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Abstract
Background and objective:  Interactions of long non-coding ribonucleic acids (lncRNAs) with micro-ribonucleic acids (miR-
NAs) play an essential role in gene regulation, cellular metabolic, and pathological processes. Existing purely sequence based 
computational approaches lack robustness and efficiency mainly due to the high length variability of lncRNA sequences. 
Hence, the prime focus of the current study is to find optimal length trade-offs between highly flexible length lncRNA 
sequences.
Method  The paper at hand performs in-depth exploration of diverse copy padding, sequence truncation approaches, and 
presents a novel idea of utilizing only subregions of lncRNA sequences to generate fixed-length lncRNA sequences. Further-
more, it presents a novel bag of tricks-based deep learning approach “Bot-Net” which leverages a single layer long-short-
term memory network regularized through DropConnect to capture higher order residue dependencies, pooling to retain 
most salient features, normalization to prevent exploding and vanishing gradient issues, learning rate decay, and dropout to 
regularize precise neural network for lncRNA–miRNA interaction prediction.
Results  BoT-Net outperforms the state-of-the-art lncRNA–miRNA interaction prediction approach by 2%, 8%, and 4% in 
terms of accuracy, specificity, and matthews correlation coefficient. Furthermore, a case study analysis indicates that BoT-
Net also outperforms state-of-the-art lncRNA–protein interaction predictor on a benchmark dataset by accuracy of 10%, 
sensitivity of 19%, specificity of 6%, precision of 14%, and matthews correlation coefficient of 26%.
Conclusion  In the benchmark lncRNA–miRNA interaction prediction dataset, the length of the lncRNA sequence varies from 
213 residues to 22,743 residues and in the benchmark lncRNA–protein interaction prediction dataset, lncRNA sequences vary 
from 15 residues to 1504 residues. For such highly flexible length sequences, fixed length generation using copy padding 
introduces a significant level of bias which makes a large number of lncRNA sequences very much identical to each other 
and eventually derail classifier generalizeability. Empirical evaluation reveals that within 50 residues of only the starting 
region of long lncRNA sequences, a highly informative distribution for lncRNA–miRNA interaction prediction is contained, 
a crucial finding exploited by the proposed BoT-Net approach to optimize the lncRNA fixed length generation process.
Availability:  BoT-Net web server can be accessed at https://sds_genetic_analysis.opendfki.de/lncmiRNA/.
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1  Introduction

Understanding physiological and biological functionalities 
of known non-coding ribonucleic acids (ncRNAs) [44, 61] 
and discovering new types of ncRNAs are important fields 
of interest in genetic research [22, 57]. Long ncRNAs (lncR-
NAs) and micro-RNA (miRNAs) are sub-classes of ncRNAs 
which are found to play an important role in a variety of 
biological processes [72]. MiRNAs contain 17 to 25 residues 
and contribute significantly to post-transcriptional regula-
tion of gene expression [81, 95]. Unlike miRNAs, lncRNAs 
sequence lengths largely vary from 200 to 23,000 residues 
[30]. LncRNAs are involved in epigenetic, transcriptional, 
post-transcriptional regulation of gene expression [83, 98], 
chromatin remodeling [39, 64], as well as activation or 
repression of immune responses [42]. Despite their differ-
ences, both ncRNAs have strong relations with each other 
and are responsible to direct many biological processes [72, 
86].

LncRNAs and miRNAs play significant roles in cell dif-
ferentiation and proliferation [63]. Furthermore, growing 
evidences show that the interaction between lncRNAs and 
miRNAs plays an imminent role in gene regulation [77], 
cellular metabolic processes [77], development of cardio-
vascular diseases, Alzheimer, Liver fibrosis, and Cancer 
[5, 38]. LncRNAs can act as sponges to control the func-
tionality of miRNAs, whereas miRNAs can act as decoys 
and trigger the decay of lncRNAs [67]. Identification of 
lncRNA–miRNA interactions is essential to understand the 
function of lncRNAs, miRNAs, and their role in biologi-
cal and pathological processes [29, 67]. A detailed under-
standing of lncRNA–miRNA interactions paves way for 
biomarker discovery and the development of therapeutics.

Although experimental methods such as affinity purifica-
tion [32], ChIP-PCR [89], and Double-Luciferase Reporter 
assays [89] are successfully used to detect lncRNA–miRNA 
interactions. They tend to be costly, labour intensive, time-
consuming and prone to errors [82]. With the tremendous 
success of deep neural networks in Computer Vision [69], 
Natural Language Processing [56], and Bioinformatics 
[88], a number of computational methodologies have been 
presented to infer the interaction between lncRNAs and 
miRNAs. These approaches utilize either known intrin-
sic information of lncRNA and miRNA sequences such 
as expression profile similarity-based network, function-
ality similarity-based network or raw sequence informa-
tion. For example, considering that lncRNAs and miRNAs 
with similar expression profiles are more likely to interact, 
Huang et al [25] developed a group-preference Bayesian 

collaborative filtering (GBCF) predictor for predicting the 
interaction between lncRNAs and miRNAs. GBCF evalu-
ation was performed using biological functionality-based 
lncRNA–miRNA similarity, expression profile-based simi-
larity, and sequence similarity-based features. Empirical 
evaluation indicated that GBCF achieved better performance 
using expression profile-based similarity features followed 
by biological functionality-based similarity features. Huang 
et al [23] developed an expression profile-based classifier 
(EPLMI) that leveraged gene-based miRNA similarity 
and functional relatedness of lncRNA to infer potential 
lncRNA–miRNA interactions.

Huang et al. [26] presented a graph-convolution auto-
encoder-based deep learning model namely “GCLMI” that 
used expression profiles of lncRNAs and miRNAs. Using 
expression profiles of lncRNAs and miRNAs, Wang et al. 
[75] developed a deep learning model LMI-DForest that first 
learned the latent space of miRNA and lncRNA sequences. 
Then, compressed latent space representation was passed to 
a deep forest network to predict potential lncRNA–miRNA 
interactions. Zhao et. al [99] presented LMMAN built 
upon molecular association graphs to infer interactions 
among LncRNAs–miRNAs. To construct molecular asso-
ciation graphs, known relationships between lncRNAs, 
miRNAs, diseases, and drugs were integrated together. 
Afterwards, a large-scale information network embedding 
(LINE) approach was utilized to acquire network behaviour 
related features of miRNA and lncRNA nodes. Finally, a 
random forest predictor was used to infer potential inter-
actions among miRNA and lncRNA sequences. Similarly, 
there exist several other lncRNA–miRNA interaction pre-
diction approaches that leverage known intrinsic infor-
mation of lncRNA and miRNA sequences to determine 
lncRNA–miRNA interaction in various species [6, 14, 19, 
20, 43, 43, 74, 78, 90, 91, 93, 96, 97, 100–103].

On the other hand, computational approaches that solely 
utilize sequence information, have also been proposed for 
lncRNA–miRNA interaction prediction task. Kang et al. 
[33] fed RNA sequences and 110 sequence-specific features 
to a hybrid model named as PmliPred. PmliPred utilized 
a random forest and bi-directional gated recurrent unit for 
the inference of lncRNA–miRNA interactions. However, 
the bottleneck issue of PmliPred is the manual extraction 
of sequence-related features that require extensive time 
and expert knowledge. In addition to substantial manual 
effort, it is also likely that the selected features may not 
perform well for the identification of interactions between 
biomolecules of different species [58]. Zhou et al. [104] 
presented an ensemble-graph embedding approach (GEEL) 
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that leveraged known interactions and the linear neighbor-
hood similarity technique to generate a lncRNA–miRNA 
interaction network. Using this network, they developed 4 
graph embeddings namely Laplacian Eigenmaps, GraRep, 
DeepWalk, High-order closeness reserved embeddings, and 
a graph-based auto-encoder to learn a rich statistical repre-
sentation of LncRNA and miRNA sequences represented 
as nodes in the graph. Using developed embeddings and 
random forest estimator, GEEL predicted the interactions 
between miRNAs and lncRNAs. Recently, Yang et al. [82] 
presented another sequence information-based predictor 
LncMirNet. LncMirNet combined physico-chemical prop-
erty-based encoding learned through composition transition 
distribution with residue frequency-based encoding learned 
using doc2vec embedding generation approach. To gener-
ate an aggregated matrix for differently learned sequence 
features, histogram-dd approach was employed. Finally, the 
constructed matrix was passed to a convolutional neural net-
work (CNN) which inferred the potential LncRNAs–miR-
NAs interactions.

Critical analysis of existing computational approaches 
indicates that for expression profiles similarity-based 
lncRNA–miRNA interaction prediction approaches [23, 
25], a tremendous amount of expression profiles of diverse 
human tissues and cell lines need to be collected to achieve 
decent predictive performance [82]. Although data related 
to the biological profiles of lncRNA and miRNA are consist-
ently accumulated, however, considering the dynamic nature 
of regulatory mechanisms of lncRNAs and miRNAs, it is 
not feasible to develop a complete lncRNA–miRNA interac-
tion network. This is why expression profile similarity-based 
approaches are not applicable to novel lncRNA–miRNA 
pairs, expression profiles of which may not have any links 
within the known lncRNA–miRNA interaction network 
[23]. Furthermore, such approaches are not adaptable for a 
large community of researchers as the collection of compre-
hensive biological information requires extensive time and 
controlled environments. On the other hand, graph-based 
lncRNA–miRNA interaction prediction approaches lack in 
ability to handle intrinsic features of miRNAs and lncRNAs, 
including sequence and structural information.

In contrast, purely sequence information-based compu-
tational lncRNA–miRNA interaction prediction approaches 
are more promising as they are scalable and widely adapt-
able. The main focus of existing sequence information-
based computational predictors has been to effectively 
encode the relationships that exist between the residues of 
lncRNA and miRNA sequences. However, existing compu-
tational approaches show limited performance and a lack 
of robustness primarily due to the huge fluctuation in the 
length of lncRNA sequences. Just like usual deep learning 
approaches, state-of-the-art method LncMirNet [82] oper-
ates on fixed-size lncRNA–miRNA sequence pairs. Unlike 

miRNA sequences, lncRNA sequences are of highly variable 
lengths and to generate a homogeneous representation of 
such sequences, fluctuation in sequence length is handled 
by truncating the sequences to the minimum/average length 
(sequence truncation trick) or mapping them to maximum 
sequence length (copy padding trick). Considering the 
extreme length variability of lncRNA sequences, sequence 
truncation to the minimum or average length loses impor-
tant information related to discriminative residue distribu-
tion. However, copy padding trick introduces a substantial 
bias through the addition of too many zeros especially in 
low-dimensional sequences which eventually makes a large 
number of lncRNA sequences very much identical to each 
other. This phenomenon largely deteriorates the classifier 
[82] ability to distinguish various lncRNAs which eventually 
derail lncRNA–miRNA interaction prediction performance.

Instead of feeding entire lncRNA sequences to a deep 
learning model [82, 104], here we investigate which region 
of lncRNA sequences (e.g starting region, ending region, 
starting–ending region) contains the most informative 
residue distribution for interaction prediction. A rigorous 
experimentation with benchmark dataset is performed to find 
and retain sub-sequences that can precisely capture the bio-
logical essence of very flexible and long lncRNA sequences. 
Optimal lncRNA sub-sequences are combined with com-
plete miRNA sequences and passed to a newly developed 
bag of tricks-based neural network (BoT-Net). BoT-Net does 
not rely on expensive knowledge graphs, expression profiles, 
regulatory functionalities, or sequence similarity metrics 
to better understand the correlations of lncRNA–miRNA 
sequences. BoT-Net leverages a single layer long short-
term memory network regularized through DropConnect to 
effectively capture long-range dependencies of higher order 
residues, three kinds of pooling strategies to retain most dis-
criminative features, normalization to prevent exploding and 
vanishing gradient issues, learning rate decay, and dropout to 
avoid over-fitting. Using only sequence information, smart 
integration of multiple extremely effective deep learning 
tricks [17, 28, 31] help BoT-Net capture local and global 
dependencies of higher order residues, converge faster, and 
reduce the generalizability error for lncRNA–miRNA inter-
action prediction.

Rich performance comparison of traditional copy pad-
ding, sequence truncation, and sub-sequence generation 
approaches is performed using the benchmark dataset to 
indicate the discriminative potential of different regions of 
lncRNA sequences for lncRNA–miRNA interaction predic-
tion. Furthermore, a detailed performance comparison of the 
proposed BoT-Net with existing sequence information-based 
computational lncRNA–miRNA interaction predictors over 
a benchmark dataset indicates that BoT-Net methodology 
outperforms the state-of-the-art approach by 2%, 4%, and 8% 
in terms of accuracy, matthews correlation coefficient, and 
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specificity solely using few residues from the starting region 
of long lncRNA sequences. Furthermore, a case study analy-
sis indicates that BoT-Net methodology manages to retain 
promising performance trends on a different benchmark 
dataset namely RP1369 [105] for the task of lncRNA–pro-
tein interaction prediction, achieving the top accuracy of 
73% and outperforming state-of-the-art lncRNA–protein 
interaction predictor [105] by 10% using few residues from 
only starting region of lncRNA and protein sequences. 
Considering the unique design of BoT-Net methodology, 
we anticipate that the paradigm of keeping only the most 
informative residue distribution-based sub-sequences will 
open new horizons for interaction inference research related 
to other non-coding RNAs.

2 � Methods

This section illustrates the proposed lncRNA–miRNA inter-
action prediction methodology (BoT-Net), benchmark data-
set, and evaluation metrics used to evaluate the integrity of 
BoT-Net.

2.1 � BoT‑Net: a bag of tricks‑based neural network 
for efficient lncRNA–miRNA interaction 
prediction

For the interaction prediction problem, there exist two para-
digms for the development of a deep learning-based end-to-
end predictor. One paradigm promotes the development of 
a multi-head neural network in which miRNA sequences are 
passed at one head and lncRNA sequences are passed at the 
second head [73]. Both heads extract features from differ-
ent sets of sequences which are concatenated before passing 
to the final classification layer [73]. Whereas, the second 
paradigm combines lncRNA and miRNA sequences to for-
mulate lncRNA–miRNA sequence pairs where every pair 
is treated as a single instance. These pairs are passed to a 
single head neural network which extracts important features 
before passing forward to the final classification layer [35]. 
In the proposed BoT-Net methodology, we use a single-head 
neural network to distinguish interactive lncRNA–miRNA 
pairs from non-interactive lncRNA–miRNA pairs.

Workflow of proposed lncRNA–miRNA interaction pre-
diction methodology “BoT-Net” can be segregated into three 
different modules. First, it generates fixed-length sequences 
using traditional copy padding or sequence truncation tricks 
as well as sub-sequences based on the highly informative 
and discriminative distribution of residues. Paradigms of 
four different fixed-length sequence generation approaches 
are illustrated at top of the Fig. 1, a precise description 
of which is given in the Sect. 2.1.1. Second, it generates 
higher order residues of lncRNA–miRNA sequences, whose 

statistical representation is learned using randomly initial-
ized neural embeddings based on normal distribution where 
the embedding matrix is optimized using two different kinds 
of dropout strategies. Precise workflow of mapping higher-
order residues into vector space is depicted in the middle of 
the Fig. 1, details of which are given in Sect. 2.1.2. Using the 
statistical representation of most informative lncRNA sub-
sequence-based fixed-length lncRNA–miRNA pairs, in the 
final module, a bag of tricks-based precise neural network 
is trained. The workflow of final module is demonstrated at 
bottom of the Fig. 1, detailed description of classifier and 
optimization components is given in Sect. 2.1.3 and follow-
ing sub-sections.

2.1.1 � Fixed length generation of lncRNA–miRNA sequences

Deep learning approaches require a fixed-length repre-
sentation of genomic sequences to model the complex 
relationships between residues. Pre-dominantly, for multi-
farious genomics and proteomics sequence analysis tasks, 
variable length sequences are transformed into fixed-length 
sequences using a copy padding trick. For instance, Zhang 
et al. [94] revealed the impact of copy padding trick on 
the generalizability of convolutional neural network for 
lncRNA–protein interaction prediction. Likewise, Lopez 
et al. [45] explored the impact of copy padding trick for 
archaeal protein function prediction task. However, existing 
studies do not explore the impact of various other sequence 
fixed-length generation approaches such as sequence trun-
cation approach or hybrid approach which combines copy 
padding with sequence truncation approach. The paper in 
hand performs comprehensive experimentation with three 
different pre-processing strategies for lncRNA–miRNA 
interaction prediction including copy padding, sequence 
truncation, and hybrid approach, shown under the hood of 
setting-1 in Fig. 1.

In copy padding trick, first, corpus sequences lengths are 
compared to find a maximum sequence length. Then, a cer-
tain constant is added in those sequences whose length is 
less than the maximum length to justify all sequence lengths 
with respect to the maximum length. Sequence truncation 
is another sequence fixed-length generation approach that 
relies on the minimum possible sequence length. Resi-
dues from all those sequences are truncated whose length 
is greater than the minimum length to justify all sequence 
lengths with respect to the minimum length. Another trend 
is to use a hybrid approach that makes use of both copy 
padding and sequence truncation tricks by computing aver-
age sequence length. In this case, a particular constant is 
added in those sequences whose sequence length is less than 
the average length, whereas sequences longer than average 
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length are trimmed to justify all sequence lengths with 
respect to the average length.

In copy padding trick, it is an important matter to deter-
mine whether the start of the sequences is more suitable for 
the addition of a particular constant or end of the sequences. 
Similarly, in the sequence truncation trick, it is debatable 
whether extra residues need to be removed from the end of 
the sequences or start of the sequences. Pre-dominantly, end 
of the sequences has been chosen for extension or trunca-
tion [7, 10, 36, 50, 71, 85, 94], therefore, in the 1 st setting, 
the paper in hand performs experimentation by extending or 
trimming the sequences from the end. To find which trick 
performs better among all trivial copy padding or sequence 
truncation tricks, it performs a detailed performance com-
parison by taking all three traditional sequence fixed-length 
generation paradigms into account. A graphical illustration 
of all three fixed sequence length generation strategies is 
given in Fig. 1 under the umbrella of setting-1.

In existing lncRNA–miRNA interaction prediction 
approaches, variable length lncRNA–miRNA sequences are 
transformed into fixed-length sequences through traditional 
copy padding or sequence truncation tricks [33, 82, 104]. 
In benchmark lncRNA–miRNA interaction prediction data-
set, miRNA sequence length varies from 17-to-25 residues 
where average sequence length falls around 22 residues. 
Taking into account the light length variability of miRNA 
sequences, following the most common trend in the litera-
ture [7, 10, 33, 36, 50, 71, 82, 85, 94, 104], we utilize the 
copy padding trick to map all miRNA sequences to maxi-
mum length ( 25 residues).

Unlike miRNA sequences, length of lncRNA sequences 
largely fluctuate. In the benchmark lncRNA–miRNA inter-
action prediction dataset, lncRNA sequence length varies 
from 213-to-22,743 residues. As lncRNA sequences are 
highly flexible in length which is why fixing the length of 
lncRNA sequences is a quite difficult task. Although the 
copy padding trick effectively handles the light length vari-
ability of miRNA sequences, however, it does not work well 
for lncRNA sequences. This is primarily because lncRNA 
average sequence length falls around 1424 residues and copy 
padding trick introduces a significant level of bias through 
the addition of too many zeros which make a large num-
ber of lncRNA sequences very similar to each other. For 
lncRNA sequences, copy padding trick derails the classi-
fier ability to distinguish different lncRNA sequences which 
badly impacts overall interaction prediction performance.

To optimize trivial sequence fixed-length generation para-
digm by effectively handling the high length variability of 
lncRNA sequences, this paper proposes a novel idea that 
finds and retains only the most informative lncRNA sub-
sequences. The paper in hand performs experimentation 
with three distinct settings to assess whether sub-sequences 
taken from diverse regions of lncRNA sequences contain a 

highly informative and discriminative distribution of resi-
dues and are capable to surpass the predictive potential of 
traditional copy padding or sequence truncation tricks for the 
task of lncRNA–miRNA interaction prediction.

We consider only a few residues from the starting 
region of the lncRNA sequences, ending region of lncRNA 
sequences, or the start-end region of lncRNA sequences. 
Figure 1 depicts the most informative and discriminative 
residue distribution-based settings presented to generate 
optimal fixed length lncRNA sub-sequences that are enti-
tled as setting-2, setting-3, and setting-4 respectively. In 
presented settings, we consider a small number of residues 
like 5 which is approximately 3% of the minimum lncRNA 
sequence length of the benchmark dataset and continue 
to increase this number to 25% of the average lncRNA 
sequence length using a certain step size. In particular, in the 
2 nd setting, BoT-Net selects X residues merely from the start-
ing region of lncRNA sequences. In the 3 rd setting, BoT-Net 
selects Y residues only from the ending region of lncRNA 
sequences. In 4 th setting, BoT-Net combines X residues 
taken from the start of lncRNA sequences with Y residues 
taken from the end of lncRNA sequences to assess the dis-
criminative potential of the start-end region. In all three set-
tings, values of X and Y differ from 5-to-50 taken with the 
step size of 5. Evaluating the predictive potential of diverse 
regions of lncRNA sequences assists to identify whether pre-
cise lncRNA sub-sequences manage to obtain discriminative 
essence of lncRNA sequences which improves generaliz-
ability of the classifier.

Fusing miRNA sequences with lncRNA sequences, fixed-
size sequences generated using diverse pre-processing strate-
gies are passed forward to higher order residue generation 
and statistical representation learning module.

2.1.2 � Higher order residue embedding generation 
and optimization

To create any kind of statistical representation of sequences, 
first step is to generate higher order residues of sequences. 
Higher order residues can be generated in two different 
manners, one way is to generate overlapping higher order 
residues in which a fixed size window is rotated over the 
sequences with the stride size smaller than the size of the 
window. For instance, if we have to generate second-order 
residues of the sequences, we will rotate a window of size 2 
with the stride size of 1. In the second approach, non-over-
lapping higher-order residues are generated in which a fixed 
size window is rotated over sequences with stride size equal 
to the size of the window. Figure 2 describes the process of 
generating overlapping and non-overlapping higher order 
residues. As lncRNA–miRNA sequences are comprised of 
four basic residues Adenine (A), Cytosine (C), Guanine (G), 
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and Uracil (U), therefore, the size of the vocabulary can be 
computed using 4k . The value of k eventually determines 
the size of vocabulary which impacts memory cost, runtime 
cost, model generalizability, and up to what extent residue 
order and semantic properties are taken into account. There-
fore, the choice of k is a very crucial task in achieving better 
predictive performance. Considering the work of Asim et al. 
[2] and Le et al. [1], this paper utilize the stride size of to 
generate overlapping higher order residues (5-mers).

Statistical Representation Learning
To generate the statistical representation of higher order 

residues present in lncRNA–miRNA sequences required by 
deep learning models, in literature, physico-chemical prop-
erty-based encoding, pre-trained higher order embeddings, 
and one-hot encoding are commonly applied [33, 82, 104]. 
Learning higher order residue representation through phys-
ico-chemical properties requires evaluation of a tremendous 
amount of properties having unique characteristics [8, 54]. 
Also, physico-chemical property-based encoding lacks to 
capture global dependencies of residues present in genomic 
sequences. One-hot encoding also proves in-efficient as it 
does not take positional information of residues into account 
[11, 12, 53, 65, 66, 80]. Whereas, pre-trained neural higher 
order residue embeddings require rigorous training over 
large corpora (e.g Swiss-Prot) and fine-tuning to adapt the 
local context and prove effective for downstream classifica-
tion tasks.

Following the work of Elabd et al. [13] and Asim et al. 
[3], the paper in hand proposes the idea of learning higher-
order residue neural embeddings by randomly initializing 
the embedding matrix using the Pytorch embedding layer for 
the task of lncRNA–miRNA interaction prediction.

The embedded layer generates a two-dimensional weight 
matrix or lookup table E ∈ ℝ

vocab x n_embedding where 
each row indicates a vector representation of sequence 
residue. While the number of rows is equal to the unique 
residues present in the vocabulary, the number of columns 
indicates the embedding dimensions n_embedding . In our 
experimentation, initially, the embedding matrix is randomly 

initialized where every higher-order residue is represented 
as a 120-dimensional vector using the normal distribution. 
However, during training, embedding matrix is updated to 
minimize the predictive error. Optimized embeddings for 
each higher-order residue are learned through an iterative 
process of updating the weights of the embedding matrix. 
This approach largely differs from classical one-hot encod-
ing, physico-chemical property-based encoding, and higher 
order residue frequency-based encoding schemes where the 
numerical value of higher order reside is not updated during 
the training.

To further optimize the embedding matrix, we apply 
two different kinds of dropout schemes where each higher 
order residue vector has the probability pembeddings of 0.004 
to be dropped and every vector weight unit has the like-
lihood of 0.005 to be dropped [16, 51]. Embedding and 
weight unit dropout schemes assist to capture rich interac-
tions with light memory and run time cost. Optimized higher 
order residue embedding-based statistical representation of 
lncRNA–miRNA sequences is passed to the BoT-Net inter-
action prediction classifier.

2.1.3 � BoT‑Net classifier

The complete workflow of the proposed bag of tricks-based 
neural network BoT-Net is depicted in Fig. 1. For each fixed-
length lncRNA–miRNA sequence, overlapping higher order 
residues are generated, representation of which is learned 
using randomly initialized embeddings. After mapping 
higher order residues into vector space, 120-dimensional 
statistical representation of lncRNA–miRNA sequences 
is passed to a single layer LSTM regularized using Drop-
Connect approach. The output of LSTM is passed to the 
pooling layer which makes use of 3 different strategies to 
generate 360-dimensional sequence vectors having highly 
informative features. Pooled features are then passed to the 
batch normalization layer that normalizes the given distribu-
tion within a mean of zero and variance of one to alleviate 

Fig. 2   Process of generating different overlapping and non-overlapping higher order residues
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the internal co-variance shift. To avoid over-fitting, large 
weights of the neural network are penalized using learn-
ing rate decay. Before feeding normalized features to a fully 
connected layer, standard dropout is applied. A fully con-
nected layer transforms 360-dimensional sequence vectors 
into 50-dimensional sequence vectors which are once again 
passed through batch normalization and dropout layers 
before passing to the softmax classification layer. Differ-
ent phases of the proposed BoT-Net approach are briefly 
discussed in the following subsections.

Lightweight long short-term memory (LSTM) 
network

Proposed BoT-Net methodology leverages a single layer 
LSTM which unlike traditional recurrent neural network 
(RNN) is far more capable of retaining long-term depend-
encies using update gate. Furthermore, LSTM filters infor-
mation at every time step and is far less vulnerable to van-
ishing gradients issue. Mathematically, it can be expressed 
as follows:

Here, [ Wi , Wf  , Wo , Ui , Uf  , Uo ] refer to weight matrices, xt 
represents the 120-dimensional higher order residue vector 
fed at at time-step t, ht refers to current hidden state, ct is 
the state of memory cell, and ⊙ represents the element wise 
product.

To avoid over-fitting recurrent neural networks (RNNs), 
researchers have applied diverse regularization techniques 
mostly on hidden state vector ht−1 . More specifically, apply-
ing standard dropout between time steps or upon updating 
the memory state ct is quite common where randomly chosen 
activations are turned to zero. However, in this study, we 
utilize a generalization of dropout called DropConnect [70] 
with probability of 0.004. Unlike standard dropout, Drop-
Connect applies dropout operation on hidden-to-hidden 
weight matrices of LSTM before forward and backward pass. 
As the weights are reused over many time steps, dropped 
weights will not make any contribution across the entire 
forward or backward pass. Aggregated gradients of each 

(1)it = �(Wi.xt + Ui.ht−1)

(2)ft = �(Wf .xt + Uf .ht−1)

(3)ot = �(Wo.xt + Uo.ht−1)

(4)cint = tanh(Wc.xt + Uc.ht−1)

(5)ct = (it ⊙ cint + ft ⊙ +cint−1

(6)ht = (ot ⊙ tanhct)

64 lncRNA–miRNA sequence batch are back-propagated 
through time without resetting the hidden state of LSTM.

Vector Pooling
The prime goal of applying vector pooling is to acquire 

highly representative features of sequences. Consider the 
example of disease classification where those features 
will be the most informative features that describe health-
related complications. Selecting an effective pooling strat-
egy from a variety of strategies is extremely crucial to 
effectively acquire the essence of sequences which aids to 
achieve optimal predictive performance. In order to effec-
tively handle the location-invariance of different features 
extracted by LSTM layer and to retain the most salient fea-
tures by eliminating redundant features, 3 different kinds 
of pooling operations are applied. More specifically, we 
use maximum, average pooling, and last vector pooling. 
Maximum pooling aims to retain the most discriminative 
features and discard less imminent features by rotating a 
fixed-sized 1-d window (Eq. 7).

Average pooling computes the mean of values for each 
pooling region to reveal that, up to what extent (on aver-
age) a lncRNA–miRNA pair is interactive or non-interactive 
(Eq. 8).

In these equations, poj
k
cj refers to the input, r represents 

the pool size, denotes the maxim value is respective pool-
ing block, and avj

k
 denotes the average value correspond-

ing to the pooling block. Vectors resulting from maximum 
and mean pooling operations are combined with the last 
higher order residue 120-dimensional vector to generate a 
360-dimensional vector for each lncRNA–miRNA sequence 
which is passed further in the network.

Batch Normalization
Normalizing the input distribution in such a way that 

it fulfills the mean criteria of zero and constant standard 
deviation [40] proves beneficial for the training of neural 
networks. Deep neural networks face the issue of internal 
co-variance shift where the distribution of intermediate 
layers of neural networks significantly fluctuates due to 
the change in input distribution [27]. Internal co-vari-
ance shift makes the weights of neural network learned 
during previous iterations totally obsolete [27]. Internal 
co-variance de-stabilizes model convergence and deterio-
rate the generalizability of the model [27]. To handle the 
problem of internal co-variance shift, batch normaliza-
tion extends the paradigm of input normalization across 
the hidden layers within a deep neural network, where 
the normalization is performed over the mini-batches for 

(7)po
j

k
= max{c

j

k∶k+r−1
}

(8)av
j

k
= average{c

j

k∶k+r−1
}
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speed reasons [27]. Batch normalization has achieved 
great success in multifarious areas of deep learning [4, 
21, 60] as it makes sure that input to output mapping 
of the deep neural network does not over-specialize only 
a particular block of input distribution which results in 
faster training, better convergence, and generalizability 
[27]. Mathematically, providing the d-dimensional feature 
space x = {x(1), ........, x(d)} , batch normalization operation 
can be expressed as follows:

Here, x(k) denotes the k-th activation of the input and h(k) 
denotes k-th activation of the output, E[.] and Var[.] repre-
sent the expectation and variance whereas � (k) and �(k) are the 
hyperparameters learned during an iterative training phase.

Standard Dropout
To reduce noise and assist the softmax classification 

layer in distinguishing interactive and non-interactive 
lncRNA–miRNA pairs, we apply the standard dropout 
[62] on pooled normalized features. It is widely considered 
a de-facto standard way of regularizing deep neural net-
works which face the issue of over-fitting. Standard drop-
out randomly drops units during every iteration of gradient 
descent and forces the network to learn multiple mappings 
from input to output. However, an ineffective application 
of dropout works poorly and can even further increase the 
generalization error in RNNs [51]. Like dropping unit at 
each time step significantly disrupts network capability to 
retain long-term dependencies [16]. Therefore, one needs to 
apply dropout quite smartly. In the proposed BoT-Net meth-
odology, each unit has the likelihood of 0.1 to be dropped. 
Mathematically (Eq. 10), probability of dropping a unit is 
done following the Bernoulli distribution using a probabil-
ity p. Taking the dot product of a unit vector with the mask 
where every element is sampled randomly using Bernoulli 
distribution, units are dropped during the training phase. On 
the other hand, for the testing phase (Eq. 11), rather than 
dropping the units, the likelihood for a unit not to be dropped 
1 − p% is computed.

Weight Decay
Weight decay is another regularization strategy that pri-

marily penalizes the large weights of the model [47, 87]. 

(9)̃x(k) =
x(k) − E[x(k)]√

Var[x(k)]
, h(k) = 𝛾 (k) ̃x(k) + 𝛽(k)

(10)y = f (Wx) ∙ m,mi ∼ Bernoulli(p)

(11)y = (1 − p)f (Wx)

Generally, the weight decay strategy can be applied in two 
different ways. The first approach is called L2 regularization 
where the sum of the squared weight is directly added in 
the loss value, which can be mathematically represented as:

On the other hand, in the second technique, weight is added 
during the update of gradients, which mathematically can 
be expressed as:

For simple optimizers like stochastic gradient descent, both 
weight decay strategies work in the same manner. But for 
more sophisticated optimizers such as Adam who accu-
mulates the gradients, weight decay and L2 regularization 
impact greatly differ from one another. For the L2 regulari-
zation, the sum of squared weights is added to the loss value, 
making it an integral part of the gradient. Thereby, when the 
Adam optimizer accumulates the gradients, L2 penalty terms 
are accumulated as well.

In contrast, in the second approach, weight decay is only 
added during the update step, indicating that the accumula-
tion of weight terms during the gradient is not performed. 
Unlike the L2 regularization strategy, the weight decay strat-
egy has shown more improvement in the performance [46], 
therefore proposed BoT-Net is trained using the batch size 
of 64 with weight decay strategy where the value of learning 
rate is 0.01, value of weight decay is 0.02, and ADAMW is 
used as an optimizer.

Fully Connected Layer
A fully connected layer examines 360-dimensional 

pooled features, alleviates dimensionality, and learns a 
compact 50-dimensional representation of lncRNA–miRNA 
sequences. Learned compact representation is passed to 
another batch normalization followed by dropout layer 
before feeding to softmax classification layer which predicts 
the probability for interactive and non-interactive classes. 
Mathematically, calculations of a fully connected layer are 
equivalent to trivial perception which can be expressed as:

Here, fcl denotes the output features produced by the l-th 
full connected layer, wl and bl represent the weight and bias, 
while �(.) refers to the non-linear activation function used 
in the experimentation.

Softmax

(12)L t otal =
(
L + �||w||2

2

)

(13)wi+1 = wi − 2�wi −
⟨
�L

�w
|wi

⟩

(14)fcl = �(wlxfcl + bl)
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Softmax classification layer discriminates inter-
active lncRNA–miRNA pairs from non-interactive 
lncRNA–miRNA pairs. Categorical cross-entropy loss is 
the training objective which is a simple softmax activation 
plus a cross-entropy loss. Working of softmax (Eq. 15) and 
categorical cross-entropy (Eq. 16) can be represented using 
following mathematical expressions:

Here, t denote one-hot encoded actual class label, si refers 
to probability score estimated for every class present in C 
and f (si) represents softmax activation applied before the 
estimation of cross-entropy loss.

2.2 � Benchmark datasets

To evaluate the integrity of proposed BoT-Net methodol-
ogy and to perform a fair comparison with state-of-the-art 
LncRNA–miRNA interaction predictor [82], we perform 
experimentation on a benchmark dataset provided by Yang 
et al. [82].

To compile true LncRNAs–miRNAs interaction corpus, 
first LncRNAs and miRNA IDs were extracted from lncR-
NASNP2 database by Yang et al. [82]. More specifically, 
only those lncRNA–miRNA pairs were selected where the 
corresponding record in lncRNASNP2 database was shown 
“ENST” and “hsa-miR” simultaneously. Afterwards, using 
extracted IDs of both non-coding RNAs, LncRNA sequences 
of homo sapiens were acquired from GENCODE1[15] and 
miRNA sequences were obtained from miRbase metathe-
saurus2[37]. In this manner, a total of 1663 lncRNAs, 258 
miRNAs, and 15,386 true lncRNA–miRNA sequence pairs 
along with interaction information were obtained.

Authors utilized random pairing strategy to generate non-
interactive samples of lncRNA and miRNA sequences. More 
specifically, after shuffling lncRNA and miRNA sequences 
10 times using Knuth-Durstenfeld shuffling paradigm [48], 
iteratively, an arbitrarily selected lncRNA–miRNA pair 
was placed in the negative set, provided the same pair was 
not present in the positive set which contains interactive 
lncRNA–miRNA sequence pairs. In this manner, 15,386 
negative lncRNA–miRNA sequence pairs were generated.

Furthermore, to evaluate the generalizeability of pro-
posed BoT-Net methodology, we perform experimentation 

(15)f (si) =
es
i∑C

j
es
j

(16)CE = −

C∑
i

tilog(f (si))

on another benchmark dataset namely RP1369 [105] for 
the task of lncRNA–protein interaction prediction. Shin 
et al. [105] developed the RP1369 dataset by collecting 943 
RNA-protein complexes from protein–RNA interface data-
base (PRIDB) [106]. The RP1369 dataset contained a total 
of 369 positive lncRNA–protein interactions which involve 
331 lncRNA and 338 proteins. Authors extracted 369 non-
interactive lncRNA protein sequence pairs from the datasets 
used in IPMiner study [107].

2.3 � Evaluation metrics

To assess the performance of computational predictors, 
selection of evaluation metrics is an extremely important 
task to draw definite conclusions. To evaluate the integrity 
of interaction prediction methodologies, many evaluation 
metrics have been proposed which mainly compare actual 
class with predicted class. Here, we assess the performance 
of the proposed BoT-Net methodology in terms of 7 exten-
sively utilized [33, 82, 104] evaluation metrics including 
accuracy (ACC), precision (Pre), specificity (SP), sensitivity 
(SN), F1-score, matthews correlation coefficient (MCC), and 
area under receiver operating characteristics (AUC-ROC). 
A short description of these evaluation metrics along with 
mathematical expression is given below:

In Eq. 17, O + indicates the bunch of true and false positives, 
while O − refers to the bunch of true and false negatives. The 
proportion of interactive lncRNA–miRNA sequences that 
are correctly classified as interactive are expressed using 
O+

−
 and the proportion of non-interactive lncRNA–miRNA 

sequences that are accurately identified as non-interactive 
are expressed using O−

+
 . lncRNA–miRNA sequences incor-

rectly classified as interactive (False positives) are indicated 
by F+

−
 and lncRNA–miRNA sequences inaccurately classi-

fied as non-interactive (False Negatives) are referred as F−
+
.

Accuracy (ACC) computes the ratio of accurately pre-
dicted interactive and non-interactive instances with total 
predictions made by the model. However, in the case of data-
set having imbalance classes, it fails to reveal the correct per-
formance of the model. Specificity and sensitivity compute 

(17)f (x) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ACC =
(O+

−
+(O−

+
)

(O++O−)

SPE =
(O−

+
)

(O−
+)+(F

+
−
)

PRE =
(O+

−
)

(O+)

SEN =
(O+

−
)

(O+
−
)+(F−

+)

MCC =
O+−
O+

+
O−+

O−√
(1+O−

+−O
+
−
∕O+)(1+O+

−
−O−

+∕O
−)

F1-score = 2 ∗
[Pre∗SN]

[Pre+SN]

1  https://​www.​genco​degen​es.​org/.
2  http://​www.​mirba​se.​org.

https://www.gencodegenes.org/
http://www.mirbase.org
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true negative and true positive rate in turn, whereby, preci-
sion estimates up to what extent positive predictions are fully 
correct. F1 score computes the harmonic mean between pre-
cision and sensitivity. Evaluation criterion such as precision, 
sensitivity, and F1 score can be classified as asymmetric 
as they fully ignore true negatives and their calculation is 
largely affected by positive class size. On the other hand, 
MCC, considers all four true negatives, true positives, false 
negatives, and false positives, into account to compute the 
performance of the model. A high value of MCC indicates 
that the model is efficiently discriminating different corpus 
classes even when a particular class is under or over repre-
sented in the corpus.

The evaluation measures discussed primarily assess the 
performance of the classifier by comparing actual and pre-
dicted classes. However, receiver operating characteristic 
curve (ROC) is computed by making use of actual classes 
and predicted probabilities which implies the need to find 
optimal threshold for the hand on problem. Also, few pre-
viously discussed evaluation measures such as accuracy 
correctly reveal the performance of classifier when the 
classification problem is highly balanced indicating its 
biasedness towards the majority class. Whereas, area under 
receiver operating characteristics curve (AU-ROC) is the 
most widely used evaluation metric which is neither biased 
towards majority class nor minority class as it measures the 
classifier performance using different thresholds.

2.4 � Experimental setup

The proposed BoT-Net methodology is implemented 
using Pytorch. Deep exploratory analysis of the bench-
mark lncRNA–miRNA interaction dataset indicates that 
the length of miRNA sequences fluctuates from 17 to 25 
residues and the length of lncRNA sequence fluctuates from 
213 to 22,765 with an average length of 1424 residues. To 
determine up to what number of residues can effectively 
capture the discriminative essence of very flexible lncRNA 
sequences, experimentation is performed by considering as 
minimum residues as possible (e.g 5 which is around 3% 
of minimum lncRNA sequence length in benchmark data-
set) and keeps increasing this number up to 25% of average 
lncRNA sequence length using the step size of 5 residues. In 
benchmark lncRNA–protein interaction prediction dataset, 
lncRNA sequence length varies from 15 to 1504 and protein 
sequence length varies from 5 to 1733, indicating that both 
lncRNA and protein sequences have high length variabil-
ity. In our experimentation, we only report the performance 
values produced by BoT-Net by varying residues from 5 to 
50 using the step size of 5 residues for lncRNA–miRNA 
and lncRNA–protein interaction prediction tasks. Unlike 
lncRNA–miRNA interaction prediction task where we gen-
erate sub-sequences of only lncRNAs and take full length of 

miRNAs due to high length variability of lncRNAs and low 
length variability of miRNAs. In lncRNA–protein interac-
tion prediction task, both lncRNA and protein sequences 
have length variability. Hence, we generate sub-sequences 
of both lncRNA and protein sequences.

To perform an unbiased performance comparison 
of the proposed BoT-Net methodology with existing 
lncRNA–miRNA [33, 82, 104] and lncRNA–protein inter-
action predictors [105], 5-fold cross-validation is performed. 
Considering, the performance of deep learning models is 
largely influenced by different values of various hyperpa-
rameters such as k-mers, residue embedding dimensions, 
embedding and standard dropout, learning rate, weight 
decay, batch size, etc. From the training set, we use 10% 
sequences as the validation set to find the optimal values of 
the most influential hyperparameters for lncRNA–miRNA 
and lncRNA–protein interaction prediction tasks using grid 
search [41, 59]. To ensure reproduceability of the results, 
Table 1 reports the initial value range for different hyper-
parameters defined by following the literature [1, 2] and 
the optimal hyperparameter values found through the grid 
search for proposed BoT-Net approach for lncRNA–miRNA 
and lncRNA–protein interaction prediction tasks.

3 � Results

This section comprehensively illustrates the performance 
produced by three trivial sequence fixed-length generation 
approaches based on standard copy padding and sequence 
truncation paradigms. Furthermore, it compares the per-
formance of three different settings which select a differ-
ent number of residues solely from the start (only start), 
end (only end), and start-end regions of lncRNA sequences 
with an aim to find and retain the most informative residue 
distribution-based lncRNA sub-sequences with respect to 
lncRNA–miRNA interaction prediction. It compares the 
performance of the proposed BoT-Net approach with exist-
ing sequence-based lncRNA–miRNA interaction prediction 
approaches. Finally, it performs a case study analysis based 
on the task of lncRNA–protein interaction prediction to 
validate the effectiveness and generalizeability of proposed 
sub-sequences-based BoT-Net approach.

Figure  3 illustrates the performance produced by 3 
fixed-length sequence generation approaches for the task of 
lncRNA–miRNA interaction prediction.

As indicated by the bar graph shown in Fig. 3, among all 
three approaches, min-len-truncation approach which maps 
the miRNA and lncRNA sequences to their respective mini-
mum length and truncates additional residues marks the best 
performance in seven different evaluation metrics. It outper-
forms the performance of the other two approaches by 5% in 
five different evaluation metrics, 8% in terms of AU-ROC, 
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and 14% in terms of MCC. Whereas, other two approaches 
namely max-len-copy-padding and average-len-truncation/
copy-padding, which map miRNA and lncRNA sequences to 
their respective maximum and average length mark exactly 
the same performance across all seven evaluation metrics.

Furthermore, performance figures produced by BoT-Net 
approach using three different sub-sequence-based settings 
are illustrated using accuracy, F1-score, sensitivity, and 
specificity line graphs, shown in Fig. 4.

Analysis of the accuracy and F1-score corresponding pic-
torial representations (Fig. 4) indicates that the performance 
of BoT-Net starts in low figures with 5 residues selected by 
only-start setting or only-end setting. Using 10 residues, the 
BoT-Net performance is rocketed for both settings. With the 
further increase in residues, in only-start setting, BoT-Net 
performance fluctuates by the figure of 1% across 2 thresh-
olds before stabilizing until 30 residues. Then, it increases 
further to achieve peak performance figures of 87% in both 
evaluation metrics. Whereas, in only-end setting, BoT-Net 
performance gradually increases until 20 residues, slightly 
fluctuates afterward until 40 residues before leveling off and 
ending at 85.5% in terms of accuracy and F1-score respec-
tively. Unlike only-start and only-end setting, over start-end 
setting, the BoT-Net performance starts with decent figures 
and almost gradually increases until 25 residues, but gradu-
ally declines thereafter until 40 residues before leveling at 
86% in terms of accuracy and F1-score (Fig. 4).

Taking the sensitivity of BoT-Net into account, Fig. 4 
reveals that BoT-Net marks a similar performance trend with 
both only-start and only-end setting, however, it achieves 
better sensitivity figures across most test points using only-
start setting. In start-end setting, BoT-Net performance grad-
ually increases until 30 residues before gradually declining 
and leveling off. In terms of specificity, an identical perfor-
mance pattern is evident in all settings except the start-end 
setting in Fig. 4. In start-end setting, the performance of 
BoT-Net gradually increases to 15 residues before fluctuat-
ing moderately at other residue thresholds. Overall, only-
start setting once again marks better performance across 
most test points.

Furthermore, the performance potential of full length 
lncRNA–miRNA sequence pairs is compared with three 
different lncRNA–miRNA sub-sequence-based settings 
in terms of area under receiver operating characteristics 
(AU-ROC).

It is evident from Fig. 5 that with the influx of residues, 
the performance of all three sub-sequence-based settings 
gets improved. With just ten residues, the performance of 
all three experimental settings jumps over 90% as compared 
to 89% achieved using the complete lncRNA sequences. 
Among all three sub-sequence settings, only-start setting 
outperforms other settings across nine test iterations out of 
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Fig. 3   Performance comparison of traditional fixed-size sequence 
representation generation schemes based on minimum (min-len-trun-
cation), maximum (max-len-copy-padding), and average (average-

len-truncation/copy-padding) length of sequences in terms of seven 
different evaluation metrics

Fig. 4   Performance produced by proposed bot-net methodology using 
three different most informative and discriminative residue distribu-
tion-based sub-sequence generation settings in terms of four distinct 

evaluation metrics. Setting 1–3 selects different number of residues 
solely from start, end, and start-end respectively
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ten test iterations. As indicated by other evaluation metrics, 
here again, start-end setting outshines other settings using 
five residues and marks the second best performance of 
94% in most test iterations. Whereas, the performance of 
the only-end setting first jumps from 82% to 91% in the first 
two iterations and then increases by the figure of 1% until 20 
residues before leveling off at 93%. Furthermore, the perfor-
mance of all 3 sub-sequence-based settings is affected until 
25 residues, however afterward, it remains the same across 
all remaining test iterations.

To summarize, the performance potential of different 
regions of lncRNA sequences is definite. BoT-Net marks 
best performance with the only-start setting followed by the 
only-end setting and the start-end setting.

To prove the integrity of the proposed BoT-Net method-
ology, the performance figures produced by the proposed 
BoT-Net methodology are compared with existing compu-
tational predictors in Table 2 in terms of six distinct evalu-
ation metrics.

As indicated by the Table 2, proposed purely sequence 
information-based BoT-Net methodology significantly out-
shines the performance of existing sequence-based predic-
tors across almost all evaluation metrics. More specifically, 
it outperforms state-of-the-art LncMir-Net performance by 
the figure of 2% in terms of accuracy, 8% in terms of speci-
ficity, 1% in terms of F1-score, and 4% in terms of MCC. A 

significant fluctuation in LncMir-Net specificity and sensi-
tivity performance figures proves that state-of-the-art predic-
tor is biased towards type I or type II error. Whereas, BoT-
Net methodology performance is stable and superior than 
all predictors primarily due to two reasons. On one hand, 
BoT-Net utilizes the most informative residue-based sub-
sequences of LncRNA sequences. On the other hand, BoT-
Net integrates multiple deep learning strategies at a different 
level of the neural network to enhance the generalizability of 
the model. Due to these unique properties, BoT-Net manages 
to obtain consistent performance across different evaluation 
metrics and overall a decent increment than state-of-the-art 
lncRNA–miRNA interaction prediction performance.

3.1 � A case study: objective evaluation 
of the proposed BoT‑Net methodology

We have seen in previous sections that the novel paradigm of 
retaining only most informative residues distribution-based 
sub-sequences helps the proposed BoT-Net approach to most 
efficiently characterize highly flexible lncRNA sequences 
for the task of lncRNA–miRNA interaction prediction. 
To validate the versatility, generalizeability, and practical 
significance of sub-sequence-based BoT-Net approach, we 
consider a similar task namely lncRNA–protein interaction 
prediction to perform a case study analysis. Using five-fold 

Fig. 5   AU-ROC produced by proposed BoT-Net Methodology using 
full LncRNA sequence and three different most informative residue 
distribution-based sub-sequence generation settings without slicing 

mirma sequences. Setting 1–3 selects different number of residues 
solely from start, end, and start-end, respectively
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cross-validation on a benchmark RP1369 dataset [105], we 
first evaluate the performance potential of the proposed 
BoT-Net methodology using three traditional fixed length 
sequence generation settings. Then, we illustrate the per-
formance potential of three different sub-sequence-based 
settings. Finally, we compare the performance of proposed 
BoT-Net approach with state-of-the-art lncRNA–protein 
interaction predictor [105].

The radar graph in Fig. 6 reports the performance pro-
duced by the proposed BoT-Net methodology using the 
min-len-truncation, max-len-copy-padding, and average-len-
truncation/copy padding settings in terms of seven different 
evaluation metrics.

As shown by the Fig. 6, among all 3 traditional sequence 
fixed length generation settings, average-len-truncation/

copy padding setting which maps all lncRNA and protein 
sequences to respective average length achieve better perfor-
mance across most evaluation metrics, achieving the accu-
racy as well as F1 score of top accuracy of 72%. The second 
best performance is attributed to both min-len-truncation 
and max-len-copy-padding settings as both settings mark 
almost similar performance across most evaluation metrics.

Figure 7 illustrates the accuracy and F1 score produced 
by proposed BoT-Net methodology using merely k residues 
from only start region, only end region, and start-end regions 
of lncRNA and protein sequences.

It is evident from the Fig. 7 that the performance of BoT-
Net increases with the increase in residues to 15 number 
of residues and achieve the peak accuracy as well as F1 
score of 73% using only start region-based sub-sequences. 

Table 2   Performance 
Comparison of Proposed BoT-
Net methodology with Existing 
Sequence-based lncRNA–
miRNA Interaction Prediction 
Approaches in terms of 6 
Different Evaluation Metrics: 
Performance Figures of Existing 
Predictors are taken from 
Table 2 of State-of-the-art Paper 
(LncMirNet) [82]

Approach Accuracy Specificity Sensitivity F1-score MCC AU-ROC

GEEL [104] 0.8220 0.8401 0.8040 0.8187 0.6445 0.8982
PmliPred [33] 0.7959 0.7118 0.8800 0.8117 0.6004 0.9030
BiLSTM [82] 0.7145 0.6263 0.8027 0.7239 0.4359 0.7876
SEAL [82] 0.7874 0.8097 0.7650 0.7825 0.5754 0.8658
SVD [82] 0.6571 0.6594 0.6548 0.6595 0.3142 0.7156
Katz [82] 0.5964 0.5961 0.5969 0.5953 0.1930 0.6459
LncMirNet [82] 0.8534 0.7910 0.9158 0.8620 0.7124 0.9381
Proposed BoT-Net 0.8738 0.8746 0.8731 0.8738 0.7477 0.9449

Fig. 6   Performance radar graph 
produced by proposed BoT-Net 
methodology on a benchmark 
dataset RP1369 for the task of 
lncRNA–protein interaction pre-
diction using traditional fixed-
size sequence representation 
generation schemes based on 
minimum (min-len-truncation), 
maximum (max-len-copy-pad-
ding), and average (average-
len-truncation/copy-padding) 
length of sequences in terms of 
7 different evaluation metrics
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Afterwards, BoT-Net performance fluctuates across dif-
ferent number of residues. Using only end region-based 
sub-sequences and start-end region-based sub-sequences, 
BoT-Net performance fluctuates across most thresholds 
of resides, achieving the peak performance figures of and 
72.7% using 50 residues.

Bar graph (Fig. 8) compares the performance of proposed 
BoT-Net methodology with state-of-the-art graph neural net-
work-based lncRNA–protein interaction prediction approach 
namely NPI-GNN [105].

As shown by the Fig. 8, proposed BoT-Net approach sig-
nificantly outperforms NPI-GNN approach across all five 
evaluation metrics, accuracy by 10%, sensitivity by 19%, 
specificity by 6%, precision by 14%, and MCC by 26%. This 
proves BoT-Net promising generalizeability across multiple 
datasets and practical significance for similar interaction pre-
diction tasks.

4 � Discussion

With the influx of RNA sequencing technologies, several 
novel miRNAs and lncRNAs have been identified in a 
variety of species [68]. To explore their core functionality 
and key roles in diverse biological and pathological pro-
cesses, determining the interaction between them is indis-
pensable. In the race to develop more robust and general-
ized lncRNA–miRNA interaction predictors, predominant 
computational approaches [6, 14, 19, 20, 43, 43, 74, 78, 
90, 91, 93, 96, 97, 100–103] rely on some kind of known 
intrinsic information (eg expression profile similarity net-
work, functional similarity) to determine the interaction 
between lncRNAs and miRNAs. The more comprehensive 
the information, the better the model identifies potential 
lncRNA–miRNA interactions. Likewise, researchers have 
explored protein secondary, tertiary or quarternary structural 

Fig. 7   Performance Produced by Proposed BoT-Net Methodology 
on a Benchmark Dataset RP1369 [105] for lncRNA–protein Interac-
tion Prediction [105] Task using three Different most Informative and 
Discriminative Residue Distribution-based Sub-Sequence Genera-

tion Settings in terms of four Distinct Evaluation Metrics. Only-start, 
Only-end, and Start-End Settings Select a Different Number of Resi-
dues Solely from Starting, Ending, and Starting-Ending regions of 
lncRNA and Protein Sequences, respectively
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Fig. 8   Performance comparison of proposed bot-net methodology 
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approach namely NPI-GNN [105] using a benchmark dataset RP1369 
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performance figures for a benchmark dataset RP1369 are taken from 
Table 3 present in the State-of-the-art Paper [105]
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information [108], locality of spatial structures on protein 
binding-motif regions [108], compatibility levels of different 
protein regions [108], etc, along with intrinsic information 
of lncRNAs for accurate lncRNA–protein interaction pre-
diction task. Major overhead of such approaches is the need 
of constant accumulation of intrinsic information in order 
to prove effective for novel lncRNA and miRNA sequences 
or protein sequences which hinders the establishment of an 
efficient large-scale interaction prediction landscape for mul-
tiple species.

Evidently, sequence information-based computational 
approaches [33, 82, 104, 105] are more scalable and efficient 
as they do not require expensive expression profile similarity 
networks. However, existing computational approaches mark 
confined performance primarily because of their inability 
to handle high length variability of only lncRNA sequences 
or both lncRNA and protein sequences. In this regard, pro-
posed BoT-Net novel paradigm of finding and retaining only 
most informative higher order residue-based lncRNA sub-
sequences optimize the process of generating fixed length 
lncRNA–miRNA sequence pairs and lncRNA–protein 
sequence pairs for primary lncRNA–miRNA interaction 
prediction task and case study lncRNA–protein interaction 
prediction task. Furthermore, instead of leveraging deeper or 
wider neural networks to effective capture the non-linearity 
of sequences, BoT-Net leverages a precise deep learning 
model which is regularized and optimized by making best 
use of diverse neural tricks. Unlike other neural network, 
BoT-Net is an extremely powerful model which can be eas-
ily trained over hundreds and thousands of lncRNA–miRNA 
or lncRNA–protein sequence pairs in no time even using 
a trivial multi-core central processing unit due to having 
least number of trainable parameters. In summary, a sig-
nificant increase in state-of-the-art performance of both 
lncRNA–miRNA and lncRNA–protein interaction predic-
tion tasks over 2 different benchmark datasets in terms of 
different evaluation metrics prove the versatility, general-
izeability, and practical significance of proposed BoT-Net 
methodology. Unlike state-of-the-art approaches, the para-
digm of retaining only most informative residue distribution-
based sub-sequences help the BoT-Net classifier to achieve 
promising performance across multiple datasets and similar 
interaction prediction tasks. Although BoT-Net shows great 
promise for the determination of interaction between differ-
ent biomolecules. However, it can be anticipated that one of 
the limitation of proposed BoT-Net methodology is that it 
may not perform well for interaction prediction when both 
biomolecules have very short sequences such as small non-
coding RNAs.

5 � An interactive and user‑friendly BoT‑Net 
web server

We have deployed BoT-Net as an interactive and user-
friendly web server (https://sds_genetic_analysis.opendfki.
de/lncmiRNA/) that genomic researchers and practitioners 
can use to predict lncRNAs interactions with miRNAs or 
proteins biomolecules merely using raw sequences. This web 
server can also be used to validate experimentally detected 
lncRNA–miRNA and lncRNA–protein interactions by pro-
viding lncRNA and miRNA or protein sequence pairs. Fur-
thermore, it can be used to train and optimize the proposed 
BoT-Net methodology from scratch for lncRNA and miRNA 
or protein sequence pairs and perform prediction on test 
lncRNA and miRNA or protein sequence pairs belonging to 
existing or new species.

6 � Conclusion

In this study, we present a novel very lightweight yet robust 
computational approach for lncRNA–miRNA interaction 
prediction. It solely utilizes raw sequence information to 
extract the most informative residue distribution-based 
lncRNA sub-sequences to generate lncRNA–miRNA pairs 
and makes the best use of different deep learning strate-
gies to achieve optimal classification performance. Fair 
performance comparison of proposed BoT-Net with state-
of-the-art sequence-based computational lncRNA–miRNA 
interaction predictor as well as a case study analysis based 
on lncRNA–protein interaction prediction indicates the effi-
ciency and effectiveness of the proposed methodology for 
different benchmark datasets and similar interaction predic-
tion tasks. Considering the typical length of other non-cod-
ing RNA interactive pairs, we consider that the key findings 
of this study such as performing classification using sub-
sequences of most informative residues will largely supple-
ment the bioinformatics researchers in the development of 
precise, fast-converging yet robust computational approaches 
capable to accurately identify interactions between other 
non-coding RNAs. A compelling future of current work 
would be to combine sequence information with similarity 
information to investigate whether the addition of similarity 
information significantly improves the characterization of 
lncRNA–miRNA sequences.
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