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Abstract: Postural control is a complex skill based on the interaction of dynamic sensorimotor
processes, and can be challenging for people with deficits in sensory functions. The foot plantar center
of pressure (COP) has often been used for quantitative assessment of postural control. Previously, the
foot plantar COP was mainly measured by force plates or complicated and expensive insole-based
measurement systems. Although some low-cost instrumented insoles have been developed, their
ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel
individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with
an instrumented insole based on low-cost force sensitive resistors (FSRs). The model coefficients
were determined by a least square error approximation algorithm. Model validation was carried
out by comparing the estimated COP data with the reference data in a variety of postural control
assessment tasks. We also compared our data with the COP trajectories estimated by the previously
well accepted weighted mean approach. Comparing with the reference measurements, the average
root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64) (left foot) and
2.72 mm (±0.83) (right foot) along the medial–lateral direction, and 9.17 mm (±1.98) (left foot) and
11.19 mm (±2.98) (right foot) along the anterior–posterior direction. The results are superior to those
reported in previous relevant studies, and demonstrate that our proposed approach can be used for
accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution
to fall risk assessment in home settings or community healthcare center for the elderly. It has the
potential to help prevent future falls in the elderly.

Keywords: postural control; falls in the elderly; fall risk assessment; low-cost instrumented insoles;
foot plantar center of pressure

1. Introduction

Postural control refers to the control and maintenance of body’s center of mass (COM) within
the base of support during static or dynamic activities [1]. It has drawn much attention from
research community in recent decades. The main functional goals of postural control include postural
orientation and postural equilibrium, both of which require the integration of sensory information
from visual, vestibular and somatosensory systems to stabilize the body and coordinate the movement
strategies [2]. Therefore, postural control is a complex skill based on the interaction of dynamic
sensorimotor processes [3], and can be challenging for people with deficits in sensory functions.
For example, elderly who suffered age-related degeneration in sensory systems [4,5] and people with

Sensors 2018, 18, 421; doi:10.3390/s18020421 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8135-1659
https://orcid.org/0000-0003-1764-0357
http://dx.doi.org/10.3390/s18020421
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 421 2 of 16

pathological conditions (such as cerebral palsy [6], stroke [7] and Parkinson’s disease [8,9]) were found
to be associated with impaired postural control.

The foot plantar center of pressure (COP) has often been used for quantitative assessment of
postural control. For example, Rocchi et al. examined 14 COP measures by using the principle
component analysis and found that five of these measures, including root mean square distance,
mean velocity, principal sway direction, centroidal frequency of the power spectrum, and frequency
dispersion, can effectively reflect the postural control mechanism among patients with Parkinson’s
disease [9]. Liu et al. used the velocity of COP trajectory during quiet upright standing to quantify
the intensity of postural sway among young adults, healthy old adults and fall prone old adults [10].
Lafond et al. suggested that the velocity of COP trajectory was the most reliable measure for assessing
postural stiffness among the elderly [11]. Biswas et al. have shown that the characteristics of COP
can enhance the predictive power to a constructed index for dynamic stability [12]. In other studies,
COP measures were also used to assess postural stability among stroke patients [13], patients with
post-stroke hemiparesis [14] and patients with rheumatic disease [15]. In a recent study, Johansson
et al. investigated how the COP sway can be used to predict future falls. They found that fall risk
increased by 75% for participants with the COP sway lengths ≥ 400 mm during quiet standing with
eyes open. They also suggested that fall risk could almost be doubled if the sway lengths ≥ 920 mm
during quiet standing with eyes closed [16].

Conventionally, the COP trajectory is measured by force plates or force mapping systems [17].
However, such systems are restricted in laboratory settings. As such, they cannot be used to assess
postural control in daily activities. To address this, a variety of insole-based plantar pressure
measurement systems have been developed. Some of them are commercially available, such as
the F-scan measurement system (Tekscan, Inc., Boston, MA, USA) and Novel Pedar system (Novel Inc.,
Kirkland, WA, USA). These systems allow the COP trajectory to be captured in a more extended space
compared to force plates and force mapping systems. However, they have to rely on cables for data
acquisition and power supply, which makes them obstructive and compromise their wearability. More
importantly, these systems are too expensive for personal or daily use in home settings.

Providing inexpensive and wearable solutions for postural control assessment will provide
vital information of fall risks, and thus could be useful for preventing future falls especially among
elderly [18]. Recent advancement in microelectronics technology makes such wearable solutions
feasible. For instance, Balaga et al. proposed a method that used a single body-fixed inertial sensor to
quantitatively describe the postural control strategy during the lying-to-sit-to-stand-to-walk transfer
tasks [19]. Similarly, wearable sensors (including those integrated in smart phones) were reported
to be useful for fall risk assessment [20–23]. Many low-cost instrumented insole systems have also
been developed [24–33]. Among the existing low-cost insole systems, different sensor technologies
were implemented, such as force sensitive resistors (FSRs) [25,33], fabric or textile pressure sensing
arrays [28], or piezoelectric sensors [32], etc. The numbers of pressure sensors or sensing arrays also
varied among different studies, ranging from four FSRs [31] to 48 pressure sensor arrays [32].

Regardless of the sensor types and the number of sensors, the “weighted-mean approach” was
most commonly used to estimate COP trajectories. In the weighted-mean approach, the force/pressure
detected by each sensor was weighted by its corresponding coordinate (i.e., sensor location) and then
summed. The COP trajectory was calculated by dividing the sum of weighted force/pressure by the
overall force/pressure [26–30,32,33]. The accuracy of the weighted-mean COP trajectory estimation
approach is not robust. In particular, when implementing the weighted-mean approach, the accuracy
of COP trajectory estimation is dependent on the areas covered by the pressure sensors, which will be
a potential source for errors. In other words, the weighted-mean approach depends on the locations
and numbers of the pressure sensors. Theoretically, more sensors or sensor arrays implemented in the
insole will result in higher accuracy. However, more sensors or sensor arrays always means high cost
and system complexity, which makes it practically infeasible today.
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In the present study, we aimed to develop and evaluate low-cost instrumented insoles for the
estimation of foot plantar COP trajectories. In order to address the limitations of the weighted-mean
approach, we proposed a novel individual-specific nonlinear model. This model was expected to
accurately estimate foot plantar COP trajectories using the data from a small number of low-cost FSR
sensors. An experiment involving a variety of postural control assessment tasks was carried out to
provide data for least square error approximation and model coefficients specification. The accuracy of
the foot plantar COP trajectories estimation by this model was examined by comparing the estimated
COP data with the reference data from a commercial insole-based plantar pressure measurement
system. Accuracy comparisons were also carried out between the proposed nonlinear model and the
weighted-mean approach.

2. Materials and Methods

2.1. Hardware Design

The block diagram of the proposed instrumented insole is shown in Figure 1. It mainly consists of
three parts: a 12 integrated FSR (FSR402, Interlink Electronics, Los Angeles, CA, USA) based insole,
a lower-shank mounter block, and a PC end graphic user interface (GUI). Each FSR402 sensor has a
12.7 mm diameter sensing area made of fiberglass resin that is attached to a base 18.1 mm in diameter.
The lower-shank mounter block consisted of a Micro-Computer Unit (MCU, STM32 32-bit ARM Cortex,
ARM, Ltd., Cambridge, UK), a Bluetooth module (HC-06, Wavesen Co. Ltd. Guangzhou, China), a
customized A2D module and a battery. Twelve FSRs were strategically adhered onto a silicone made
insole, the size of which was US 9. The layout of the FSRs is depicted in Figure 2. This layout is similar
to what has been suggested by Howell et al. [34], where the 12 sensors can cover the important foot
plantar pressure distribution areas such as great toe, metatarsophalangeal joint, arch of the foot, and
heel. An insole coordinate system was used to help identify the actual location of each sensor. As
illustrated in Figure 2, the x-axis is the tangent line to the bottom edge of the insole, which defines the
medial–lateral direction (ML); and the y-axis is the tangent line to the left edge of the insole, which
defines the anterior–posterior (AP) direction. The origin is the intersection between the x-axis and the
y-axis.

Prior to usage, each FSR was calibrated and conditioned following the techniques suggested
by Hall et al. [35]. This was to eliminate the creep effect (i.e., the change of FSR resistance over
prolonged time) and minimize the hysteresis effect. After that, each FSR sensor was connected to a
Voltage-to-Current (V2C) converting circuit, as recommended by the manufacturer [36]. The thickness
of the connecting cable is only 0.4 mm so that it will not lead to uneven surface of the insole.
The V2C converting circuit converts the FSR resistance value to an inverse voltage output, which were
subsequently converted into readable voltage output through a 10-bit analog-2-digital (A2D) module.
The force measured by each sensor was obtained based on its voltage output following a fourth order
polynomial equation, as suggested by Hall et al. [35]. The data were transmitted wirelessly by a
Bluetooth module to a PC end, where the GUI was designed by a customized MATLAB script to
visualize the pressure output in real time.
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Figure 1. The block diagram of the instrumented insole.

Figure 2. The layout of the 12 Force Sensitive Resistor (FSR) sensors and the corresponding coordinates.
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2.2. The Experiment

The experiment was carried out for model development and validation. A convenience sample of
10 young (age = 22.6 ± 1.5 years, height = 173.8 ± 4.4 cm, weight = 64.9 ± 4.4 kg) and 10 older adults
(age = 65.7 ± 3.4 years, height = 167.5 ± 3.9 cm, weight = 65.2 ± 2.9 kg) were recruited from the local
community. These participants all had the shoe size of US 9. The young participants were between
21 and 24 years old. The elderly participants were all above 60 years old and living independently,
and could perform the activities of daily living (ADLs) without external assistance. Both young and
elderly participants reported no injuries, illness, or medical surgery history. All participants signed the
informed consent form approved by the Shenzhen University ethics committee.

Previous research has demonstrated that the F-scan system can measure the COP trajectory
accurately [37]. Therefore, the foot COP trajectories obtained from the F-scan system were considered
as the reference measurement (i.e., the response data). Prior to the experiment, the F-scan sensor sheets
were tailored to make sure it had the same shape and size as the instrumented insoles. They were
then pasted underneath the instrumented insoles (Figure 3a). Cautious actions were taken before data
collection to make sure that the instrumented insoles and F-scan sensor sheet were adhered evenly
and firmly. The insoles were inserted into a pair of sports shoes (size US 9), as depicted in Figure 3b.

Figure 3. (a) the F-scan sensor sheets (green) were tailored and adhered underneath the instrumented
insole (blue); (b) the insoles were inserted into a pair of sports shoes.

Participants were asked to wear the shoes with the instrumented insoles. Both the lower-shank
mounted block of the instrumented insoles and the signal box of the F-scan system were attached
to the lower shank (Figure 4). Then, participants were instructed to perform a variety of postural
control assessment tasks including (1) quiet standing with open eyes, (2) quiet standing with closed
eyes, (3) standing up from a chair with armrests (wooden chair, seat height 435 mm, armrests height
250 mm), (4) sitting down to a chair with armrests, (5) standing up from a chair without armrests
(wooden chair, seat height 435 mm), and (6) sitting down to a chair without armrests. During quiet
standing trials, participants were asked to stand quietly with a self-chosen comfortable posture for
10 s. During standing up and sitting down trials, participants were asked to keep the feet on the
ground when they started standing up or sitting down. When performing standing up and sitting
down tasks with the chair with armrests, participants were instructed to use the armrests to help the
body ascending and descending. These tasks were performed in a random order. Three trials were
collected for each task. Each of these trials was separated to form three blocks of trials, which would
be used for cross validation purposes. Prior to data collection, participants were given approximately
5 min practice to get familiar with these tasks. The activation of the F-Scan system and our proposed
instrumented insoles is initiated with the application of external pressure. Thus, these two insole
systems were synchronized by manually applying external pressure onto them at the same time.
The sampling frequency was set at 50 Hz.
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Figure 4. Both the lower-shank mounted block of the instrumented insole and the signal box of the
F-scan system were attached to the lower-shank.

We noted that the instrumented insole was placed in between the foot and F-scan sensor sheet.
The overlapping between the instrumented insole and F-scan sensor sheet might modify the foot
plantar pressure distribution and induce errors in F-scan measurement. Such errors might compromise
the accuracy of the reference data. A test was carried out to examine the possible errors caused
by the overlap. One male volunteer (age: 31, height: 180 cm, weight: 65 kg, shoe size: US 9)
participated. Firstly, the participant was asked to wear the experimental shoes that had both the
proposed instrumented insole and F-scan sensor sheet (overlapping condition), and perform the
above-mentioned postural control assessment tasks. Each task was performed 20 times in a random
order. Then, the participant wore the same shoes with F-scan sensor sheet only (no overlapping
condition) and performed each postural control assessment task 20 times in a random order. Two
COP parameters including COP range and mean COP were compared between the ‘overlapping’ and
‘no overlapping’ conditions by using t-tests. As shown in Table 1, when the level of significance was
set at 0.05, no significant differences existed in the COP parameters between the ‘overlapping’ and
‘no overlapping’ conditions. This suggests that the possible errors due to the overlapping did not
significantly affect the COP estimation results. Thus, we used the F-scan measurement data in the
overlapping condition as the reference data in the following analysis.

Table 1. Comparisons of COP parameters between the ‘overlapping’ and ‘no overlapping’ conditions.

Medial-Lateral (ML) COP Anterior-Posterior (AP) COP

Overlapping No Overlapping p-Value Overlapping No Overlapping p-Value

Task 1 COP range (mm) 2.5 ± 0.3 3.5 ± 0.2 0.83 6.9 ± 2.5 5.4 ± 2.1 0.54
Mean COP (mm) 42.4 ± 1.4 46.3 ± 3.2 0.19 189.8 ± 2.6 192.3 ± 2.3 0.73

Task 2 COP range (mm) 8.7 ± 1.2 7.7 ± 1.3 0.55 16.4 ± 3.0 13.0 ± 3.5 0.55
Mean COP (mm) 45.2 ± 7.2 47.9 ± 6.4 0.18 193.9 ± 1.6 196.7 ± 2.4 0.18

Task 3 COP range (mm) 15.4 ± 1.7 12.5 ± 1.9 0.89 67.0 ± 18.3 68.6 ± 22.1 0.81
Mean COP (mm) 45.7 ± 0.7 50.1 ± 1.5 0.30 187.3 ± 18.8 186.9 ± 14.3 0.91

Task 4 COP range (mm) 16.3 ± 1.9 14.5 ± 2.2 0.74 70.4 ± 15.3 74.6 ± 19.2 0.66
Mean COP (mm) 48.4 ± 3.5 49.0 ± 4.7 0.25 186.9 ± 13.8 183.7 ± 15.5 0.96

Task 5 COP range (mm) 13.4 ± 3.3 14.9 ± 4.5 0.12 73.2 ± 11.5 70.0 ± 14.7 0.81
Mean COP (mm) 45.1 ± 5.7 48.7 ± 3.1 0.06 208.7 ± 29.2 200.7 ± 22.1 0.78

Task 6 COP range (mm) 12.8 ± 1.5 15.1 ± 2.0 0.83 70.6 ± 10.9 74.3 ± 11.8 0.86
Mean COP (mm) 47.5 ± 0.8 43.9 ± 0.9 0.13 204.8 ± 9.5 213.2 ± 9.8 0.62

2.3. The Individual-Specific Nonlinear Model for COP Estimation

The foot plantar COP is practically defined as the centroid of all the external forces acting on
the plantar surface of the foot [38]. Therefore, in the previous weighted-mean approach, the COP
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trajectories were estimated by a spatial average of all the forces measured by pressure sensors. However,
with a reduced number of pressure sensors, the external forces acting on the foot plantar might not be
registered completely. Thus, errors might be induced.

To address the limitation of the weighted-mean approach, a multivariate nonlinear regression model
was proposed where the FSR sensor outputs were considered as the predictor data. Similar to the
weighted-mean approach, in the proposed model, the output of FSR sensor was weighted and summed
to determine COP locations (Equations (1) and (2)). However, instead of using the sensor locations, the
model coefficients (i.e., weighting parameters) were determined by a least square error approximation
process. The sensor locations (i.e., the coordination of each sensor defined in Figure 2) were only used to
set the initial values of the model coefficients. The least square error approximation process would tune
the model coefficients to achieve improved COP trajectory estimation capability. This model is as follows:

XCOP =
∑12

i Cx
i Fi

Cx
totFtot

, (1)

YCOP =
∑12

i Cy
i Fi

Cy
totFtot

, (2)

where XCOP and YCOP are the COP coordinates defined in the coordinate system (Section 2.1). XCOP
represents the COP location along the medial–lateral direction, YCOP represents the COP location
along the anterior–posterior direction. Cx

i , and Cy
i (i = 1, 2, 3 . . . 12) are the model coefficients that

weight each sensor output (Fi). Cx
tot and Cy

tot are the model coefficients that weights the sum of all

forces registered by FSRs. Ftot is the sum of all forces registered by FSRs (Ftot =
12
∑
i

Fi). Cx
i , Cy

i , Cx
tot and

Cy
tot are determined through the least square error approximation process.

An iterative least square error approach was carried out to determine the model coefficients.
The model coefficients were written in the vector form as:

Ĉx = (Cx
i ; Cx

tot), (3)

Ĉy =
(
Cy

i ; Cy
tot
)
, (4)

The reference measurement (i.e., the foot COP trajectories obtained from the F-scan system) in the
vector form was as follows:

XCOP = (XCOP,1; XCOP,2; . . . XCOP,m), (5)

YCOP = (YCOP,1; YCOP,2; . . . YCOP,m), (6)

where m is the number of observations in the training data (which related to the time taken in each
postural control assessment task). Similarly, the predictor data (F) can be written as a m × i matrix (i is
the number of FSR sensors) as follows:

F =


F11 F12 · · · F1i ∑12

i F1i
F21 F22 · · · F2i ∑12

i F2i
...

...
. . .

...
...

Fm1 Fm2 · · · Fmi ∑12
i Fmi

 =


FT

1 ∑12
i F1

FT
2 ∑12

i F2
...

...
FT

m ∑12
i Fm

. (7)
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The goal of the approximation process is to find Ĉx and Ĉy that can minimize the square
error between the reference measurements and the model predicted values. Let EĈx =(

XCOP − FĈx
)T(

XCOP − FĈx
)

and EĈy =
(

XCOP − FĈy
)T(

XCOP − FĈy
)

, so

Ĉx∗ = arg min
Ĉx

EĈx , (8)

Ĉy∗ = arg min
Ĉy

EĈy . (9)

In multivariable calculus, to find the minimum value of EĈx and EĈy , it requires solving the
following partial derivative functions [39]. This process went iteratively until the closed form optimal
solution for Ĉx and Ĉy were found:

∂EĈx

∂Ĉx
= 2FT

(
FĈx − XCOP

)
= 0, (10)

∂EĈy

∂Ĉy
= 2FT

(
FĈy − YCOP

)
= 0. (11)

Three-fold cross validation was implemented for model evaluation. The data from the postural
control assessment tasks were equally assigned into three groups, and each group contained data from
tasks (1)–(6) (as described in Section 2.2). For each evaluation procedure, two groups were selected
as the training set while the other group as the evaluation set. This repeated three times until all
the group combinations were tested. Then, the mean value of root mean square errors (RMSE), the
correlation coefficients (CC), the maximum error (MaxE) and minimum error (MinE) between the
estimated COP trajectories and the reference measurements were calculated. In addition, in order
to determine the statistical significance of the CC, the p-values were examined for CC. In addition,
the COP trajectory was also estimated by the weighted mean approach. Similarly, three-fold cross
validation was implemented to evaluate the weighted mean approach. Comparisons were carried out
between the nonlinear model and weighted mean approach in RMSE, CCs, MaxE and MinE.

2.4. Graphic User Interface (GUI)

The GUI is shown in Figure 5. The left-hand side panel shows the pair of instrumented insole
and the locations of FSR sensors. Each red dot presents the instant sensor pressure, the size of which
corresponds to the pressure magnitude. The green dot indicates the estimated location of the COP.
The right-hand side panel shows the COP trajectories along the time. It also shows the pressure output
of each FSR sensor and instant Ftot normalized by body weight (BW).
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Figure 5. The GUI developed in the MATLAB to show the output of each sensor, Ftot normalized by
body weight (BW), and the estimated foot plantar COP trajectory.

3. Results

Figure 6 shows an example of COP trajectory estimation by the proposed nonlinear model.
The COP trajectories along the ML direction and AP direction were plotted against the reference
measurements. This example shows that the estimated COP trajectories were trending closely with the
reference, suggesting an accurate estimation.

Table 2 shows the RMSE, CC, MaxE and MinE results of the COP trajectories calculated by the
proposed nonlinear model compared with the reference measurements. The overall mean and standard
deviation were also summarized. The RMSE reflects estimation accuracy. For the ML COP, the mean
RMSEs were 2.23 (±0.64) and 2.72 (±0.83) for the left and right foot, respectively. For the AP COP,
the mean RMSEs were 9.17 (±1.98) and 11.19 (±2.98), respectively. The RMSEs along the AP were
larger than that along the ML direction because the COP trajectories typically have a larger moving
range along the AP direction. The small RMSEs suggested that the proposed COP trajectory estimation
model had high COP trajectory estimation accuracy.

The CC accounts for the similarity of the estimated COP trajectory time series, compared to the
reference measurements. The mean value of CCs was 0.91 (±0.05) to 0.93 (±0.02) along the ML and
AP direction, respectively. In addition, the p-values of each CC were all smaller than 0.0001, indicating
that the correlation is highly significant.

The MaxE and MinE indicate the least and best estimation each model can achieve. The MaxE for
ML COP was 26.119 mm and 25.254 mm for the left and right foot, respectively; for AP COP, it was
124.86 mm and 116.18 mm for the left and right foot, respectively. As for the minimum error, both the
weighted mean approach and nonlinear model can achieve a high accuracy with the minimum error
less than 1 mm.

Figure 7 shows the comparison of the RMSE between the nonlinear model and weighted mean
approach. For all participants, the RMSE between the estimated COP by the nonlinear model and the
reference measurements are smaller compared to their counterparts estimated by the weighted mean
approach. Figure 7 also shows the CCs. Overall, the weighted mean approach yielded a fairly good
CC, which was approximately 0.77–0.85 along the ML and AP direction, respectively. However, the
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nonlinear model yielded a higher CC. These results indicate that the COP trajectories estimated by the
nonlinear model have a more similar trending with the reference COP.

The least square error approximations were completed by a customized MATLAB script running
on a laptop computer (Intel® Core (TM) i7-7500U 2.7GHz, 8.00GB RAM, 256GB HD, Windows x64
operation system, HP Inc., Palo Alto, CA, USA). The number of iterations in least square error
approximation was between 5–8 (Mean ± SD = 6.5 ± 1.0 iterations) across different trials. It took
0.053–0.124 s (Mean ± SD = 0.112 ± 0.005 s) to complete the approximation procedure.

Figure 6. Representative plot of the comparison of COP trajectory estimation by the nonlinear model
and the reference data. The data were obtained from the left foot and for the different tasks: (1) quiet
standing with open eyes, (2) quiet standing with closed eyes, (3) standing up from a chair with armrests,
(4) sitting down to a chair with armrests (task 3 and 4 have multi-contacts phases where participant’s
hands are in contact with armrests or the seat) (5) standing up from a chair without armrests, and
(6) sitting down to a chair without armrests.
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Table 2. The RMSE (Root Mean Square Error), Correlation Coefficient (CC), Maximum Error (MaxE) and the Minimum Error (MinE) of the COP trajectory estimated
by the nonlinear mode and the reference measurement, for both feet (L_ and R_), and along the medial-lateral (ML) and anterior-posterior (AP) directions.

Participants
RMSE (mm) CC MaxE (mm) MinE (mm)

Left
AP

Left
ML

Right
AP

Right
ML

Left
AP

Left
ML

Right
AP

Right
ML

Left
AP

Left
ML

Right
AP

Right
ML

Left
AP

Left
ML

Right
AP

Right
ML

1 5.9 2.4 4.7 2.8 0.93 0.97 0.76 0.93 15.8 6.7 16.1 11.4 0.0 0.1 0.0 0.0
2 6.0 1.7 4.0 3.0 0.82 0.93 0.85 0.97 15.4 8.8 15.6 7.7 0.0 0.1 0.0 0.0
3 4.9 3.0 6.9 3.5 0.85 0.92 0.83 0.91 18.5 6.7 24.0 13.8 0.1 0.0 0.1 0.1
4 6.2 2.6 3.6 2.6 0.64 0.91 0.85 0.93 16.4 6.0 20.3 11.7 0.1 0.1 0.1 0.0
5 3.8 2.7 4.6 2.6 0.76 0.90 0.93 0.96 15.8 10.3 14.8 12.5 0.0 0.0 0.0 0.1
6 4.4 4.0 7.6 3.8 0.71 0.86 0.91 0.95 21.1 12.5 21.7 12.6 0.0 0.0 0.0 0.1
7 3.8 2.2 6.1 3.2 0.96 0.97 0.75 0.93 14.8 9.8 18.1 11.9 0.0 0.0 0.0 0.1
8 3.9 2.2 5.8 4.6 0.90 0.98 0.74 0.93 14.7 7.8 23.5 7.7 0.0 0.1 0.1 0.0
9 4.0 2.5 6.5 4.2 0.91 0.97 0.67 0.93 13.0 8.3 22.6 6.4 0.1 0.0 0.0 0.0
10 3.7 2.0 3.4 2.3 0.77 0.94 0.91 0.93 11.1 4.3 16.2 10.4 0.1 0.1 0.1 0.0
11 4.5 2.4 5.1 1.8 0.77 0.90 0.74 0.93 13.1 4.6 10.9 3.9 0.0 0.0 0.1 0.1
12 5.0 2.7 5.7 2.1 0.77 0.93 0.81 0.93 16.3 7.8 19.8 8.5 0.0 0.1 0.0 0.1
13 5.8 1.6 6.2 1.4 0.84 0.87 0.58 0.91 15.8 8.4 16.0 3.5 0.0 0.1 0.0 0.1
14 4.2 1.6 4.6 2.2 0.78 0.84 0.74 0.95 13.8 6.2 16.8 13.7 0.1 0.0 0.0 0.0
15 4.5 2.7 7.3 3.5 0.70 0.84 0.74 0.95 13.0 8.2 25.3 13.7 0.0 0.1 0.0 0.1
16 3.3 2.3 6.3 2.7 0.86 0.88 0.65 0.96 26.1 11.1 20.0 12.0 0.0 0.1 0.0 0.0
17 2.0 1.0 4.4 2.3 0.78 0.94 0.64 0.91 8.1 3.2 19.7 17.5 0.0 0.0 0.1 0.0
18 2.4 1.5 4.4 1.6 0.78 0.81 0.80 0.93 11.0 3.5 12.9 7.8 0.0 0.0 0.0 0.0
19 3.5 2.0 3.9 2.2 0.73 0.87 0.66 0.90 15.1 5.7 13.2 6.2 0.0 0.1 0.0 0.0
20 4.5 1.6 3.4 2.0 0.86 0.96 0.81 0.93 13.6 2.6 15.8 10.8 0.0 0.0 0.1 0.0

Mean 4.3 2.2 5.2 2.7 0.81 0.91 0.77 0.93 15.1 7.1 18.2 10.2 0.0 0.0 0.0 0.0
Std. 1.1 0.6 1.3 0.8 0.08 0.05 0.09 0.02 3.7 2.6 3.9 3.5 0.0 0.0 0.0 0.0
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Figure 7. Comparisons of the RMSE and CC between the nonlinear model and the weighted
mean approach.

4. Discussion

This study presents an individual-specific nonlinear model that can help estimate the foot plantar
COP trajectories with an instrumented insole. Among the 20 participants involved in this study, the
average RMSE between the estimated COP trajectories by the proposed model and the reference
measurements was less than 3 mm along the medial–lateral direction of the foot, and less than
12 mm along the anterior–posterior direction. In addition, the estimated COP trajectories by this
nonlinear model established high correlation coefficients with the reference measurements (0.91–0.93
with p-values all less than 0.0001). To our knowledge, the results are the smallest errors and highest
correlation coefficients reported in relevant studies where the foot plantar COP trajectories were
estimated by a small number of low-cost pressure sensors [28,29]. For instance, Shu [28] reported a
mean relative difference of 7.6 and 9.9 mm between the estimated COP trajectories and the reference
measurements during normal standing and standing on one leg. Dyer et al. [29] reported the RMSE
ranging from 7 mm to 24 mm during locomotion. Overall, the results suggested that the proposed
nonlinear model had excellent COP trajectory estimation capability.
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Previously, the weighted mean approach was the most commonly used method to estimate
the foot plantar COP trajectory by instrumented insoles [40]. However, as mentioned earlier, this
approach may not lead to desirable estimation, especially when the number of low-cost pressure
sensors is small. To address the limitation of the weighted mean approach, we proposed the nonlinear
model here and used this model to estimate COP trajectories during a variety of postural control
assessment tasks. Meanwhile, to identify the improvement of the proposed nonlinear model, the
weighted mean approach was also used for COP trajectory estimation by using the same set of data.
The results show that the mean RMSE between the estimated COP trajectories by the weighted mean
approach and the reference measurements were ~4–6 mm along the ML direction, and ~18–20 mm
along the AP direction. These nearly doubled the RMSEs obtained by the nonlinear model. The
correlation coefficients were ranging from 0.80 to 0.86, which were also lower than those calculated by
the nonlinear model approach. These results suggested that the proposed nonlinear model can lead to
improved COP trajectory estimation compared to the weighted mean approach.

There might be two reasons that can help explain why the nonlinear model works better than the
weighted mean approach with a small number of sensors. First, in the weighted mean approach, the
accuracy depends largely on the numbers of sensors and their predefined locations. As we discussed
earlier, the small number of sensors might induce errors. Different sensor placement strategy will also
influence the accuracy of COP trajectory estimation. However, in the nonlinear model, least square
error approximation will help rectify the errors due to the small number of sensors and their placement
strategy. Another reason is that the weighted mean approach cannot address individual differences,
which may induce additional intra-subject errors. In addition, the least square error approximation
process in the nonlinear model is dependent on individual data from the sensors. In other words, the
model coefficients were determined by each participant’s own experimental data. Thus, the proposed
nonlinear model is individual-specific and is able to address individual differences.

This study demonstrated that the foot plantar COP can be accurately estimated by a small
number of low-cost pressure sensors. Many instrumented insole systems have been developed and are
even commercially available. Clinically, more accurate COP estimation help better postural control
assessment. However, there is always a trade-off between the number of sensors and estimation
accuracy. The increased number of sensors will complicate the instrumented insole system and
possibly compromise the reliability of the whole system. In addition, a larger number of sensors or
sensor array will increase the cost substantially and make it unaffordable for the home-dwelling elderly.
Therefore, an instrumented insole with a small number of low-cost sensors like what we proposed in
the present study has its own merits.

From a practical point of view, this study can benefit the home-based postural control assessment
for elderly and patients with pathological conditions. The impaired postural control is considered as
an important risk factor of falls [41,42]. Though consensus is still lacking, postural control parameters
have been widely suggested as indicators of fall risks [43–46]. Based on these, the authors believe that
this can benefit the fall prevention research.

There are still some limitations in this study. First, this study mainly focused on postural control
assessment during static stance and sit-to-stand transitions. Although previous research suggested that
increased postural sway during stance can be a risk factor for prospective falls in community-dwelling
elderly individuals [10], future work needs to be carried out to test the validity of this nonlinear
approach during other activities of daily living, such as walking and stair negotiation. Second, we
did not examine insole size other than US 9 just for convenience. However, as the proposed COP
estimation model in the present study was individual-specific, we believe that this model would be
applicable for other insole sizes as well.

5. Conclusions

Falls are still a major safety and health problem among aged population. Fall risk assessment is an
effective approach to reduce fall accidents among the elderly. A substantial number of falls in the elderly
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result from loss of balance. Thus, the plantar COP, as an indicator of postural control performance,
is an important fall risk assessment parameter. This study presented a low-cost instrumented insole
system that uses a nonlinear model for COP trajectory estimation. Results show that this system is
able to provide accurate COP trajectory data. Compared to traditional COP trajectory estimation
approaches (i.e., weighted mean approach), the proposed nonlinear model performed better in terms
of estimation accuracy. Based on this, we suggest that the proposed instrumented insole system could
serve as an inexpensive solution to fall risk assessment in home settings or community healthcare
centers for the elderly. It has the potential to help prevent future falls in the elderly.

Acknowledgments: This work was supported in part by the Natural Science Foundation of China (11702175;
31570944), the Natural Science Foundation of Guangdong Province (2015A030313553; 2016A030310068),
and the Science, Technology and Innovation Committee of Shenzhen City (JCYJ20160422145322758;
JCYJ20150525092940994). The authors would like to thank Wenzhen Chen and Jialun Cai for their help during
data collection.

Author Contributions: X.H. and X.Q. conceived and designed the experiments; X.H., D.P. and J.Z. performed the
experiments; D.P., Z.S. and X.H. analyzed the data; and X.H., Z.S. and X.Q. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance
to prevent falls? Age Ageing 2006, 35, ii7–ii11. [CrossRef] [PubMed]

2. Massion, J. Postural control system. Curr. Opin. Neurobiol. 1994, 4, 877–887. [CrossRef]
3. Tresch, M.C. A balanced view of motor control. Nat. Neurosci. 2007, 10, 1227–1228. [CrossRef] [PubMed]
4. Lord, S.R.; Sambrook, P.N.; Gilbert, C.; Kelly, P.J.; Nguyen, T.; Webster, I.W.; Eisman, J.A. Postural stability,

falls and fractures in the elderly: Results from the Dubbo Osteoporosis Epidemiology Study. Med. J. Aust.
1994, 160, 684–685. [CrossRef]

5. Melzer, I.; Benjuya, N.; Kaplanski, J. Postural stability in the elderly: A comparison between fallers and
non-fallers. Age Ageing 2004, 33, 602–607. [CrossRef] [PubMed]

6. Nashner, L.M.; Shumway-Cook, A.; Marin, O. Stance posture control in select groups of children with
cerebral palsy: Deficits in sensory organization and muscular coordination. Exp. Brain Res. 1983, 49, 393–409.
[CrossRef] [PubMed]

7. Benaim, C.; Pérennou, D.A.; Villy, J. Validation of a standardized assessment of postural control in stroke
patients. Stroke 1999, 30, 862–1868. [CrossRef]

8. Horak, F.B.; Nutt, J.G.; Nashner, L.M. Postural inflexibility in parkinsonian subjects. J. Neurol. Sci. 1992, 111,
46–58. [CrossRef]

9. Rocchi, L.; Chiari, L.; Cappello, A.; Horak, H.B. Identification of distinct characteristics of postural sway in
Parkinson’s disease: A feature selection procedure based on principal component analysis. Neurosci. Lett.
2006, 394, 140–145. [CrossRef] [PubMed]

10. Liu, J.; Zhang, X.; Lockhart, T.E. Fall risk assessments based on postural and dynamic stability using inertial
measurement unit. Saf. Health Work 2012, 3, 192–198. [CrossRef] [PubMed]

11. Lafond, D.; Corriveau, H.; Hébert, R.; Prince, F. Intrasession reliability of center of pressure measures of
postural steadiness in healthy elderly people. Arch. Phys. Med. Rehabil. 2004, 85, 896–901. [CrossRef]
[PubMed]

12. Biswas, A.; Lemaire, E.D.; Kofman, J. Dynamic gait stability index based on plantar pressures and fuzzy
logic. J. Biomech. 2008, 41, 1574–1581. [CrossRef] [PubMed]

13. Van Dijk, M.M.; Meyer, S.; Sandstad, S.; Wiskerke, E.; Thuwis, R.; Vandekerckhove, C.; Myny, C.; Ghosh, N.;
Beyens, H.; Dejaeger, E.; et al. A cross-sectional study comparing lateral and diagonal maximum weight
shift in people with stroke and healthy controls and the correlation with balance, gait and fear of falling.
PLoS ONE 2017, 12, e0183020. [CrossRef] [PubMed]

14. Sawacha, Z.; Carraro, E.; Contessa, P.; Guiotto, A.; Masiero, S.; Cobelli, C. Relationship between clinical and
instrumental balance assessments in chronic post-stroke hemiparesis subjects. J. Neuroeng. Rehabil. 2013,
10, 95. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/ageing/afl077
http://www.ncbi.nlm.nih.gov/pubmed/16926210
http://dx.doi.org/10.1016/0959-4388(94)90137-6
http://dx.doi.org/10.1038/nn1007-1227
http://www.ncbi.nlm.nih.gov/pubmed/17893714
http://dx.doi.org/10.1016/0378-5122(95)90008-X
http://dx.doi.org/10.1093/ageing/afh218
http://www.ncbi.nlm.nih.gov/pubmed/15501837
http://dx.doi.org/10.1007/BF00238781
http://www.ncbi.nlm.nih.gov/pubmed/6641837
http://dx.doi.org/10.1161/01.STR.30.9.1862
http://dx.doi.org/10.1016/0022-510X(92)90111-W
http://dx.doi.org/10.1016/j.neulet.2005.10.020
http://www.ncbi.nlm.nih.gov/pubmed/16269212
http://dx.doi.org/10.5491/SHAW.2012.3.3.192
http://www.ncbi.nlm.nih.gov/pubmed/23019531
http://dx.doi.org/10.1016/j.apmr.2003.08.089
http://www.ncbi.nlm.nih.gov/pubmed/15179642
http://dx.doi.org/10.1016/j.jbiomech.2008.02.009
http://www.ncbi.nlm.nih.gov/pubmed/18395211
http://dx.doi.org/10.1371/journal.pone.0183020
http://www.ncbi.nlm.nih.gov/pubmed/28809939
http://dx.doi.org/10.1186/1743-0003-10-95
http://www.ncbi.nlm.nih.gov/pubmed/23941396


Sensors 2018, 18, 421 15 of 16

15. Sawacha, Z.; Carraro, E.; Din, S.D.; Guiotto, A.; Bonaldo, L.; Punzi, L.; Cobelli, C.; Masiero, S. Biomechanical
assessment of balance and posture in subjects with ankylosing spondylitis. J. Neuroeng. Rehabil. 2012, 9, 63.
[CrossRef] [PubMed]

16. Johansson, J.; Nordstrom, A.; Gustafson, Y.; Westling, G.; Nordstrom, P. Increased postural sway during
quiet stance as a risk factor for prospective falls in community-dwelling elderly individuals. Age Aging 2017,
46, 946–970. [CrossRef] [PubMed]

17. Robertson, G.; Caldwell, G.; Hamill, J.; Kamen, G.; Whittlesey, S. Research Methods in Biomechanics, 2nd ed.;
Human Kinetics: Champaign, IL, USA, 2013.

18. Klenk, J.; Schwickert, L.; Palmerini, L.; Mellone, S.; Bourke, A.; Ihlen, E.A.F.; Kerse, N.; Hauer, K.;
Pijnappels, M.; Synofzik, M.; et al. The FARSEEING real-world fall repository: A large-scale collaborative
database to collect and share sensor signals from real-world falls. Eur. Rev. Aging Phys. Act. 2016, 13, 8.
[CrossRef] [PubMed]

19. Bagala, F.; Klenk, J.; Cappello, A.; Chiari, L.; Becker, C.; Lindemann, U. Quantitative description of the
lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 2013,
21, 624–633. [CrossRef] [PubMed]

20. Klenk, J.; Becker, C.; Lieken, F.; Nicolai, S.; Maetzler, W.; Alt, W.; Zijlstra, W.; Hausdorff, J.M.; van
Lummel, R.C.; Chiari, L.; et al. Comparison of acceleration signals of simulated and real-world backward
falls. Med. Eng. Phys. 2011, 33, 368–373. [CrossRef] [PubMed]

21. Becker, C.; Schwickert, L.; Mellone, S.; Bagala, F.; Chiari, L.; Helbostad, J.L.; Zijlstra, W.; Aminian, K.;
Bourke, A.; Todd, C.; et al. Proposal for a multiphase fall model based on real-world fall recordings with
body-fixed sensors. Z. Gerontol. Geriatr. 2012, 45, 707–715. [CrossRef] [PubMed]

22. Bagala, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation
of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 2012, 7, e37062. [CrossRef]
[PubMed]

23. Mellone, S.; Tacconi, C.; Schwickert, L.; Klenk, J.; Becker, C.; Chiari, L. Smartphone-based solutions for fall
detection and prevention: The FARSEEING approach. Z. Gerontol. Geriatr. 2012, 45, 722–727. [CrossRef]
[PubMed]

24. Chesnin, K.J.; Selby-Silverstein, L.; Besser, M.P. Comparison of an in-shoe pressure measurement device
to a force plate: Concurrent validity of center of pressure measurements. Gait Posture 2000, 12, 128–133.
[CrossRef]

25. Forner-Cordero, A.; Koopman, H.J.F.M.; van der Helm, F.C.T. Use of pressure insoles to calculate the complete
ground reaction forces. J. Biomech. 2004, 37, 1427–1432. [CrossRef] [PubMed]

26. Forner-Cordero, A.; Koopman, H.J.F.M.; van der Helm, F.C.T. Inverse dynamics calculations during gait with
restricted ground reaction force information from pressure insoles. Gait Posture 2006, 23, 189–199. [CrossRef]
[PubMed]

27. Liedtke, C.; Fokkenrood, W.; Menger, T.; van der Kooij, H.; Veltink, H. Evaluation of instrumented shoes for
ambulatory assessment of ground reaction forces. Gait Posture 2007, 26, 39–47. [CrossRef] [PubMed]

28. Shu, L.; Hua, T.; Wang, Y.; Li, Q.; Feng, D.D.; Tao, X. In-shoe plantar pressure measurement and analysis
system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767–775. [PubMed]

29. Dyer, P.S.; Bamberg, S.J.M. Instrumented insole vs. force plate: A comparison of center of plantar pressure.
In Proceedings of the 2011 IEEE Annual International Conference of Engineering in Medicine and Biology
Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6805–6809.

30. Crea, S.; Donati, M.; De Rossi, S.M.M.; Oddo, C.M.; Vitiello, N. A wireless flexible sensorized insole for gait
analysis. Sensors 2014, 14, 1073–1093. [CrossRef] [PubMed]

31. Ayena, J.C.; Otis, M.J.; Menelas, B.A. An efficient home-based risk of falling assessment test based on
Smartphone and instrumented insole. In Proceedings of the IEEE International Symposium on Medical
Measurements and Applications (MeMeA), Turin, Italy, 7–9 May 2015; pp. 416–421.

32. Lin, F.; Wang, A.; Zhuang, Y.; Tomita, M.R.; Xu, W. Smart Insole: A wearable sensor device for unobtrusive
gait monitoring in daily life. IEEE Trans. Ind. Inform. 2016, 12, 2281–2291. [CrossRef]

33. Claverie, L.; Ille, A.; Moretto, P. Discrete sensors distribution for accurate plantar pressure analyses. Med. Eng.
Phys. 2016, 38, 1489–1494. [CrossRef] [PubMed]

34. Howell, A.M.; Kobayashi, T.; Hayes, H.A.; Foreman, K.B.; Bamberg, S.J.M. Kinetic gait analysis using a
low-cost insole. IEEE Trans. Biomed. Eng. 2013, 60, 3284–3290. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1743-0003-9-63
http://www.ncbi.nlm.nih.gov/pubmed/22931459
http://dx.doi.org/10.1093/ageing/afx083
http://www.ncbi.nlm.nih.gov/pubmed/28531243
http://dx.doi.org/10.1186/s11556-016-0168-9
http://www.ncbi.nlm.nih.gov/pubmed/27807468
http://dx.doi.org/10.1109/TNSRE.2012.2230189
http://www.ncbi.nlm.nih.gov/pubmed/23221832
http://dx.doi.org/10.1016/j.medengphy.2010.11.003
http://www.ncbi.nlm.nih.gov/pubmed/21123104
http://dx.doi.org/10.1007/s00391-012-0403-6
http://www.ncbi.nlm.nih.gov/pubmed/23184296
http://dx.doi.org/10.1371/journal.pone.0037062
http://www.ncbi.nlm.nih.gov/pubmed/22615890
http://dx.doi.org/10.1007/s00391-012-0404-5
http://www.ncbi.nlm.nih.gov/pubmed/23184298
http://dx.doi.org/10.1016/S0966-6362(00)00071-0
http://dx.doi.org/10.1016/j.jbiomech.2003.12.016
http://www.ncbi.nlm.nih.gov/pubmed/15275851
http://dx.doi.org/10.1016/j.gaitpost.2005.02.002
http://www.ncbi.nlm.nih.gov/pubmed/16399515
http://dx.doi.org/10.1016/j.gaitpost.2006.07.017
http://www.ncbi.nlm.nih.gov/pubmed/17010612
http://www.ncbi.nlm.nih.gov/pubmed/20071266
http://dx.doi.org/10.3390/s140101073
http://www.ncbi.nlm.nih.gov/pubmed/24412902
http://dx.doi.org/10.1109/TII.2016.2585643
http://dx.doi.org/10.1016/j.medengphy.2016.09.021
http://www.ncbi.nlm.nih.gov/pubmed/27745875
http://dx.doi.org/10.1109/TBME.2013.2250972
http://www.ncbi.nlm.nih.gov/pubmed/23475336


Sensors 2018, 18, 421 16 of 16

35. Hall, R.S.; Desmoulin, G.T.; Milner, T.E. A technique for conditioning and calibrating force-sensing resistors
for repeatable and reliable measurement of compressive force. J. Biomech. 2008, 41, 3492–3495. [CrossRef]
[PubMed]

36. Interlink. Available online: https://www.interlinkelectronics.com/datasheets/Datasheet_FSR.pdf (assessed
on 10 August 2017).

37. Chen, B.; Bates, B.T. Comparison of F-Scan in-sole and AMTI forceplate system in measuring vertical ground
reaction force during gait. Physiother. Theory Pract. 2000, 16, 43–53. [CrossRef]

38. Cavanagh, P.R.; Ae, M. A technique for the display of pressure distributions beneath the foot. J. Biomech.
1980, 13, 69–75. [CrossRef]

39. Bickel, P.J.; Doksum, K.A. Mathematical Statistics: Basic Ideas and Selected Topics; Prentice Hall: Upper Saddle
River, NJ, USA, 1977.

40. Ma, C.Z.H.; Wong, D.W.C.; Lam, W.K.; Wan, A.H.P.; Lee, W.C.C. Balance improvement effects of biofeedback
systems with state-of-the-art wearable sensors: A systematic review. Sensors 2016, 16, 434. [CrossRef]
[PubMed]

41. Prudham, D.; Evans, J. Factors associated with falls in the elderly: A community study. Age Ageing 1981, 10,
141–146. [CrossRef] [PubMed]

42. Tinetti, M.; Speechley, M.; Cinter, S. Risk factors for falls among elderly persons living in the community.
N. Engl. J. Med. 1988, 319, 1701–1707. [CrossRef] [PubMed]

43. Palumbo, P.; Klenk, J.; Cattelani, L.; Bandinelli, S.; Ferrucci, L.; Rapp, K.; Chiari, L.; Rothenbacher, D.
Predictive performance of a fall risk assessment tool for community-dwelling older people(FRAT-up) in 4
European cohorts. J. Am. Med. Dir. Assoc. 2016, 17, 1106–1113. [CrossRef] [PubMed]

44. Palumbo, P.; Palmerini, L.; Bandinelli, S.; Chiari, L. Fall risk assessment tools for elderly living in the
community: Can we do better? PLoS ONE 2015, 10, e0146247. [CrossRef] [PubMed]

45. Cattelani, L.; Palumbo, P.; Palmerini, L.; Bandinelli, S.; Becker, C.; Chesani, F.; Chiari, L. FRAT-up, a
web-based fall-risk assessment tool for elderly people living in the community. J. Med. Internet Res. 2015,
17, e41. [CrossRef] [PubMed]

46. Palumbo, P.; Palmerini, L.; Chiari, L. A probabilistic model to investigate the properties of prognostic tools
for fall. Methods Inf. Med. 2015, 54, 189–197. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jbiomech.2008.09.031
http://www.ncbi.nlm.nih.gov/pubmed/19019374
https://www.interlinkelectronics.com/datasheets/Datasheet_FSR.pdf
http://dx.doi.org/10.1080/095939800307601
http://dx.doi.org/10.1016/0021-9290(80)90180-3
http://dx.doi.org/10.3390/s16040434
http://www.ncbi.nlm.nih.gov/pubmed/27023558
http://dx.doi.org/10.1093/ageing/10.3.141
http://www.ncbi.nlm.nih.gov/pubmed/7270321
http://dx.doi.org/10.1056/NEJM198812293192604
http://www.ncbi.nlm.nih.gov/pubmed/3205267
http://dx.doi.org/10.1016/j.jamda.2016.07.015
http://www.ncbi.nlm.nih.gov/pubmed/27594522
http://dx.doi.org/10.1371/journal.pone.0146247
http://www.ncbi.nlm.nih.gov/pubmed/26716861
http://dx.doi.org/10.2196/jmir.4064
http://www.ncbi.nlm.nih.gov/pubmed/25693419
http://dx.doi.org/10.3414/ME13-01-0127
http://www.ncbi.nlm.nih.gov/pubmed/25377164
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Hardware Design 
	The Experiment 
	The Individual-Specific Nonlinear Model for COP Estimation 
	Graphic User Interface (GUI) 

	Results 
	Discussion 
	Conclusions 
	References

