMN formation [52]. More recently, Xuan
and colleagues reported that EVs derived from breast cancer contribute to pre-metastatic
niche formation and promote bone metastasis of tumor cells [53]. This process is mediated
by EVs derived from breast cancer cells (SCP28 and MDA-MB-231 cells), which promote
osteoclast differentiation and enhance bone metastasis [53]. Therefore, these studies suggest
the role of EVs in metastasis establishment, through the transfer of biomolecular cargo,
presenting a great potential to be used as predictive targets.

Nevertheless, there is still no evidence in the literature about the influence of LAT1 and
ASCT2 mRNAs derived from CRC-EVs in CRC progression and metastasis, even though
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they play an important role in the growth and survival of CRC cancer cell lines, since they
ensure the rapid exchange of AA and the maintenance of an AA pool in the cytosol [54]. In
this study, we detected for the first time the presence of LAT1, ASCT2 and other oncogenic
mRNAs on CRC-EVs, as well as their capacity to modify the transcriptional profile and
phenotypic characteristics of recipient cell lines. Moreover, we showed the presence of
EGFR, VEGFA, CXCR4 and HIF1-A mRNAs in CRC-EVs, which is in agreement with
several evidences that support the involvement of these molecules in CRC development
and metastases formation [26,55–64]. The overexpression of EGFR, HIF-1α and VEGFA has
been described in CRC, being associated with poor prognosis, aggressiveness, and a higher
potential of metastases formation [59,62,65]. Moreover, CXCR4 is also correlated with poor
histological differentiation, distant metastasis and lymph node metastasis, being its higher
levels associated with poor prognosis in CRC patients [66].

Thus, we hypothesize that the incorporation of these molecules on EVs are essential to
trigger the establishment of a microenvironment that supports the metastases’ formation.
In fact, we observed an increase of LAT1 and a decrease of VEGFA mRNAs in SK-HEP-1,
and an increase of HIF1-A mRNA levels in HKC-8 cells after stimulus with HCT 116-
EVs. These molecular changes may be associated with the release of pro-inflammatory
cytokines such as IL-6, leading to an inflammatory process which is influenced by cellular
metabolism and hypoxia [67]. In fact, Quan and colleagues, showed that LAT1 was
required for angiogenic processes, since VEGFA’s stimulus induced LAT1 overexpression
that consequently triggered angiogenesis [68]. On the other hand, Shi and co-workers
describe that, in non-small cell lung cancer, the expression of LAT1 is correlated with
HIF1-A levels [69,70]. Therefore, according to our results, we can assume that an increase in
HIF-1A and hypoxia leads to an increase of LAT1 expression [70]. Interestingly, the increase
of LAT1 mRNA in the SK-HEP-1 cell line, after HCT 116-EVs’ uptake, was able to support
the high demand of amino acids by these cells. In fact, the increase of LAT1 mRNA in
SK-HEP-1 translated into the increase of LAT1 protein expression, cell proliferation, as
well as in the invasion capacity of these cells. Wang and co-workers had already reported
higher protein levels of CXCR4 in the liver of the HT-29-derived exosome-treated Caco-2-
implanted mice [71].

Interestingly, we also observed that the internalization of different concentrations
of HCT 116-EVs cause different effects in recipient cells. In fact, we observed that SK-
HEP-1 cells reach a saturation peak after HCT 116-EVs condition 1’s stimulus for around
24 h. Additionally, we also saw that there is a dose dependency of EVs administrated
to SK-HEP-1 recipient cells, since the migration and proliferation capacity displayed a
strong dose dependence with a minimal effective dose of 5.3 × 108 EVs/mL (HCT 116-EVs
condition 1). Similarly, Franzen and colleagues also demonstrated that the EVs’ uptake
by recipient cells is time and dose dependent, a peak of EVs’ internalization occurring
before the 24 h of incubation [72]. These authors described that the recipient cells reached
a saturation point of exosomes internalization after 14 h, however, after 24 h of stimulus
the authors demonstrated that exosomes continued to be taken up by cells [72]. Similarly,
Jurgielewicz and co-workers also describe that HEK293T-EVs’ uptake is time and dose
dependent, the peak of uptake being around 12 h [73]. Moreover, the authors also report
that after a dose of 6000 EVs/cell are taken up by HEK293T recipient cells, these reach a dose
saturation limit [73]. Jurgielewicz and co-workers also report that since EVs have shown
to be internalized then released after 24 h, longer incubations may generate inaccurate
internalizations readouts [73]. In fact, after 48 h of incubation with HCT 116-EVs condition
2, the results of migration and proliferation assays in HKC-8 cells seem to be inconsistent,
which could be consequence of the long EVs’ incubation period, and could be associated in
an inaccurate internalization readout.

Considering the key role of LAT1 during CRC progression, and specially the capacity
of tumor cells to encapsulate mRNA molecules inside EVs to modulate the surrounding
microenvironment, the development of pharmacological strategies based on the inhibition
of LAT1 could be promising for CRC patients’ management. In fact, Okano and co-workers
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have already reported that JPH203, a LAT1 inhibitor, demonstrated potential to be used for
CRC patients’ treatment [23]. In a phase I study, JPH203 treatment was well tolerated by
patients and led to disease control in two of the six CRC patients and in three of the five
patients with biliary tract cancer [23].

The upregulation of LAT1 mRNA could also be associated with changes in the ASCT2
glycosylation pattern. In fact, a study performed by Polet and colleagues reports that
glucose availability regulates the glycosylation of ASCT2 [74]. The authors describe that
inhibition of glucose metabolism prevents ASCT2 glycosylation and promotes LAT1 up-
regulation as a countertrading mechanism of glycosylation’s inhibition [74]. We observed
a change in the ASCT2 glycosylation pattern after HCT116-EVs stimulus. The changes
previously described in SK-HEP-1 were also followed by changes in ASCT2 protein’s
conformation, that changed to a non-glycosylated form. This may be due to the fact that
HCT 116-EVs stimulate metabolic deregulation of SK-HEP-1 cells, which could lead to an
increase of glucose consumption by these cells, and consequently, lead to a change of the
glycosylation status of the ASCT2 protein.

In conclusion, the present study supports the role of CRC-EVs as key mediators of
tumoral progression, supporting a proangiogenic and proliferative microenvironment
establishment.

5. Conclusions

Our results uncovered an additional role of EVs in aggressive phenotypes of CRC,
through the transference of LAT1 mRNA, with a phenotypic impact on cell proliferation and
invasion capacity. Moreover, future studies should consider the replication of this in vitro
study in a three-dimensional (3D) cell culture model to validate the cellular response to HCT
116-EVs’ stimulus. These models provide more physiologically information and predictive
data for in vivo tests since they mimic the biological conditions. In 3D cell culture models,
cancer cells can maintain the shape, polarity and the heterogeneity observed in vivo. On
the other hand, after the cell culture validation it will be crucial to check the influence of
the HCT 116-EVs in animal models, to elucidate the role of this structure in the metastasis
formation and clarify the metastatic routes of CRC. One possible approach to validate the
hypothesis raised in this study may be to study if the inoculation of HCT 116-EVs only
presents tropism for liver and kidney cells, or if they are able to affect the proliferation and
migration capacity of cells from other organs. Additionally, it would also be interesting
to validate our findings in CRC patients’ plasma EVs to evaluate the biomarker potential
of CRC EVs-derived mRNA, especially LAT1, in patients’ prognoses and follow-ups. The
validation of the biomarker potential of CRC EVs-derived mRNAs would be useful for
liquid biopsies’ implementation and the development of new therapeutic approaches for
CRC.
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(B) SK-HEP-1, (C) HEPG-2 and (D) HKC-8 recipient cells, with respective uptakes of HCT 116-EVs (1
and 2), in the different time points. Figure S2: Representative original images of Western Blot assay in
(A) HCA-7, HEPG-2, (B) SK-HEP-1 and (C) HKC-8 recipient cells, with respective uptakes of HCT
116-EVs (1 and 2).
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