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Abstract
Using molecular signatures, previous studies have defined glioblastoma (GBM) sub-
types with different phenotypes, such as the proneural (PN), neural (NL), mesenchy-
mal (MES) and classical (CL) subtypes. However, the gene programmes underlying 
the phenotypes of these subtypes were less known. We applied weighted gene co-
expression network analysis to establish gene modules corresponding to various sub-
types. RNA-seq and immunohistochemical data were used to validate the expression 
of identified genes. We identified seven molecular subtype-specific modules and 
several candidate signature genes for different subtypes. Next, we revealed, for the 
first time, that radioresistant/chemoresistant gene signatures exist only in the PN 
subtype, as described by Verhaak et al, but do not exist in the PN subtype described 
by Phillips et al PN subtype. Moreover, we revealed that the tumour cells in the MES 
subtype GBMs are under ER stress and that angiogenesis and the immune inflam-
matory response are both significantly elevated in this subtype. The molecular basis 
of these biological processes was also uncovered. Genes associated with alterna-
tive RNA splicing are up-regulated in the CL subtype GBMs, and genes pertaining 
to energy synthesis are elevated in the NL subtype GBMs. In addition, we identified 
several survival-associated genes that positively correlated with glioma grades. The 
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1  | INTRODUC TION

GBMs are the most common malignant primary brain tumour found 
in adults. The primary treatment for GBM involves maximal surgical 
resection, followed by radiotherapy and alkylating chemotherapy 
with temozolomide.1,2 The median survival of optimally treated GBM 
patients is 14  months, with a 26% 2-year survival rate.1 Although 
the overall prognosis is poor, some patients may have significantly 
better responses to therapy and outcome.3 In order to categorize 
the tumours, Phillips et al identified three distinct subtypes of high-
grade astrocytomas by performing gene expression profiling. These 
subtypes are described as: proneural (PN), mesenchymal (MES) and 
proliferative (Prolif).4 Subsequently, Verhaak et al performed an un-
supervised transcriptome clustering of 1740 expressed genes de-
rived from 202 GBMs, and identified four clusters: proneural (PN), 
neural (NL), mesenchymal (MES) and classical (CL),4 which were 
closely correlated with genomic abnormalities.

Each subtype has its own phenotypes, and the PN and MES 
subtypes have been described most consistently. Patients with 
the PN subtype GBM are younger, and this subtype is character-
ized by platelet-derived growth factor receptor, alpha polypeptide 
(PDGFRA) amplification and isocitrate dehydrogenase 1(IDH1) 
mutation. Patients with the PN subtype GBM have an improved 
prognosis when compared with the other subtypes, which cor-
relates with the increased IDH1 mutation rate found in this subtype. 
However, the PN subtype is unresponsive to chemical and radiation 
therapy. The MES subtype of GBM overexpresses the mesenchymal 
marker, which is associated with the deletion and silencing of the 
chromosomal tumour suppressor gene, NF1, and the point mutation 
of the phosphatase and tensin homolog (PTEN). Moreover, the MES 
subtype is associated with poorer survival and a higher proportion of 
necrosis. However, the biological processes and corresponding gene 
programmes underlying these phenotypes were not well known. A 
thorough analysis of the biological processes and molecular mech-
anisms of these phenotypes would help us understand the intrinsic 
characteristics of different subtypes, which can offer insight into 
the pathogenesis and possible therapeutic targets for each subtype. 
Moreover, the lack of a powerful bioinformatics analysis method 
prevented previous studies from thoroughly exploring the biological 
processes and molecular mechanisms behind these distinct pheno-
types.5 However, a powerful systematic analysis method, weighted 
gene co-expression network analysis (WGCNA), allows the identifi-
cation of different gene networks based on co-expression relation-
ships between all expressed genes across samples.6,7 Genes in the 
same network, or module, often execute similar biological functions, 
including neural system development, ER stress response, cell cycle, 

inflammatory response and angiogenesis. In addition, the networks 
that function within specific molecular subtypes of GBMs were also 
identified based on module-trait correlations, allowing us to identify 
the biological processes and molecular programmes behind specific 
phenotypes of different subtypes. Furthermore, WGCNA allows us 
to select more central genes with higher intramodular connectivity 
within a single module, thereby removing confounding factors and 
producing convincing results. WGCNA, when based on transcrip-
tome data, can dissect various ‘ingredients’ (ie different pathological 
events) in the ‘soup’ of the GBMs.8

In this study, we used WGCNA to identify several gene mod-
ules associated with four different molecular subtypes, which are 
involved in major biological processes. Firstly, we identified some 
candidate signature genes for various molecular subtypes. Secondly, 
we revealed that the radioresistant/chemoresistant gene signatures 
only exist in the Verhaak et al PN subtype, but not in the PN sub-
type that was described by Phillips et al. Thirdly, we revealed that 
the tumour cells in the MES subtype are under ER stress and that 
angiogenesis and the immune inflammatory response are both sig-
nificantly elevated in this subtype. The molecular mechanisms of the 
ER stress response, immune inflammatory response and angiogene-
sis were uncovered. Next, we revealed for the first time that genes 
associated with alternative RNA splicing are significantly up-regu-
lated in the CL subtype GBMs and that genes pertaining to energy 
synthesis are markedly elevated in the NL subtype GBMs. Lastly, 
we identified several survival-associated genes that were positively 
correlated with glioma grades, using the RNA-seq and immunohis-
tochemical data.

2  | MATERIAL S AND METHODS

2.1 | Data set acquisition and pre-processing

RNA sequencing data (count files) and the corresponding clinical 
information of GBM samples were downloaded from the data por-
tal of The Cancer Genome Atlas (TCGA, https://cance​rgeno​me.nih.
gov/). The count files were normalized through the DESeq pack-
age.9 The samples that lacked any subtyping traits were eliminated. 
Gene Expression Omnibus (GEO, https://ncbi.nlm.mih.gov/geo/) is a 
public functional genomics data repository, which supports various 
types of high-throughput experimental data submission. The GEO 
series (GSE4271 and GSE16011) contain the raw data and clinical 
information of samples. Raw gene expression microarray data (CEL 
files) of high-grade gliomas were downloaded from the GSE4271. 
The raw probe-level data in CEL file were processed using the robust 
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multi-array average (RMA) algorithm in the Affy package10 of the R 
language, including background correction, quartile data normaliza-
tion and conversion into expression measures. For genes that cor-
respond to multiple probes, we used the average probe value as the 
expression value. Missing data in gene expression matrixes were im-
puted with the k-nearest neighbour (KNN) approach (k = 10).11

2.2 | Construction of co-expression networks

The weighted gene co-expression network was constructed for the 
GBM data set to identify gene modules associated with expres-
sion patterns of different molecular subtypes of GBMs following a 
previously described algorithm.6 The co-expression network was 
constructed by the R package WGCNA.7 In brief, the correlation 
network was first constructed by creating a matrix of Pearson's cor-
relation between all pairwise genes. Then, the obtained correlation 
matrix was transformed into a weighted adjacency matrix, using a 
power (β) of 4.6 Next, the topological overlap matrix (TOM), a meas-
ure of network interconnectedness, was calculated.6 On the basis 
of the TOM-based dissimilarity measure, we used average linkage 
hierarchical clustering to classify genes with similar expression pat-
terns into the same modules with a minimum size of 30.7 Modules 
were determined by using a dynamic tree-cutting algorithm.6 Using 
a merging threshold function at 0.25, the final modules were identi-
fied.6 Rather than using all 20 456 annotated genes to describe the 
molecular events in GBMs, we instead selected 25% of the genes 
that had the greatest variance. A total of 5114 genes were input into 
WGCNA. A total of 148 GBMs were clustered via the expression of 
the 5114 genes, and 3 GBMs were excluded as outliers. In this study, 
we identified 19 modules for the GBM data set.

2.3 | Calculating module eigengene, module 
membership and intramodular connectivity

The principal component analysis of each module obtained the first 
principal component, which was regarded as module eigengene (ME) 
in WGCNA. The expression pattern of each module in various sub-
types of GBMs was summarized by the corresponding module ei-
gengene. Each gene's module membership (MM) for a given module 
was then estimated as the Pearson correlation between that gene 
and the ME. The gene with a higher MM plays a more important 
role in the corresponding module; thus, genes with an MM > 0.6, de-
fined as central genes, were selected for subsequent analyses. The 
intramodular connectivity of one gene was defined as the sum of 
the correlation coefficients with other nodes in the corresponding 
module. The genes with higher intramodular connectivity also play 
decisive roles in the corresponding module.

2.4 | Identification of Clinically significant 
modules and Hub genes

The Pearson correlation between MEs and clinical traits was calcu-
lated to identify the most significant modules. The correlation co-
efficients and corresponding P-values are shown in Figure 1B. The 
top 30 genes with the highest intramodular connectivity within each 
module were referred to as intramodular hub genes.

2.5 | Gene ontology analysis

Gene ontology (GO) enrichment analysis was performed with the 
DAVID platform (DAVID 6.8, https://david.ncifc​rf.gov/).12 Genes 
with MM  >  0.6 within each module were utilized during GO en-
richment analyses. GO terms with the Benjamini-corrected P-
values < 0.05 are shown in Table S3. There are three categories in 
GO analysis: biological process (BP), cellular component (CC) and 
molecular function (MF).

F I G U R E  1   Weight gene co-expression network analysis 
(WGCNA) identified molecular subtype–specific modules. (A) 
Gene dendrogram for the GBM data set is shown. (B) Heatmap of 
module-trait relationships

https://david.ncifcrf.gov/
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2.6 | Visualization of key networks

All connections of genes with MM > 0.6 in each module were se-
lected, and Cytoscape 3.6.0 was used to visualize the top 250 con-
nections (based on topological overlap). The triangular and square 
nodes represented known signature genes of certain molecular sub-
types from Verhaak et al5 and Phillips et al,4 respectively. The di-
amond-shaped nodes represented the overlapping signature genes 
from both studies. The hub genes in each module were marked as 
large-sized nodes. The red nodes were identified as the candidate 
signature genes that we predicted in our study.

2.7 | Gene set enrichment analysis (GSEA)

The gene expression profiles of GBMs in TCGA data set were ana-
lysed by GSEA (http://softw​are.broad​insti​tute.org/gsea/index.
jsp).13 According to expression levels of hub genes, 145 GBMs 
were divided into two groups, with the criteria that the expression 
level was above or below the median. The chemical and genetic 
perturbations (CGP) of curated gene sets (C2), BP, CC and MF in 
the Molecular Signatures Database (MSigDB, version 6.2), were 
analysed as a gene set database. The number of permutations was 
1000, and the other parameters were set by their default values. 
The gene sets with a nominal P-value < 0.05 were considered sta-
tistically significant.

2.8 | Accessing immunohistochemistry data

The Immunohistochemistry results were acquired from the Human 
Protein Atlas (HPA, https://www.prote​inatl​as.org/) database.14 
The immunohistochemistry results from the HPA database were 
used to compare the protein levels of selected genes among nor-
mal brain tissues, low-grade gliomas (LGGs) and high-grade glio-
mas (HGGs).

2.9 | Statistical analysis

SPSS software (version 22.0, SPSS, Chicago, IL, USA), GraphPad 
Prism (version 6.0, GraphPad Software, San Diego, CA, USA) and R 
language (3.4.0) were used for statistical analysis. The results are pre-
sented as mean ± SEM. Statistical differences were determined by 
Student's t test for two-group comparisons, or ANOVA followed by 
Tukey's test for multiple comparisons among more than two groups. 
Survival analysis was performed with the Kaplan-Meier method. The 
statistical significance of differences between the two groups was 
evaluated using the log-rank test. P-value < 0.05 was considered a 
statistically significant difference. Bar plots, scatter plots and Kaplan-
Meier survival plots were generated using GraphPad Prism. Other 
plots, including dendrograms and heatmaps, were produced by R lan-
guage (3.4.0).

3  | RESULTS

3.1 | Constructing the GBM co-expression network

Identification of genes with expression levels that are highly correlated 
may shed light on biological and pathological events occurring in GBM 
and candidate signature genes. A total of 145 GBM samples were an-
alysed in this study. To better describe molecular events in GBMs, a 
quarter of all 20 456 genes with the greatest variance, including 5114 
genes, were selected for analysis. Based on the expression of 5114 
genes, hierarchical clustering of 145 GBM samples was performed 
(Figure S1A). The average age of these samples was 60.32 years. The 
samples included 36 (24.8%) PN, 38 (26.2%) CL, 46 (31.7%) MES and 
25 (17.2%) NL GBMs. In addition, of the samples obtained, 10 (6.9%) 
samples came from African Americans, 5 (3.4%) from Asians and 130 
(89.7%) from Caucasians (Figure S1A). Next, we performed weighted 
gene co-expression network analysis (WGCNA)6,7 to identify the mo-
lecular subtype related to the network in GBMs. The power (β) of 4 was 
selected as a soft-thresholding parameter to ensure a scale-free net-
work (scale R2 = 0.91) (Figure S1B,C). WGCNA identified 19 modules 
(designated as 19 different colours) of co-expressed genes (Figure 1A).

3.2 | Identifying molecular subtype-related modules

To identify the module that is significantly associated with the clini-
cal traits, we performed a Pearson correlation between the module 
eigengenes and the clinical traits. The results of the module-trait re-
lationship were visualized as a heatmap with correlation coefficients 
and p-values (Figure 1B). Based on the significant module-trait rela-
tionships, we identified 7 modules strongly associated with different 
subtypes. Furthermore, based on the eigengene expression in each 
module and the traits of four molecular subtypes, hierarchical cluster-
ing was used to quantify module similarity and to determine the corre-
lation between subtypes and specific modules (Figure S1D). A detailed 
eigengene adjacency of the traits and all of the modules are shown as a 
heatmap in Figure S1E. In addition, the expression of genes across the 
samples in these modules was visualized as heatmaps and eigengenes, 
also shown as bar plots, which further indicated that eigengene ex-
pression of different modules was significantly higher in corresponding 
subtypes of GBMs (Figure S2). The correlations of the module mem-
bership (MM) and gene significance (GS) are depicted as a scatter plot 
in Figure S3A–G, which indicated that the genes that significantly cor-
related to a specific subtype of GBM also occupied the central part 
of the corresponding module. Taken together, the modules highly cor-
related with four subtypes (black, cyan, blue, green, magenta, tan and 
turquoise modules) were selected for the following analyses.

3.3 | Identifying candidate PN signature genes

The black module was identified as the PN subtype-related mod-
ule in previous results (Figure 1B). To better annotate the module 
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function, we first selected 124 central genes whose MM > 0.6 (Table 
S2), including 55 known PN signature genes4,5 and 69 new genes. GO 
enrichment analyses, using the 124 genes, showed enrichment for 
several GO terms that were functionally associated with neuronal 
development/maturity and structures of neurons (Figure 2B and 
Table S3), which were consistent with the previous studies.4,5 Then, 
the top 250 connections in the black module were visualized as a 
network (Figure 2A). The known PN signature genes were labelled 
with different shapes. The hub genes labelled with large-size nodes 
were defined as the top 30 genes of intramodular connectivity, 

which represent the most central genes in the co-expression net-
work in the module (Figure 2A and Table S2). The hub genes labelled 
as large, red, round nodes were identified as the predicted PN signa-
ture genes (Figure 2A and Table S2).

The genes with higher intramodular connectivity better repre-
sent the module. To identify the potential functions of these genes, 
we selected the top three genes of intramodular connectivity 
(ATCAY, CRMP1 and PLPPR1) to perform GSEA. The gene sets that 
were enriched in samples with high expression levels of the three 
genes are shown in Table S4. Furthermore, the intersections of these 

F I G U R E  2   Functional annotation 
for black module and identification 
of candidate PN signature genes. (A) 
Network depiction of black module. 
Nodes correspond to genes, and lines 
correspond to connections, with the 
top 250 connections in black module 
shown. The red, large-sized nodes are 
candidate PN signature genes. The nodes 
labelled with the letter ‘R’ or ‘C’ were 
radioresistant or chemoresistant genes. 
(B) Results of GO enrichment analysis for 
genes with MM > 0.6 in black module are 
shown. The GO terms are divided into 
two groups: BP and CC. (C) GSEA shows 
that several gene sets enriched in samples 
with high expression levels of ATCAY. 
(D) mRNA expression levels of ATCAY 
among different molecular subtypes and 
glioma grades in several data sets. (E) 
mRNA expression levels of CELF3 among 
different molecular subtypes and glioma 
grades in several data sets. Means ± SEM; 
one-way ANOVA with Tukey's post hoc 
test; ns, P > .05, *, P < .05; **, P < .01, 
***, P < .001, ****, P < .0001. GO, gene 
ontology; BP, biological process; CC, 
cellular component



3906  |     PAN et al.

enriched gene sets were more representative of the functions of 
the hub genes, which are also shown in Table S4. The gene set of 
‘Verhaak glioblastoma proneural’ and gene sets focused on the neu-
ronal development and nervous system development were enriched 
in the samples containing any of the three highly expressed genes 
(Figure 2C and Table S4).

To validate these candidate PN signature genes, we compared 
the differential expression of these genes between various sub-
types in two independent data sets (TCGA and GSE4271 data sets). 
Many of these gene expression levels were significantly higher in 
the PN subtype relative to the other subtypes (Figure 2D and 2E, 
Figure S4A). In addition, the expression levels of four of these genes 
(ATCAY, CELF3, ELAVL3 and UGT8) were highest in normal brain 
tissues, and negatively correlated with glioma grades (Figure 2D 
and 2E). The expression patterns of other hub genes are shown in 
Figures S4A and S4B.

3.4 | Radioresistant/chemoresistant gene signatures 
only exist in Verhaak et al PN subtype

The cyan module was found to be another PN subtype-specific 
module (Figure 1B). As before, we selected 59 central genes with 
MM > 0.6 in the cyan module and found that there were 16 Prolif 
subtype signature genes from Phillips et al4 and 2 PN signature 
genes from Verhaak et al,5 which indicated that the cyan module 
could be a highly Prolif subtype–specific module. GO enrichment 
analysis showed that cycle/proliferation and structures of nucleus 
were enriched (Figure 3B and Table S3).

As before, the top 250 connections were visualized as a net-
work (Figure 3A). To identify the potential functions of these 
genes, the top 3 hub genes (TPX2, CDC20 and UBE2C) were se-
lected to perform GSEA (Tables S2 and S4). The results of GSEA, 
as shown in Figure 3C, suggest that the major functions of the 
cyan module were focused on cell proliferation and cell cycle 
(Figure 3C and Table S4).

To validate these predicted signature genes, we compared the 
differential expression of these genes between the different sub-
types. We found that these genes were highly expressed in the 
Verhaak et al PN subtype relative to other subtypes in TCGA data 
set (Figure 3D and Figure S5A). However, in the Phillips et al data 
set (GSE4271), the expression levels of these genes were signifi-
cantly higher in the Prolif subtype than the PN and MES subtypes 
(Figure 3D and Figure S5A).

With this, we identified two groups of genes with distinct func-
tions (neuron development and cell cycle/proliferation) from black 

and cyan modules as the signature genes for Verhaak et al PN sub-
type. The group of genes involved in neuron development could be 
signature genes for the Phillips et al PN subtype (Figure 2D,2E and 
Figure S4A). However, the group of genes associated with cell cycle/
proliferation were signature genes for the Phillips et al Prolif subtype 
(Figure 3D and Figure S5A). Thus, the Verhaak et al PN subtype and 
the Phillips et al PN subtype do not correspond exactly. However, 
there are overlaps between the Verhaak et al PN subtype and the 
Phillips et al Prolif subtype.

Interestingly, we found that there were numerous known ra-
dioresistant/chemoresistant genes that were occupied at import-
ant positions of the cyan module, such as TYMS, RRM1, FOXM1, 
TOP2A, CDK1, CCNB1 and BIRC5 (Figure 3A). Based on these 
results, the cyan module was also a radioresistance/chemoresis-
tance-related module, which may explain why the Verhaak et al PN 
subtype GBMs did not significantly benefit from radiotherapy and 
temozolomide.5 In addition, we speculate that the Prolif subtype, 
but not the Phillips et al PN subtype, could tolerate radiotherapy 
and temozolomide.

3.5 | The tumour cells in MES subtype GBMs are 
under ER stress

The green module was identified as the MES subtype–specific mod-
ule in previous results (Figure 1B). GO analysis indicated that the 
major functions of the green module could be focused on the ER 
stress response (ERSR; Figure 4A and Table S3).

As before, the 15 large, red round nodes in the network were 
identified as candidate MES signature genes (Figure 4B and Table 
S2). GSEA of the top 3 hub genes (SRPX2, ITGA3 and FAM20C) was 
performed (Figure 4C and Table S4). These results showed that the 
tumour cells in the MES subtype GBM were exposed to stress con-
ditions, such as ischaemia or hypoxia, which lead to ER stress (ERS), 
resulting in the unfolded protein response (UPR), regulation of cell 
apoptosis and autophagy levels.15

In the green module, we found that there were numerous genes 
reported to be involved in the response to stress conditions, such 
as HSPA5, ADAM9, ADAM10, PDIA3, PDIA6 and CAV1. We also 
found that several genes associated with autophagy were in the 
green module. Autophagy plays an important role in the ER stress 
response, which was reduced in the MES subtype (discussed in 
Discussion section).

In addition, we found that a majority of the 15 predicted 
genes were highly expressed in the MES subtype, relative to 
other subtypes. We also found that most of these genes were 

F I G U R E  3   Functional annotation for cyan module and identification of candidate PN signature genes. (A) Network depiction of cyan 
module. Nodes correspond to genes, and lines correspond to connections, with the top 250 connections in cyan module shown. (B) GO 
enrichment analysis results of cyan module are shown. The GO terms are divided into two groups: BP and CC. (C) GSEA shows that some 
gene sets enriched in samples with high expression levels of TPX2. (D) mRNA expression levels of six genes (TPX2, UBE2C, RACGAP1, 
CDC20, HMGB3 and KPNA2) among molecular subtypes in two independent data sets (TCGA and GSE4271 data sets). Means ± SEM; one-
way ANOVA with Tukey's post hoc test; ns, P > .05, *, P < .05; **, P < .01, ***, P < .001, ****, P < .0001
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highly expressed in GBMs, relative to grade III gliomas (Figure 4D, 
Figures S6A, and S6B and C). Furthermore, the expression levels 
of several genes (PLOD3, SLC20A1, ADAM9, FBLIM1, SPOCD1, 
P4HB, PROS1 and SELENON) were positively correlated with gli-
oma grades (Figure 4D and Figure S6B). Immunohistochemical 
(IHC) stainings showed that the expression trends of PLOD3 
and SLC20A1 were consistent with the trends of RNA levels 
(Figure 4E). For PLOD3, there are 3 LGGs (three negative inten-
sity) and 9 HGGs (one strong, two moderate, 4 weak and two neg-
ative intensity). For SLC20A1, there are 3 LGG (two moderate and 
1 weak intensity) and 8 HGG (one strong, six moderate and one 
negative intensity) (Table S1).

We further wonder whether PLOD3 or SLC20A1 expression 
could affect overall patient survival. In the Rembrandt, TCGA or 
GSE16011 data sets, all glioma or GBM patients were divided into 
high and low 50% expression groups, according to their expression 
levels. High 50% expression group had poorer survival than low 50% 
expression group (Figure 4F and S6D).

3.6 | Uncovering molecular mechanisms for higher 
necrosis proportion of MES subtype

The blue module was also an MES subtype–specific module 
(Figure 1B). As before, we selected 204 central genes with MM > 0.6 
in the blue module and revealed that there were 44 MES subtype 
signature genes from Verhaak et al5 and 6 MES subtype signature 
genes from Phillips et al4 The GO analysis revealed that the immune 
inflammatory response–related term was significantly enriched 
(Figure 5A and Table S3), which is consistent with the increased pro-
portion of necrosis found in the MES subtype.5

We found that there were many immune inflammatory re-
sponse–related genes in the module (Figure 5B and Table S2), such 
as CD53/CD4/CD14/CD37/CD300a/CD74/CD163/CD84, C1QA/
C1QB/C1QC, IL10RA/IL13RA1, FCER1G/FCGR3A, HLA-DMA/
HLA-DMB/HLA-DMB1/HLA-DOA/HLA-DRA/HLA-DPB1/HLA-
DQA1/HLA-DQB1/HLA-DPA1, LAIR1, SASH3, HCK, SPI1, C3AR1, 
which could be molecular mechanisms underlying the higher propor-
tion of necrosis found in the MES subtype. The GSEA of top 3 hub 
genes (CD53,LAIR1 and LAPTM5) also showed that immune inflam-
matory response–related processes were enriched (Figure 5C and 
Table S4). We found that these genes were highly expressed in the 
MES subtype, relative to other subtypes (Figure 5D and Figure S5C). 
In addition, we revealed that most of these genes were up-regulated 
in GBMs, relative to grade III gliomas (Figure 5E and Figure S5B). 

Moreover, we found that both C1QB and FCER1G had the highest 
expression levels in GBMs, as well as the lowest expression levels 
in normal brain tissue, and that the expression levels of C1QB and 
FCER1G were positively correlated with glioma grades (Figure 5E).

3.7 | Uncovering molecular mechanisms for 
angiogenesis in MES subtype GBMs

The magenta module was also an MES subtype–specific module 
(Figure 1B). As before, we selected 96 central genes with MM > 0.6 in 
the magenta module, and revealed that there were 20 MES subtype 
signature genes from Verhaak et al5 and 9 MES subtype signature 
genes from Phillips et al4 The GO results suggested that significant 
angiogenesis and regulation of the collagen and extracellular matrix 
are shown in the MES subtype GBMs (Figure 6A and Table S3).

The 17 large, red round nodes in the network were identified as 
candidate MES signature genes (Figure 6B and Table S2). The GSEA 
results of the top 3 hub genes (RCN32, P3H1 and LAMB1) confirmed 
the important role of angiogenesis in the MES subtype (Figure 6C 
and Table S4). Moreover, extracellular matrix reorganization (disas-
sembly and reorganization), collagen matrix reorganization, cell ad-
hesion and cell migration are important for extracellular remodelling 
during angiogenesis or blood vessel development.16,17

We found that there were several genes associated with an-
giogenesis (Figure 6B and Table S2), including COL18A1, NRP1, 
CYP1B1, ITGA5, TGFBI, SERPINE1, SHC1, ANPEP, ELK3, MMP14, 
MYH9, COL1A1, COL1A2, SDC1, RCN3 and CKAP4. Taken together, 
we identified the molecular mechanisms of the characteristic angio-
genesis found in the MES subtype. Moreover, we found that the ex-
pression levels of predicted genes were significantly higher in the 
MES subtype and that the expression levels of these genes in the 
GBMs were higher than grade III gliomas in the three independent 
data sets (Figure 6D and Figures S7A and S6B). In addition, we found 
that several genes had the highest expression levels in GBMs and 
that the expression levels of these genes were positively correlated 
with the glioma grades (Figure 6D and Figure S7A). IHC staining 
showed that protein expression trends of CKAP4 and PCOLCE were 
consistent with the trends of RNA levels (Figure 6E). For CKAP4, 
there are 3 LGGs (three strong intensity) and 9 HGGs (six strong, 
two moderate and 1 weak intensity). Moreover, only 1 LGG showed 
more than 75% quantity of IHC staining, while 4 HGGs showed more 
than 75% quantity. For PCOLCE, there are 4 LGG (2 weak and two 
negative intensity) and 7 HGG (2 moderate and five negative inten-
sity) (Table S1). We further wonder whether CKAP4 and PCOLCE 

F I G U R E  4   Functional annotation and network analyses for green module. (A) GO enrichment analysis results of green module are 
shown. The GO terms are divided into two groups: BP and CC. (B) Network depiction of green module. Nodes correspond to genes, and 
lines correspond to connections, with the top 250 connections in the green module shown. (C) GSEA results show that several gene sets 
enriched in GBMs with high expression levels of SRPX2. (D) mRNA expression levels of PLOD3 and SLC20A1 among molecular subtypes and 
glioma grades in different data sets. (E) IHC staining shows the protein expression levels and cellular localizations of PLOD3 and SLC20A1 
in normal brain tissues, LGGs and HGGs. (F) Survival analyses between high 50% and low 50% PLOD3 expression group of all gliomas or 
GBMs in Rembrandt data set. Means ± SEM; one-way ANOVA with Tukey's post hoc test; ns, P > .05, *, P < .05; **, P < .01, ***, P < .001, ****, 
P < .0001. IHC, immunohistochemistry; LGGs, low-grade gliomas; HGGs, high-grade gliomas

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
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expression could affect overall patient survival. In the Rembrandt 
data sets, all glioma or GBM patients were divided into high and low 
50% expression groups according to their expression levels. High 
50% expression group had significantly poorer survival than low 
50% expression group (Figure 6F).

3.8 | Genes involved in alternative RNA splicing are 
significantly up-regulated in CL GBMs

The tan module was identified as the CL subtype-specific module 
in previous results (Figure 1B). GO analyses revealed that altera-
tive RNA splicing-related terms were significantly enriched. Nearly 
53.3% of the genes (49 of 92 central genes in tan module) were 
enriched in the term of ‘nucleoplasm’ and ‘nucleus’ (Figure 7B and 
Table S3).

The 29 large, red, round nodes in the network were identi-
fied as candidate CL signature genes (Figure 7A and Table S2). We 
found that the RNA binding motif protein (RBM) family members 
(RBM5/6/25/33/39), SRRM1/2 and SRSF5/6/11, were in the cen-
tral genes and played a role in the splicing and processing of mRNA. 
Moreover, two of the top 3 genes of intramodular connectivity 
(DDX39B and LUC7L) also serve important roles in alternative RNA 
splicing (Figure 7A and Table S2).18,19

In addition, the expression patterns of these candidate CL sig-
nature genes were confirmed (Figure 7C and Figure S9A). Taken to-
gether, we first reported that the genes involved in RNA alternative 
splicing are significantly up-regulated in the CL subtype, and we 
have identified several candidate CL signature genes.

3.9 | Increasing energy synthesis in NL 
subtype GBMs

The turquoise module was identified as the NL subtype–specific 
module in previous results (Figure 1B). GO analyses revealed that 
energy metabolism–related terms were significantly enriched. 
Moreover, the enriched GO terms in the CC category primarily con-
tained ‘mitochondrial inner membrane’, ‘mitochondrion’, ‘mitochon-
drial respiratory chain complex I’ and ‘mitochondrial matrix’. Nearly 
22.5% of the genes (135 of 600 central genes in turquoise module) 
were enriched in the term of ‘mitochondrion’ (Figure S8B and Table 
S3).

The 18 large, red, round nodes in the network were identi-
fied as candidate NL signature genes. There were several pro-
tein families associated with mitochondrial energy synthesis in 
the central genes of the turquoise module, such as the ATP syn-
thase family (ATP5A1/ATP5A1/ATP5E/ATP5F1/ATP5G1/ATP5G2/
ATP5G3/ATP5H/ATP5I/ATP5J/ATP5J2/ATP5L/ATP5O/ATP6AP2/
ATP6V0B/ATP6V0E1/ATP6V1E1/ATP6V1F/ATP6V1G1/ATPIF1), 
the mitochondrial ribosomal protein family (MRPL13/MRPL15/
MRPL20/MRPL24/MRPL27/MRPL3/MRPL32/MRPL33/MRPL34/
MRPL43/MRPL49/MRPL51/MRPL52/MRPL54/MRPL57/MRPS15/

MRPS18B/MRPS21/MRPS23/MRPS33/MRPS35/MRPS7) and the 
NADH:ubiquinone oxidoreductase family, (NDUFA1/NDUFA2/
NDUFA4/NDUFA5/NDUFA6/NDUFA9/NDUFA11/NDUFA12/
NDUFA13/NDUFAB1/NDUFB1/NDUFB2/NDUFB3/NDUFB4/
NDUFB5/NDUFB6/NDUFB7/NDUFB9/NDUFB10/NDUFC2/
NDUFS3/NDUFS4/NDUFS5) (Figure S8A and Table S2). Taken to-
gether, we found that the levels of mitochondrial activity and energy 
synthesis are significantly higher in the NL subtype.

In addition, the expression levels of the 18 candidate NL signa-
ture genes were compared between different subtypes (Figures S8C 
and S9B), which further confirmed that these genes could be candi-
date NL signature genes.

4  | DISCUSSION

The classic histopathological grading is the main stratification 
method applied in prognostic prediction and risk in management 
decisions. However, the classic histopathology is subjective and 
cannot objectively, systematically and accurately reflect the genetic 
background and biological characteristics of glioma tissue. At the 
same time, using classic histopathology has low efficacy in guiding 
treatment and predicting clinical prognosis of patients with glioma. 
Some LGGs have the potential to show poor clinical outcome such 
as HGGs, whereas some HGG patients could achieve long-term 
survival.

Phillips et al identified three molecular subtypes of high-grade 
astrocytomas, according to the gene expression profiling: PN, MES 
and Prolif.4 In 2010, Verhaak et al classified GBMs into four molec-
ular subtypes: CL, NL, MES and PN, based on transcriptome data.5 
Yan et al20 subclassified the gliomas into three subgroups, according 
to their gene signature: G1, G2 and G3, which were enriched with 
PN, NL and the MES subtypes, respectively. Although the molecular 
subtypes have varied in different studies, the MES and PN subtypes 
appear robust and consistent among the various classifications.4,5,20 
Glioma patients in the MES subtype exhibit a poorer prognosis com-
pared to the PN subtype, which may be related to the fact that the 
PN subtype gliomas are more frequently associated with increased 
IDH mutations, glioma-CpG island methylator phenotypes (G-CIMP) 
and 1p/19q co-deletions.5 However, the PN subtype is characterized 
by unresponsiveness to chemical and radiation therapy.3,5 In addi-
tion, intratumour heterogeneity describes the diversity in individual 
tumours, which has become a research hot spot in recent years. By 
using the single GBM cell RNA sequencing, a study by Patel et al21 
suggested that GBMs are comprised of a mixture of tumour cells 
with variable GBM subtype footprints. Wang et al22 found that the 
bulk of the GBM samples were classified into the same primary sub-
type as the majority of their single tumour cells. GBMs are highly 
heterogeneous, so it is important to uncover the pathological pro-
cesses and molecular mechanisms of the various molecular subtypes 
of GBMs.

In the cyan module, we found that the core genes with the highest 
intramodular connectivity are associated with either radioresistance 
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F I G U R E  5   Functional annotation and network analyses for blue module. (A) GO enrichment analysis results of blue module are shown. 
The GO terms are divided into three groups: BP, CC and MF. (B) Network depiction of blue module. Nodes correspond to genes, and lines 
correspond to connections, with the top 250 connections in blue module shown. (C) GSEA results show that several gene sets enriched 
in GBMs with high expression levels of CD53. (D) mRNA expression levels of C1QB and FCER1G among molecular subtypes in TCGA and 
GSE4271 data sets. (E) mRNA expression levels of C1QB and FCER1G among different glioma grades in TCGA, Rembrandt and GSE16011 
data sets. Means ± SEM; one-way ANOVA with Tukey's post hoc test; ns, P > .05, *, P < .05; **, P < .01, ***, P < .001, ****, P < .0001

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4271
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011
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or chemoresistance, such as TPX2  microtubule nucleation factor 
(TPX2), ubiquitin-conjugating enzyme 2C (UBE2C) and polo-like ki-
nase 1 (PLK1) (Figure 3A and Table S2). TPX2 plays an important 
role in spindle assembly23 and is overexpressed in several tumours, 
including breast cancer, hepatocellular carcinoma and squamous cell 
lung cancer.24 Recent research revealed that the TPX2 expression 
levels were elevated in radioresistant squamous carcinoma cells of 
the lung, relative to the corresponding parental cells, and that the 
overexpression of TPX2 induced the radioresistance found in the 

NCI-H226 cell line in vitro and in vivo.24 In addition, a previous study 
revealed that inhibition of UBE2C in breast cancer cells could de-
crease cell proliferation and increase radiosensitivity and chemo-
sensitivity for doxorubicin, tamoxifen and letrozole.25 Furthermore, 
PLK1 inhibition also sensitized medulloblastoma cells to radiation 
and decreased cell proliferation.26

We found that tumour cells in the MES subtype GBMs may be 
exposed to hypoxia, ischaemia, hypoglycaemia, etc, and that the 
ER stress response is induced within the tumour cells of the MES 

F I G U R E  6   Functional annotation and network analyses for magenta module. (A) GO enrichment analysis results of magenta module 
are shown. The GO terms are divided into two groups: BP and CC. (B) Network depiction of magenta module. Nodes correspond to genes, 
and lines correspond to connections, with the top 250 connections in magenta module shown. (C) GSEA shows that several gene sets 
enriched in GBMs with high expression levels of RCN3. (D) mRNA expression levels of CKAP4 and PCOLCE among molecular subtypes and 
glioma grades in different data sets. (E) IHC staining shows the protein expression levels and cellular localizations of CKAP4 and PCOLCE in 
normal brain tissues, LGGs and HGGs. (F) According to the expression levels of CKAP4 and PCOLCE, survival analyses between high 50% 
expression group and low 50% expression group of all gliomas or GBMs in Rembrandt data set. Means ± SEM; one-way ANOVA with Tukey's 
post hoc test; ns, P > .05, *, P < .05; **, P < .01, ***, P < .001, ****, P < .0001

F I G U R E  7   Functional annotation 
and network analyses for tan module. 
(A) Network depiction of tan module. 
Nodes correspond to genes, and lines 
correspond to connections, with the 
top 250 connections in the tan module 
shown. (B) GO enrichment analysis results 
of tan module are shown. The GO terms 
are divided into three groups: BP, CC and 
MF. (C) mRNA expression levels of four 
central genes (LENG8, DDX39B, LUC7L 
and RBM5) among molecular subtypes in 
TCGA data set. Means ± SEM; one-way 
ANOVA with Tukey's post hoc test; ns, 
P > .05, *, P < .05; **, P < .01, ***, P < .001, 
****, P < .0001
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subtype GBMs. Hypoxia-inducible factor-1α (HIF1A), the required 
subunit of HIF1, which is the main transcriptional factor in hypoxia 
and plays an essential role in tumour angiogenesis and prolifera-
tion,27 was also in the green module, and significantly up-regulated 
in the MES subtype (Table S2). Moreover, we found that HSPA5, 
which has a crucial role in the ER stress response, was one of the 
central genes in the green module. HSPA5 can bind and deactivate 
three primary ER transmembrane receptors (IRE1α, ATF6 and PERK) 
in the absence of stress.28 The three ER transmembrane receptors 
can function as molecular sensors to detect the accumulation of 
unfolded proteins.29 As the unfolded proteins accumulate, HSPA5 
releases the ER transmembrane receptors for activation of UPR, and 
binds to the hydrophobic domains of unfolded proteins to reduce cell 
damage.30 Thus, harmful environmental stress, such as ischaemia or 
hypoxia, induces low intracellular glucose levels, thereby activating 
HSPA5 and further inducing UPR, which leads to pro-survival out-
come of cells under stress.31

ADAM9 was the most central gene in the green module (Figure 4B 
and Table S2), which can be induced under stress and further promote 
angiogenesis in tumours. ADAM9 can cleave and release several 
growth factors (heparin-binding EGF-like growth factor (HB-EGF), 
epidermal growth factor (EGF) and fibroblast growth factor receptor 
2IIIB (FGFR2IIIB)), as well as degrade the extracellular matrix sub-
strates and interact with crucial regulatory factors (mitotic arrest 
deficient 2 β (MAD2β), SH3PX1 and SH3GL232) through its different 
domains. Moreover, previous studies have found that overexpres-
sion of ADAM9, induced by ROS, could increase the shedding of 
several membrane proteins (EphB4, Tie-2, CD40, VCAM, Flk-1 and 
VE-cadherin) from endothelial cells to enhance pathological neovas-
cularization33 and that ADAM9 could up-regulate VEGFA, ANGPT2 
and PLAT to promote vascular remodelling in lung cancer cells.34 We 
believe that ADAM9, the most representative gene for green mod-
ule, could significantly participate in promoting angiogenesis in the 
MES GBMs and could serve as a potential therapeutic target.

A previous study revealed that the autophagic activity in the 
MES glioma stem-like cells (GSCs) was higher than that in PN GSCs, 
which was also attributed to increased tumorigenicity and ther-
apy resistance of MES GSCs.35 Consistent with this finding, we 
also found that the autophagic activity was increased in the MES 
GBMs, when compared with the other subtypes. In this study, we 
found that CAV1 was one of the central genes in the green module 
(Figure 4B and Table S2) and was significantly up-regulated in the 
MES GBMs. Overexpression of CAV1 in hypoxic cells can increase 
tyrosine phosphorylation of EGFR and reduce the hypoxia-in-
duced autophagy that occurs after 48h of hypoxia, thereby alter-
ing the response from cell death to cell survival.36 We believe that 
CAV1 may regulate autophagic activity to cope with the hypoxic 
microenvironment in MES GBMs, and could serve as a potential 
therapeutic target.

In the magenta module, we found that there were several 
crucial angiogenesis-related genes. SERPINE1, one of the cen-
tral genes in the magenta module, can suppress integrin αvβ3 
(ITGAV and ITGB3)–mediated cell adhesion to vitronectin, but 

will facilitate integrin α5β1 (ITGA5 and ITGB1)–mediated migra-
tion from vitronectin to fibronectin (Figure S6B and Table S2).37 
Moreover, SERPINE1 can promote the migration of endothelial 
cells from their perivascular space, which contains vitronectin 
to the fibronectin-rich tumour tissues, and further facilitate an-
giogenesis within the tumour, thereby contributing to the angio-
genesis within the MES subtype.37 Interestingly, both ITGA5 and 
ITGB1 belong to central genes in the magenta module, which were 
also significantly up-regulated in the MES subtype (Table S2). 
Extracellular matrix remodelling is essential for the activation and 
migration of endothelial cells that contribute to angiogenesis. In 
addition, we also found several extracellular matrix components 
in the central genes of the magenta module, including the colla-
gen superfamily, such as COL1A1, COL1A2, COL18A1, COL6A1, 
COL6A2, COL6A3, COL5A1, COL5A2, COLGALT1 (Figure S6B and 
Table S2). These genes could play important roles in the progres-
sion of tumour angiogenesis.38,39 MMP14, one of the central genes 
in the magenta module (Table S2), is a transmembrane metallopro-
teinase that plays an important role in angiogenesis through sev-
eral steps, including extracellular matrix degradation, endothelial 
cell invasion, migration into surrounding tissue, formation of cap-
illary tubes, deposition of a new basement membrane and recruit-
ment of accessory cells.40 Moreover, in human GBM and breast 
cancer xenograft models, MMP14 overexpression can up-regulate 
VEGF expression and therefore promote angiogenesis.41 In this 
study, we revealed several key genes (SERPINE1, ITGA5, ITGB1, 
MMP14 and collagen superfamily) that regulate angiogenesis in 
MES GBMs, which could be potential therapeutic targets.

Previous studies have shown that a more serious immune/in-
flammatory response is present within the MES subtype GBMs. 
Prins et al42 revealed that the MES subtype GBMs have a bet-
ter response to immunotherapy, implying that this subtype may 
be more immunogenic. In addition, several studies revealed that 
there are increased numbers of tumour-infiltrating lymphocytes 
or microglia/macrophage present in the MES subtype GBMs, 
when compared with the other subtypes of GBM.43,44 NF1 was 
frequently deactivated through genomic copy number loss or so-
matic mutations in MES subtype GBMs.5 Wang et al found that 
NF1 deactivation may promote microglia/macrophage recruitment 
in GBMs.22 In this study, we used a distinct and powerful system 
biology analysis method (WGCNA) to identify the immune/inflam-
matory response related to each module based on the co-expres-
sion relationships between all expressed genes across samples, 
and found that modules are highly correlated with the MES sub-
type GBMs. On the one hand, we confirmed the conclusions of 
other studies. On the other hand, we have revealed several key 
regulatory genes in the immune/inflammatory response of MES 
subtype GBMs.

In addition, we found that the genes associated with alternative 
RNA splicing are significantly up-regulated within the CL subtype 
GBMs. Alternative splicing of pre-mRNA is a crucial regulator of 
gene expression, as it can generate numerous transcripts from a sin-
gle protein-coding gene. Recently, numerous studies have suggested 
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that dysregulation of alternative RNA splicing plays an important 
role in tumour progression.45 We speculated that alternative RNA 
splicing could also play an essential role in the CL subtype GBMs, 
which warrants further research. Changes in energy metabolism can 
be a cause of tumorigenesis.46

In previous studies, it was found that the NL subtype was asso-
ciated with tumour margins, where increased normal neural tissue 
could be detected.47,48 Another study suggested that the NL sub-
type is non–tumour-specific.22 However, in this study, we still at-
tempted to analyse the acquired NL-specific module and found that 
the increased energy production may play an important role in the 
NL subtype, which also requires further research.
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