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Abstract: Background: As the global climate changes, the number of cases of hand-foot-and-mouth
disease (HFMD) is increasing year by year. This study comprehensively considers the association
of time and space by analyzing the temporal and spatial distribution changes of HFMD in the Ili
River Valley in terms of what climate factors could affect HFMD and in what way. Methods: HFMD
cases were obtained from the National Public Health Science Data Center from 2013 to 2018. Monthly
climate data, including average temperature (MAT), average relative humidity (MARH), average
wind speed (MAWS), cumulative precipitation (MCP), and average air pressure (MAAP), were
obtained from the National Meteorological Information Center. The temporal and spatial distribution
characteristics of HFMD from 2013 to 2018 were obtained using kernel density estimation (KDE) and
spatiotemporal scan statistics. A regression model of the incidence of HFMD and climate factors
was established based on a geographically and temporally weighted regression (GTWR) model and
a generalized additive model (GAM). Results: The KDE results show that the highest density was
from north to south of the central region, gradually spreading to the whole region throughout the
study period. Spatiotemporal cluster analysis revealed that clusters were distributed along the Ili
and Gongnaisi river basins. The fitted curves of MAT and MARH were an inverted V-shape from
February to August, and the fitted curves of MAAP and MAWS showed a U-shaped change and
negative correlation from February to May. Among the individual climate factors, MCP coefficient
values varied the most while MAWS values varied less from place to place. There was a partial
similarity in the spatial distribution of coefficients for MARH and MAT, as evidenced by a significant
degree of fit performance in the whole region. MCP showed a significant positive correlation in the
range of 15–35 mm, and MAAP showed a positive correlation in the range of 925–945 hPa. HFMD
incidence increased with MAT in the range of 15–23 ◦C, and the effective value of MAWS was in
the range of 1.3–1.7 m/s, which was positively correlated with incidences of HFMD. Conclusions:
HFMD incidence and climate factors were found to be spatiotemporally associated, and climate
factors are mostly non-linearly associated with HFMD incidence.

Keywords: hand-foot-and-mouth disease; spatiotemporal analysis; GAM; GTWR

1. Introduction

Hand-foot-and-mouth disease (HFMD) is a widespread intestinal epidemic caused by
several enteroviruses that are characterized by fever and rashes or herpes on the hands,
feet, and mouth. The first cases were diagnosed in New Zealand in 1957 [1], and HFMD
has since become a global epidemic. In China, the first case of HFMD was confirmed in
Shanghai in the 1980s [2], and it has been a major public health issue since 2007 when there
was an outbreak in Linyi City, Shandong Province that resulted in 1149 cases with three
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fatalities [3]. China’s Ministry of Health established a national system to monitor HFMD
in May 2008 [4], and, in 2014, HFMD became the most frequently reported monitored
infectious disease [5]. In mainland China, there were approximately 1–3 million cases of
HFMD from 2008 to 2019, which caused hundreds of deaths each year [6].

There is growing evidence that the global climate is changing rapidly, which highlights
the need to examine the association between climate factors and infectious diseases [7].
Previous epidemiological studies have presented evidence of an association between cli-
mate factors and rates of HFMD [8,9]. In China, HFMD epidemics show seasonal variation.
In southern cities, there are two peaks of HFMD, one in May and the other in October,
while in northern cities, only one peak occurs annually in June [5]. The seasonality of
HFMD indicates the potential role of climatic factors and demonstrates there are spatial
and temporal variations of HFMD across China [10]. Several studies have reported that
there is a non-linear relationship between climate factors, such as temperature and rela-
tive humidity, and the incidence of HFMD [11–13]. However, some studies have shown
divergent conclusions, especially with respect to precipitation and wind speed. For ex-
ample, a study in Guangzhou showed that for a 1 mm rainfall increase, it can positively
affect the risk of HFMD [14], although this result was not proven in Shenzhen, China [15].
Wind speed was found to be positively correlated with the risk of HFMD in Beijing [16].
However, there was no such association between wind speed and the risk of HFMD in a
study in Guangdong, China [17]. This may be because of differences in climatic factors and
geographic conditions that lead to inconsistent results across studies.

Although a potential relationship between the risk of HFMD and climate factors has
been previously reported on a regional and national scale, this may not apply to arid
regions due to spatial variation. The Ili Valley region is the only region in China influenced
by the warm Atlantic Ocean current, and is a typical region of Xinjiang oasis, with the
richest river in Xinjiang in terms of flow of water. The natural landscape of the Ili Valley
region has distinct features, spanning temperate continental climate and alpine climate
types. Its landform types are mainly divided into three types: mountains, hills and river
valley plains. Under consideration of the natural geographical conditions of the Ili Valley,
we first analyzed the spatiotemporal distribution of HFMD cases on a different scale,
and next we quantified and characterized temporal and spatial variation between climate
factors and the incidence of HFMD in township level with a geographical and temporal
weighted regression (GTWR). Lastly, we used a Generalized Additive Model (GAM) to
estimate the climate factor effect curve with the incidence of HFMD and explore the climate
conditions suitable for the spread of HFMD.

2. Materials and methods
2.1. Study Area

The Ili River Valley is located west of the northern Tianshan Mountains in Xinjiang.
The total land area is 5.6 × 104 km2, with a population of 26.39 million at the end of
2018 (Xinjiang Statistical Yearbook, 2019). The average annual temperature is 10.4 ◦C, the
average annual precipitation is 417.6 mm, and the average annual amount of sunshine
is 2870 h. The Ili River Valley region consists of eight counties (Yining, Nileke, Xinyuan,
Gongliu, Tekesi, Zhaosu, Chabuchaer, and Huocheng) and two county-level cities (Yining
and Huoerguosi) with eight subdistricts and 102 towns comprised of 24 Xinjiang Production
and Construction Corps (XPCC) and 28 farms.

2.2. Data Collection

The data on HFMD cases for this article were obtained from the National Public
Health Science Data Center. The number of cases, monthly incidences (per 100,000), and
information comprising age, gender, occupation, address, and dates of onset and diagnosis
were used to characterize the distribution of HFMD in the study area.

Climate data from 2013 to 2018 were obtained from the National Meteorological Infor-
mation Center; monthly average temperature (MAT), monthly average relative humidity
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(MARH), monthly average wind speed (MAWS), monthly cumulative precipitation (MCP),
and monthly average air pressure (MAAP) were analyzed.

2.3. Statistical Methods

Kernel density estimation (KDE) was used to identify the annual spatial distribution
characteristics of HFMD in the study area. KDE is a non-parametric estimation technique
that is widely used for spatial point pattern analysis and generates a smooth surface in a
flat space reflecting continuous changes in the density of the point data [18]. A kernel is a
circle with a predefined constant radius that is moved through the study area. The weight
of each point depends on its distance from the center of the circle. A point near the center
has a higher weight and vice versa [19]. We used the HFMD case data as point data input,
and kernel density distribution was plotted for each year.

To further explore the differences in spatial and temporal distribution characteristics
of HFMD, a retrospective temporal and spatial scan analysis was used. Scan statistics are
widely used in disease surveillance and public health, not only to detect the spatiotemporal
aggregation of diseases but also to identify areas of high risk for the onset of disease [20].
We used cities and counties as geographical units and months as the time scale based on the
discrete Poisson model provided by SaTScan software. In terms of the model parameters,
the upper limit of the clustering range was set to cover 50% of the regional population in
the area, and the maximum time scan radius was set to six months. The difference in the
number of incidences inside and outside of the scan window was regarded as statistically
significant, as was the area that identified a high temporal and spatial clustering area
of HFMD.

Geographically and temporally weighted regression (GTWR) was then applied to
identify changing temporal and spatial associations between the incidence of HFMD
and climate factors. GTWR embeds the time dimension into the regression model to
measure the spatial and temporal variation of the data simultaneously and to better reflect
the influence of the data between different adjacent temporal and spatial distances in
the study area [21]. In this case, we used the spatiotemporal power function and the
spatiotemporal distance of the Gaussian function proposed by Huang [22]. Initially, we
needed to test for the multicollinearity of climate factors, so we set the climate factor to five
independent variables with a monthly incidence as the dependent variable. We used the
ArcGIS 10.5 GTWR analysis module and automatically optimized and set the bandwidth
to 1 for the ratio of spatiotemporal distance parameters. The regression coefficients of
influencing factors were then calculated and analyzed. The significance of the fit coefficient
from the GTWR model was used to identify the association between each climate factor
and the incidence of HFMD. A coefficient greater than 0 indicates a positive effect on the
dependent variable and vice versa. The fitness of the model was conducted using the
corrected Akaike information criterion (AICc) [23], adjusted coefficient of determination
(R2), and residual sum of squares (RSS).

To quantify the effect of climate factors on HFMD, we assumed the Gaussian general-
ized additive model (GAM) distribution and simultaneously fit the model with a smooth
curve for climate variables [24]. A GAM was applied during the multivariate analysis to
evaluate linear and non-linear associations with climate factors, as the climate effect curve
would be estimated in the entire study region. The fitness of the GAM was measured using
generalized cross-validation (GCV) [25].

3. Results
3.1. Spatiotemporal Variation
3.1.1. Year Scale Analysis

Figure 1a–f display the KDE results that show that the highest density was central-
ized from north to south of the central region, gradually spreading to the whole region
throughout the study period. The number of cases in the western plains area was higher
than that in the eastern mountainous region. A high frequency of HFMD cases was also
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observed along the west of Yining City. From 2013 to 2015, HFMD incidences were spatially
concentrated in the Ili Valley Basin region, and, after 2015, HFMD spread to a wide range
of counties and cities, reaching its widest coverage in 2016.

Figure 1. Kernel density maps for hand-foot-and-mouth disease (HFMD) from 2013 to 2018. ((a). 2013, (b). 2014, (c). 2015,
(d). 2016, (e). 2017, (f). 2018).

In terms of kernel density values, there was a fluctuating trend in heat values from
2013 to 2015, the highest of which was in 2014. The disease incidence area was relatively
concentrated, and the general trend showed a small range and high intensity. In 2015, four
major agglomerations were formed in Yining City, Xinyuan County, Zhaosu County, and
Tekesi County. From 2016 to 2018, the heat value showed a fluctuating trend, reaching its
lowest in 2017.

3.1.2. Month Scale Analysis

Space–time cluster analysis using SaTScan identified five space–time clusters of HFMD
cases in the Ili River Valley region from 2013 to 2018 (Table 1, Figure 2), and there was a
difference between the results and the HFMD annual variation based on kernel density
analysis. The most likely cluster was seen in the northeastern district from April to Septem-
ber 2013. Another cluster was seen in two southwestern districts, clusters three and four,
from May to October 2018. A significant spatiotemporal cluster was detected south of
Tekesi city from February to April 2016. The results show that five potential clusters were
distributed along the Ili and Gongnaisi river basins.

3.2. Temporal and Spatial Variation between Climate Factors and the Incidence of HFMD
3.2.1. Regression Model Selection

Table 2 shows that the results of the variance inflation factor (VIF) values of all
variables were less than 10, so it could be assumed there was no multicollinearity between
the variables, and all selected variables were involved in the model.

Table 3 summarizes the accuracy of the GTWR model, which was verified by taking the
goodness-of-fit (R2), RSS, and the modified AICc value for the three types of models. The
higher the R2 value, the smaller the AICc and RSS values, indicating that the independent
variable was more explanatory than the dependent variable. The GTWR was selected as it
had the smallest AICc value and highest R2 value. Further results are from the GTWR.
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Table 1. Statistical results of the HFMD retrospective space–time scan.

No. Coordinates Locations Radius 1 Time No. of
Cases

No.
Expect LLR 2

1 (43.423871 N,
83.521495 E)

Alemale Town, Tuergen Town, Areletuobie
Town, Xinyuan Town, Biesituobie Town,
Wugong Town, 71 XPCC, Zeketai Town, Kaisu
Town, Breeding Bee Farm, Talede Town,
72XPCC, Xiaoerbulake Town, Wulasitai Town,
Nalati Town, Musi Town, Kuerdening Town,
Kalabula Town

75.49 April 2013–June 2013 163 33.59 129.80

2 (43.205440 N,
81.665532 E) Qilewuzike Town, Tekesi Town 15.18 February 2016–April

2016 140 27 53.32

3 (43.999270 N,
81.480720 E)

Tulufanyuzi Town, Panjing Town, Sadikeyuzi
Town, Kalayageqi Town, agricultural center,
Kaerdun Town, Dadatumu Town, Alanmubage
subdistrict, Tashikeruike Town, Jiefang subdistrict,
Qiongkeruike subdistrict, Doulaitibage subdistrict,
Tuogelake subdistrict, Dunmaili subdistrict,
Quluhai, Town, 70 XPCC, Sabuyi subdistrict,
Yuqunweng Hui Town, Kazanqi subdistrict,
economic cooperation zone, Yili dairy farm,
Hanbin Town, Awuliya Town, Bayandai Town,
Kebokeyu Town, Yilihe subdistrict, Miquan Hui
Town, Arewusitang Town, Youth farm, Yingyeer
Town, Kuohongqi Town

26.90 May 2018–October 2018 1048 798 46.91

4 (43.157293 N,
81.130975 E)

77 XPCC, Hongnahai Town, Zhaosu Town,
Ambanbagh Breeding farm, Wuzunbulake farm,
Akedala Town

27.77 August
2018–September 2018 44 11 28

5 (43.808751 N,
82.356540 E)

Keling Town, Jiahawulasi Town, Wuzan Town,
Nileke Town, Kalatuobie Town, Subutai Town,
Hujier Town, Kolkhoot Haor Mongolian Town,
Mazha Town, Agaersen Town, Kosh Agash sheep
farm, cow farm, Kashi Town, 73 XPCC, Aketubieke
Town, Gongliu Town, Liangfan field, Dunmazha
Town, Samuyuzi Town, Hudiyuzi Town

40.27 August
2013–September 2013 19 3.75 15

1 Size of cluster in kilometers; 2 Log-likelihood ratio: risk within the scanning window compared to outside each location at p = 0.001.

Figure 2. Locations of the space–time clusters in the study area.
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Table 2. Result of colinearity statistics.

Independent Variable MCP MAAP MARH MAT MAWS

VIF 1.559 1.366 6.407 5.712 1.851
Tolerance 0.626 0.732 0.256 0.375 0.540

Table 3. Comparison of the results of ordinary least square (OLS), geographically weighted regression
(GWR), and geographically and temporally weighted regression (GTWR) in models R2, corrected
Akaike information criterion (AICc), and residual sum of squares (RSS).

Model R2 AICC RSS

OLS 0.27 618.85 1104.03
GWR 0.28 622.91 1102.77
GTWR 0.52 610.99 736.19

Table 4 shows the results of the GAM analysis. The variance inflation factor (VIF)
values of all variables were less than 10, so it could be assumed that there was no multi-
collinearity between the variables, and all selected variables were involved in the model.
The results of the smooth function test of MCP, MAAP, MAT, and MAWS were statistically
significant, and the MARH was not statistically significant. For the model fitting results,
R2 was 0.474, the variance explanation rate was 52.6%, and the GCV value was 8.8745.
Additionally, the intercept is 2.20471, significantly correlated at the p = 0.001 level. The
influence of the explanatory variables was measured by the magnitude of the F value,
which shows that F (MAT) > F (MAWS) > F (MCP) > F (MAAP), where the F value of MAT
had a larger variance than the other three climate factors. This indicates that MAT was the
most important climate factor influencing the incidence of HFMD.

Table 4. Statistical characteristics of variables and GAM fitting results.

Independent Variable Edf 1 Ref.df 2 F 3 p-Value 4

MCP 1.00 1.000 6.169 0.014507
MAAP 1.860 2.083 3.208 0.042133
MARH 1.000 1.000 0.181 0.671396
MAT 2.049 2.310 7.763 0.000575

MAWS 1.936 1.996 6.317 0.003371
1 Edf: effective degrees of freedom; 2 Ref.df: reference degrees of freedom; 3 F: F-test; 4 Risk within the scanning
window compared to outside each location at p = 0.001.

3.2.2. Temporal Distribution

The results from Table 5 demonstrated obvious spatiotemporal non-stationarity in the
GTWR model. The average values of the coefficients between single climate factors and
HFMD in the time dimension are shown in Figure 3, with the folded line representing the
effect of different months on the incidence rate of HFMD for each variable.

Table 5. Non-stationarity of parameters in the geographically and temporally weighted regression
(GTWR) models.

Explanatory Variables F p-Value

MCP 4.150 0.004
MAAP 4.286 0.004
MARH 3.995 0.005
MAT 9.934 0.000

MAWS 7.008 0.000
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Figure 3. Temporal variations of the coefficients for climate factors.

From February to September, the incidence rate of HFMD varied significantly accord-
ing to climate factors, with a positive correlation of MCP, MAT, and MARH. From February
to August, the MAT and MARH fit curves showed an inverted V-shape. As temperature
and humidity increased, the incidence rate of the disease showed an upward trend, with
the effect being most pronounced in May. From January to May, the fitted curves of MAAP
and MAWS showed a U-shaped change and a negative correlation with the rate of HFMD.
The relationship between climate factors and HFMD showed fluctuating changes in spring,
more significant changes in summer, and it gradually weakened in autumn and winter.
The change in the fitted MCP curve was consistent with the annual precipitation pattern of
the region, which is four consecutive months from April to July; the fitted curve showed an
increasing trend, indicating that precipitation during this period contributed to the spread
of HFMD. The MAT coefficient was positively correlated with an inverted V-shaped curve,
and the incidence rate showed an increasing trend with increasing temperature; this was
most significant in May. The MAT fitted curve was consistent with the change in the MARH
curve, probably because HFMD is more active in humid and hot environmental conditions.
The seasonal variation of wind speed in this region is characterized by maximum wind
speed in spring, then summer, and the minimum is in winter. The MAWS coefficients
varied more significantly, but the overall fluctuation was characterized by change.

3.2.3. Spatial Distribution

We applied ArcGIS to visualize the spatial heterogeneity of the mean of the coefficients
and used 0 as an investigative value for positive and negative effects. For the test of spatial
non-stationarity on the residual of the model result, the z-value is −0.65, which denotes 10%
levels of significance. This means that the residuals are distributed randomly, indicating a
strong regression and reliability of the model. Among the individual climate factors, the
MCP coefficient values varied the most while the MAWS values varied less from place to
place. There was a partial similarity in the spatial distribution of the coefficients for MARH
and MAT, as evidenced by a significant degree of fit performance in the whole region.

Figure 4a shows that the coefficient for MCP was positively correlated with HFMD.
The natural terrain of the Ili River Valley opens up to the west in a trumpet shape so that
humid airflow from the west easily enters the basin and, at the same time, the mountains
in the southeast intercept the topographic precipitation in the mountains. Precipitation
characteristics are higher in the east than the west and are more pronounced in the moun-
tains than the plains, with windward slopes greater than leeward slopes. The areas with
the highest coefficients are located in the southern region of the Tekesi–Zhaosu basin and
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the northeastern region of the Kashgar River hills. These areas are on the windward side,
creating favorable conditions for the formation of topographic rain, whereas the central
and western parts of the region have relatively low precipitation. Based on the results, we
hypothesized that, in areas with abundant precipitation, viruses may spread using aerosols.
Figure 4b indicates that the MAAP coefficients were more variable in the central region and
less variable in the eastern region, which may be because the central regions are at a lower
altitude. The coefficient decreases with increasing altitude. Figure 4c shows a decrease in
the geographic variation of the MARH coefficients from a positive to a negative correlation
from the central plains to the mountainous area. This indicates that the complexity of
climate factors may affect the development of infectious diseases, and there may be an
interaction between relative humidity and other climate factors on the occurrence of HFMD.
Figure 4d shows the MAT coefficients affecting the northwest and central regions more
significantly. Temperatures in the region had distinct horizontal and vertical zonalities
with more complex vertical variations. The northwestern and central plains are at lower
elevations compared to the southeastern mountains, and the enclosed land around the
mountains gives the region higher than average temperatures, which are associated with
HFMD. A small area in the southeast has a positive correlation between temperature and
HFMD, probably because the area is in the temperature inversion zone. The positive cor-
relation between the coefficients at high temperature and low humidity and the negative
correlation between the coefficients at low temperature and high humidity may be because
viruses are more likely to spread in a high temperature and low humidity environment.

Figure 4. Spatial distribution of the coefficients for climate factors. ((a). MCP, (b). MAAP, (c). MARH, (d). MAT, (e). MAWS).

The coefficient analysis of MAWS in Figure 4e shows significant spatial differences.
The topography of the Ili River Valley region shows that the mountainous areas are more
affected by the prevailing westerly wind belt than the plains. Based on these results, we
hypothesized that there may be a correlation between the spread of HFMD and wind speed.

The results above demonstrate differences in the main distribution intervals of each
climate factor corresponding to positive and negative influences. However, there is still an
obvious cross-sectional interval, indicating that the fitted values of climate factors were not
the single determinant of incidence rate and need to be further analyzed in terms of the
relationship between the temporal and spatial distribution of multiple climatic factors and
incidence rate.
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3.3. Quantification of Climate Factors Affecting the Incidence of HFMD

The curve in Figure 5 is a smooth function of each climatic factor, and the vertical
axis shows the effect of each factor on HFMD incidence. Multifactorial correlation analysis
showed that MCP was positively correlated with HFMD incidence. Figure 5a shows an
increase in the incidence of HFMD when MCP is within the range of 15–35 mm; when it
exceeds 35 mm, the incidences gradually increase but at a slower rate. Figure 5b displays
the MAAP results in a substantially inverted J-shaped curve because when MAAP was in
the range of 925–945 hPa, it was positively correlated with HFMD incidence. However, in
the range of 810–820 hPa, it was negatively correlated with HFMD incidence. As shown
in Figure 5c, there was no correlation between MARH and HFMD under the combined
effect of multiple factors. MAT values form a U-shaped curve, as shown in Figure 5d, with
the incidence of HFMD gradually increasing with increasing temperature; the positive
correlation was most significant in the range of 15–23 ◦C. MAWS had a roughly inverted
U-shaped curve in the range of 1.3–1.7 m/s (Figure 5e), which showed a significant posi-
tive correlation with HFMD incidence. As wind speed picked up, it showed a negative
correlation with the incidence of HFMD, i.e., at more than 2.0 m/s.

Figure 5. Effect of multifactorial climatic factors on the variation of HFMD concentrations. ((a). MCP,
(b). MAAP, (c). MARH, (d). MAT, (e). MAWS)

4. Discussion

In this paper, we initially analyzed the spatial and temporal distribution character-
istics of HFMD through two different time scales. We then used the GTWR model to
identify temporal and spatial changes in the associations between the incidence of HFMD
and climate factors. We also used GAM to qualify the multiple climate factors affecting
HFMD incidence. The associations were smaller in magnitude than those observed in other
studies [26,27].

Our results indicate that the incidence of HFMD has regional differences and seasonal
trends and that the incidence is higher in the plains than in the mountains. Spatial distribu-
tion was evident along the Ili and Gongnaisi river basins, probably because the plains are
more residential and have a high population density, which can lead to clustered infection.
This is supported by a study in Chongqing that found the location of clustering centers
was concentrated in urban areas [28]. Our study demonstrates a non-linear relationship
between climatic factors and the incidence of HFMD in the Ili River Valley region. We also
found that the association between temperature and the incidence of HFMD presented an
inverted V-shape with a positive correlation. These findings are consistent with a previous
study in Wuhan, China [13].

Other results of our study show that MARH was positively correlated with temporal
variations in HFMD incidence, but there were differences in spatial distribution. There
were also indications that there may be differences in the influence of relative humidity on
the spread of HFMD at different levels, that climate factors have a complex mechanism on
HFMD occurrence and the development of infectious diseases, and that there may be some
interaction between relative humidity and other climate factors on the occurrence of HFMD.
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Studies have shown that enteroviruses are more prone to transmission in high-humidity
environments [29,30], which is supported by laboratory experiments that have found that
viruses survive longer in humid environments than in dry air [31].

We found that MCP had a positive correlation with the incidence of HFMD, which is
consistent with previous studies in Hefei, Shenzhen [32,33]. Moreover, high precipitation
could promote virus attachment to small particles in the air or toys and food, thus increas-
ing the risk of HFMD [28]. Heavy precipitation also increases the risk of water supply
contamination from sewer overflows, so extreme precipitation may increase enterovirus
exposure levels, leading to an increased incidence of HFMD [34].

Stronger wind speeds may lead to a higher probability of HFMD infection via respira-
tion. This is supported by a study in Hong Kong, which found that, in developed areas,
HFMD is more easily transmitted by respiratory droplets than by the fecal–oral route [35].
However, two studies from Shanghai and Hong Kong found a negative effect of wind
speed on the incidence of HFMD [36,37]. Another study found that higher wind speeds
significantly diminished the number of infectious airborne particles, eventually leading to
a statistically significant reduction in exposure to infectious particles [38]. These different
findings emphasize the necessity for more research on this topic. One possible reason for
inconsistent results is the differences in geographic location, climatic environment, and
socioeconomic conditions in each study area. Moreover, the choice of different data sources
and weather variables may also lead to differences in the results [39].

In our study, we found that the association between MAAP and the incidence of
HFMD may be related to the shift in winter and summer air pressure in the region. The
entire Ili River basin is controlled by Mongolian high pressure in winter, and the area south
of the Tianshan Mountains is controlled by South Asian subtropical low pressure in summer.
There were significant differences in seasonal variation, and when we quantified the effect
of air pressure on HFMD incidence, we obtained the same result. We hypothesized that
high pressure was negatively correlated with the incidence of HFMD but that low pressure
could facilitate the spread of HFMD. One study in Guangdong revealed a 6.8% drop in
cases for every 1 hPa increase in air pressure [40]. This may be because lower air pressure
may weaken the human’s/organism’s immune system [41]. However, for the spatial
distribution of coefficients between the incidence of HFMD and MAAP (Figure 4b), we
speculated that the variation in air pressure might be influenced more by altitude or factors
other than air pressure.

Climate factors can potentially affect the incidence of HFMD either through affecting
the reproduction and activity of the enterovirus or by affecting the activities and commu-
nication methods of people. Furthermore, HFMD epidemiological characteristics may be
determined by the wet, hot weather in summer, as hot and humid conditions are suit-
able for HFMD pathogens to survive, spread and, subsequently, infect humans. The dry
weather in autumn may increase the desire to travel, further increasing human-to-human
communication and promoting the spread of HFMD. Under the combined influence of
multiple climate factors, there was no correlation between mean relative humidity and the
incidence of HFMD, which may be due to regional differences in the natural environment
of the study area, which was located in a typical arid oasis with low humidity. In recent
years, the Ili River Valley climate has tended to be warmer and dryer, so, in this study,
the average relative humidity had a weaker effect on the incidence of HFMD and needed
to work synergistically with other factors. These inconsistent results may be due to the
different local climatic conditions, demographic characteristics, and socioeconomic factors
of different regions.

There were previous studies conducted in exploring spatiotemporal changes of HFMD
and the effects of climate factors on this disease [27,42]. Regression models were commonly
used to evaluate the relationships between possible influencing factors and the number of
HFMD epidemic cases [43,44]. Regression parameters were utilized as functions to describe
the spatial and temporal position of sample data in the GTWR models [45]. The calculation
accuracy of the GTWR model was higher than that of the two models because spatial
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and temporal weights in these functions can better respond to the influencing factors in
different spatial and temporal locations.

This study had some limitations. First, we used average climate factor values as
independent variables, which may result in misclassification bias. Second, the model
generally shows some uncertainties, which could affect the final assessment result. Third,
we analyzed the association between the spatial and temporal distribution of infectious
diseases and meteorological factors, but the spread of disease is influenced by a variety
of factors. The possible pathogenesis has not been considered from a socioeconomic,
behavioral, or physiological perspective.

5. Conclusions

This study confirms that the spatial and temporal distribution of HFMD varies at
different scales. The results show that the incidence of HFMD had regional differences and
seasonal trends, and the incidence was higher in plain areas compared to mountainous
areas, with a clear spatial distribution in the Ili and Kungnese river basins.

The GTWR model results show that the incidence of HFMD and climate factors was
found to be spatiotemporally associated. In the GAM model with multiple meteorolog-
ical variables, climate factors are mostly non-linearly associated with HFMD incidence.
Conducted to identify the climate conditions suitable for the spread of HFMD and to
provide a reference for the prevention and control of HFMD. Further research in areas with
more climate variability, such as the Ili River Valley region, could provide us with a better
depiction of spatiotemporal variation.
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