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Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent

DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential

chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby.

To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency be-

tween interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant

difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data

analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio.

[Supplemental material is available for this article.]

Chromatin folding constitutes one of the key mechanisms by
which cells control their transcriptional programand cellular iden-
tity (Schmitt et al. 2016). Hi-C is one of the most widely adopted
biochemical techniques to probe the genome-wide spatial organi-
zation of chromatin (Rao et al. 2014; Schmitt et al. 2016; Dekker
et al. 2017). Computationally, the analysis ofHi-C data is challeng-
ing, largely due to the various sources of biases introduced by the
various experimental steps (Imakaev et al. 2012). Therefore, much
of the existing computational effort is focused on developingmore
reliable data preprocessing techniques, such as filtering and nor-
malization, to extract much of the signal from the data (Hu et al.
2012; Sauria et al. 2015; Servant et al. 2015; Forcato et al. 2017).
However, with the increasing accumulation of Hi-C data (Rao
et al. 2014; Du et al. 2017), there is interest in performing more
comparative analyses to study the structural variability between
the different tissues and cellular conditions.

Surveying the literature, we noticed that there has not been a
globally adopted conventional method for the detection of differ-
ential chromatin interactions (DCIs). One of the simplest strate-
gies is to use fold change as a norm for the detection of DCIs.
This strategy was generally adopted in the early Hi-C analysis pa-
pers. For example, Wang et al. (2013) used a simple fold-change
strategy to detect DCIs betweenMCF-7Hi-C samples before and af-
ter estrogen treatment. In a more elaborate model, Dixon et al.
(2015) used large fold-change chromatin interactions to train a
random-forest model to detect the epigenetic signals that are
more predictive of the chromatin structural changes.

Other strategies use the binomial model to compare two nor-
malized Hi-C contact maps and detect the pairwise interactions
that show a significant change in their frequency. This type of
test is adopted by the HOMER software (Heinz et al. 2010).
However, in many of the recently published studies (Paulsen
et al. 2014; Lun and Smyth 2015; Taberlay et al. 2016; Ulianov
et al. 2016), we noticed an increasing adoption of count-based

methods such as edgeR (Robinson et al. 2010) to detect DCIs. By
comparing edgeR to binomial-based methods, Lun and Smyth
(2015) showed that edgeR could outperform HOMER’s results.

Sincemost of themethods for detecting DCIs were developed
to analyze relatively low-resolution Hi-C contact maps (40 kb or
more), the authors assumed independence among the different
pairwise interactions. At low resolutions, this assumption is logi-
cal, as we only capture the spatial proximity between distant chro-
matin fibers. However, in the case of high-resolution contactmaps
(Rao et al. 2014), this assumption may break down. Due to the
polymeric nature of the chromatin fiber, the establishment of a
chromatin loop that brings two interacting loci (i, j) into spatial
proximity will also influence the spatial distance between their ad-
jacent loci (i− 1, i + 1 and j− 1, j + 1). In the Hi-C contact map, the
distance change between the anchor points i and j should also be
reflected in the interaction frequencies within the window cen-
tered around the pairwise interaction (i, j) (Fig. 1A). Clearly, in
high-resolution Hi-C data, the detection of DCIs under the inde-
pendence assumption can have a high error rate.

To resolve this issue, we developed a new computational
method, FIND, that considers the local spatial dependency be-
tween interacting loci. FIND exploits a spatial Poisson process
model to detect differential chromatin interactions that show
both a significant change in their interaction frequency and the in-
teraction frequency of their adjacent bins.

Results

High resolution Hi-C captures the spatial dependency between

adjacent chromatin fibers

Improvement in the biochemistry of the Hi-C experiment, from
the dilution Hi-C (Lieberman-Aiden et al. 2009) to the in situ Hi-
C (Rao et al. 2014), helped reveal a more detailed snapshot of the
chromatin folding and the spatial dependency among adjacent in-
teracting loci. In the Hi-C contact map, the spatial dependency
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between nearby chromatin fibers can be illustrated by the sche-
matic example in Figure 1A.

Given the polymeric nature of chromatin, a loop formation
is characterized by the bending of the polymer chain and the es-
tablishment of a chromatin interaction between two physically
proximal loci, i and j. When the spatial distance between i and
j changes, the distance between their adjacent loci (such as i−
1, i + 1, j− 1 and j + 1) will also be influenced. In the Hi-C contact
map, this phenomenon should be characterized by a change in
the interaction frequencies of the bins within the 2D window
centered at the pairwise interaction (i, j) (Fig. 1A). In this work,
we call the pairwise interactions located in this window the
“neighborhood interactions” of (i, j). To quantitatively measure
the extent of the spatial dependency between adjacent loci in
the Hi-C contact map, we calculated the directional variogram
under different Hi-C resolutions (Fig. 1B; Supplemental Figs. S1,
S2). The variogram is a measure widely used in geostatistics to

describe the degree of spatial correlation of a given spatial pro-
cess. It is based on calculating the mean variance between the
values of all the pairs of points Z(x) and Z(x + h) separated by a
given distance h in a given map (Pebesma 2004). If we consider
the Hi-C contact map as a 2D surface and the interaction fre-
quencies as values sampled from a spatial process Z(i, j), the
variogram should give us an idea of the spatial dependency be-
tween adjacent bins. The distance-dependent contact probability
plot generally used to describe Hi-C data informs us about the ex-
pected contact frequency along each diagonal within the Hi-C
contact map. However, it does not inform us about the relation-
ships between the interaction frequencies along the other direc-
tions in the 2D Hi-C contact map. These relationships can be
captured through the variogram as it measures the mean interac-
tion frequency variability between all the bins (i, j) and the bins
separated by a distance h in the horizontal, vertical, and diagonal
directions.

Figure 1. Existence of the spatial dependency and the idea behind our model. (A) Illustration of the spatial dependency along neighboring loci in the Hi-
C contactmap. (B) Semivariogram showing the directional variability between interaction bins separated by a certain horizontal and vertical distance in the
Hi-C contact map. (C) A differential interaction can be considered as a change of the intensity around the 3D coordinate (i, j, fij) of a reference point μ1. (D)
Principle of the k-nearest neighbor (KNN) intensity estimation in a 3×3 window around a pairwise interaction (i, j). Given an interaction (i, j) with a mean
frequency m1 = (i, j, fij ) in the first condition (represented by the mountain tip in C), if there is no structural change, we expect the interaction frequencies
from the second condition to have a similar density around the point μ1 in the 3D space. Thus, for each condition and each replicate, we calculate the 3D
distance between each bin in the surrounding window and μ1 and order them according to their distance. We note P(c)nk as the kth-nearest neighbor to the
point μ1 from the nth replicate of condition c∈ {1, 2}. Then, we estimate the density of the KNNs around μ1in the first condition (l(1)k ) and in the second
condition (l(2)k ). The density of the KNNs around μ1 is expected to be stable between the two conditions. To decide if the change of the KNNdensity around
μ1 (l(2)k /l(1)k ) is significantly large or small, we use a Fisher distribution. The same principle applies if we use μ2 (the mean in condition 2) as our reference
point.

DCI detection using spatial Poisson process
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In Figure 1B, we show the directional variogram up to a sepa-
ration distance of 30 bins calculated from 5- and 10-kb resolution-
normalized Hi-C contact maps of Chromosome 22 in the cell line
K562 (Rao et al. 2014). We notice that there is a small amount of
variability among adjacently located pairwise interactions that
are separated by short distances in all the directions of the 2D
Hi-C contact map. We also notice that the interaction frequencies
varymuchmore slowly along the diagonal than in the other direc-
tions. This indicates that the “zone of influence” of an interaction
(i, j) is limited to its neighborhood and is independent from the
distal interactions. The radius of the influence zone of (i, j) decreas-
es with increasing resolution (Supplemental Figs. S1, S2), which
confirms that in high-resolution analysis, the dependency be-
tween neighboring bins cannot be ignored.

Based on these observations, we built our differential chroma-
tin interaction detectionmodel to take into account the spatial de-
pendences among neighboring loci.

Proposition of a spatial Poisson process to model differential

chromatin interactions

If we consider the interaction frequencies of the Hi-C contact map
in a three-dimensional parameter space in which the x-axis and y-
axis represent the genomic coordinates and the z-axis represents
the interaction frequencies, then the highly interacting regions
would formmountain-like structures (Fig. 1C). In the case of a dif-
ferential interaction, we would expect to see a significantly corre-
lated change in the “mountain” shape (Fig. 1C). Conversely, if
the difference is due to technical noise, we would expect a more
random shape change inwhich the frequency change of a pairwise
interaction will have no effect on its adjacent interactions.

Intuitively, to estimate this shape change between two condi-
tions, we can take the three-dimensional location of the tip of the
“mountain” in the first condition as a point of reference. Then, we
calculate the change in the density of points around it between the
first and second conditions (Fig. 1D).

Given an experimental design in which the Hi-C contact
maps are generated in two biological conditions, each with nc rep-
licates (c∈ {1, 2}). Let (i, j) be a pairwise interaction of interest for
which we want to check the differential interaction state, and let
W be the width of the window centered around it. For example,
in the case of a window of width 3, the window will include all
nine pairwise interactions with coordinates in the Cartesian prod-
uct between the loci {i− 1, i, i + 1} and { j− 1, j, j + 1}.We also define
μ1 as the mean interaction frequency of the pairwise interaction
(i, j) in experimental condition 1 and μ2 as the mean interaction
frequency in experimental condition 2.

In the case of no differential interaction, the interaction fre-
quencies within the window centered at (i, j) are expected to be
similarly distributed in the two conditions around μ1. Hence, we
expect the probability of observing the k-nearest neighbor (KNN)
at a distance x∈R3 from the reference point (i, j, μ1) to be similar
between the two biological conditions. Under the assumption
that the neighboring interaction frequencies are sampled from a
homogeneous spatial Poisson process, the probability of observing
the KNN at a distance x depends only on the density of the KNNs
around the reference point (i, j, μ1) (Methods). Thus, in a window
of widthW, we consider the interaction (i, j) to be a DCI, if thema-
jority of the KNNs show a significant change in their intensity.

More specifically, using the triplet (i, j, μ1) as our reference and
for each replicate in each condition, we can rank the W2 interac-
tions in the neighborhood of (i, j) according to their distance

from the point (i, j, μ1). Let P
(c)
nk indicate the kth-nearest neighbor

of (i, j, μ1) in the nth replicate of condition c (Fig. 1D). For a fixed
k (for example, the first nearest neighbor), we can use the point in-
tensity estimator developed by Burguet (Burguet et al. 2009, 2011;
Burguet and Andrey 2014) to estimate the intensity l(1)k (m1) of the
KNNs P(1)

nk from the first condition and the intensity l(2)k (m1) of the
KNNs P(2)

nk from the second condition around μ1 (Methods). We
consider the KNNs to show a change in their intensity at μ1 if
the ratio Rk(m1) = l2k (m1)/l1k (m1) is significantly different from uni-
ty. Under the null hypothesis that l1k (m) = l2k (m), the ratio Rk (μ1)
can be shown to follow a Fisher distribution with 2n1 k and 2n2 k
degrees of freedom, respectively (Burguet et al. 2009; Methods).

Using the samewindow and the points (i, j, μ1) and (i, j, μ2) as
references, we can calculate 2W2 P-values for the pairwise interac-
tion (i, j). These P-values will then be combined using the rth or-
dered P-value statistic (Song and Tseng 2014). The final false
discovery rates will be estimated using the Benjamini-Hochberg
method (Benjamini and Hochberg 1995; Methods).

Neighboring pairwise interactions have different sensitivity

to the Hi-C contact frequency changes

To understand the behavior of our model and to check the con-
tribution of each k-nearest neighbor to the final DCI decision,
we simulated two Hi-C conditions, each with two replicates
(Methods). Then, we used a major voting strategy in which a pair-
wise interaction (i, j) is considered a DCI if at least half of the KNNs
in the window centered at (i, j) show a significant change in their
density around μ1 or μ2.

To assess the sensitivity of each KNN to the interaction fre-
quency change, we used awindow of width 3 and plotted the pair-
wise interactions that show a significant density change in their
kth-nearest neighbor (k∈ [1, 9], P-value <0.001) between the two
conditions (Fig. 2A). We observe that the furthest neighbors are
more sensitive to the variability in interaction frequency, because
they tend to report more significant interaction changes, whereas
the nearest neighbors are less sensitive. The analysis of the distri-
bution of the P-values obtained from each KNN in Figure 2A indi-
cated a similar conclusion (Fig. 2B), with distant neighbors having
manyof their P-values located at the extremities outside of the null
hypothesis acceptance region

R

a

2
k , R

1−
a

2
k

⎡⎣ ⎤⎦,
and the nearest neighbors have more of their P-values more inside
the acceptance region (Fig. 2B). In fact, this sensitivity is due to
the speed of convergence of the Fisher-distribution cumulative den-
sity function (CDF), as illustrated in Figure 2C. We noticed that the
smaller the degree of freedoms is, the slower is the convergence of
the CDF to 1. Thus, for smaller k values, in order for the ratio
Rk(μ) to be significant, it needs to be either very small
(l̂ 1

k (m) ≪ l̂ 2
k (m)) or very large (l̂ 1

k (m) ≫ l̂ 2
k (m)). In contrast, the dis-

tant neighbors need to have only a small amount of variability to
be in the null hypothesis rejection zone. This indicates that we
need a decision scheme that accounts for the neighbors’ sensitivity.

Different strategies can be adopted to combine the 2W2 P-val-
ues calculated for each pairwise interaction (i, j). Traditional meth-
ods such as Fisher’s combined probability test (Fisher 1925) and
Stouffer’s Z-test (Riley et al. 1949) or their weighted variants can
be used; however, they are designed to report a significant P-value
if at least one of the 2W2 tests is non-null, whichmakes them very
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sensitive to changes in the farthest KNNs. Other methods, such as
the maxP approach (Wilkinson 1951) are too stringent, as this
method considers only the largest ordered P-value among the
2W2 tests and potentially misses many differential interactions.
Ideally, a weighted P-value alternative should be adopted; however,
they tend to be computationally demanding. A good tradeoff is the
use of the rth ordered P-value (rOP)method (Song and Tseng 2014).
The rOPmethod considers a collection of tests to be significant if at
least r of them are significant. Under the null hypothesis, the rOP
tests on the rth order statistic among the sorted 2W2 P-values using
beta distribution with degrees of freedom α = r and β = 2W2− r + 1.
In our model, the value of r is equal to the largest integer value
smaller than p ×W2, such that p∈ (0, 1] is the percentage of the sig-
nificantly variable KNNs between the two biological conditions re-
quired for a pairwise interaction to be considered a DCI.

The spatial dependency model shows more accurate detection

of DCIs compared to the spatial dependency-free models

To assess the accuracy of our model, we compared its performance
to the edgeRmethod as a representative of models that assume the
independence between the Hi-C pairwise interactions. We did a
simulation analysis in which we generated a Hi-C experiment
with two conditions, each with two replicates.We used the counts
of the K562 Hi-C at 5-kb resolution as a reference to generate the
simulated interaction counts (Methods). Then, given the known
positions of the differential and nondifferential interactions, we
calculated the area under the curve (AUC) values to assess the per-
formance of FIND versus edgeR given different window sizes (W),
the percentage of significantly variable KNNs (P), and fold-change
(FD) values. For each fixed setting, the simulation was repeated 10
times. By summarizing these results in Figure 3A, we observed that

for a window less than or equal to 5 bins (25 kb), FIND outper-
forms edgeR. However, depending on the selected proportion of
significantly differential KNNs, the performance of FIND varies.
When we required all the neighboring pairwise interactions in
the sliding window to be significantly variable (P = 1), which is
also equivalent to the maxP statistic, we observed that FIND still
maintains a good DCI detection performance but drops signifi-
cantly compared to other percentage values. This strict setting
could be useful to detect reliable DCIs, but it would also miss
many other important DCIs. On the other hand, we noticed a low-
er performance if we only required a small proportion of the
neighboring pairwise interactions (P < 0.5) to be differential, the
result is comparable to those of Fisher’s combined probability
test and Stouffer’s Z-test.

When the window size is very large, >35 kb, FIND’s perfor-
mance degrades and shows generally worse performance than
edgeR. This behavior can be explained by the loss of the local
dependency between the interacting chromatin fibers at larger res-
olutions. This relationship can be seen in the 5-kb variogram in
Figure 1B, in which we observed high variance between bins
with increasing distance. These results indicate that FIND is suit-
able for high-resolutionHi-C data, whereas in the case of a low-res-
olution contact map, a count-based method such as edgeR can be
sufficient.

As edgeR is independent from the window size and the confi-
dence level α, it has similar performance for a fixed fold-change
value. By allowing differential interaction to have increasing
fold-change values, we observed that edgeR performs similarly to
FIND in high fold-change regions. For example, in the case in
which we allowed the DCI bins to have a fold change of 10 or
more, edgeR and FIND performed similarly. This indicates that
edgeR is more suitable to detect very significant changes that

Figure 2. Sensitivity of the different KNN to variability. (A) Heatmaps showing the sensitivity of the different KNNs to variability. The left heatmap indi-
cates the position of the simulated differential interactions. The heatmaps labeled from k = 1 to k = 9 show the positions of the pairwise interactions showing
a significant difference from their kth-nearest neighbor (P-value <0.001). The right heatmap shows themajority vote heatmap of the KNNs.We noticed that
the furthest neighbors give noisier predictions. (B) The distribution of the P-values of the KNN heatmaps calculated in A. Plots 1–9 are the P-values obtained
using μ1 as reference, and plots 10–18 are the P-values obtained using μ2 as reference. (C) Plot showing the convergence of the Fisher distribution using k as
the degrees of freedom (k∈ [1, 9]). We noticed that the larger the k is, the faster the Fisher distribution converges out of the acceptance zone.

DCI detection using spatial Poisson process
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have a visible impact on the neighborhood. However, edgeR still
misses many of the DCIs that show lower fold change but have a
significant structural change in their neighborhoods.

We then looked at the case in which edgeR and FIND have
comparable behavior (high fold-change values) to check which
method was more reliable. In other words, how far are the false-
positive values from the real signal? In Figure 3B, we show an ex-
ample of the location of the wrongly predicted DCI (shown in
green) to the accurately simulated DCIs (blue and orange). We
clearly see that FIND’s false positives are located near the real sig-
nal, whereas edgeR false positives tend to be located far away.
Most of FIND’s false positives are located one bin away from the
real signal, while for edgeR, the false-positive predictions tend to
be located far away (Fig. 3C). This observation indicates that the
DCIs reported by FIND tend to be in the neighborhood of regions
of high structural variability, and edgeR has more potential to
detect technical noise in the Hi-C contact map, which can lead
to more erroneous conclusions.

To sum up, these simulation results reveal the advantage of
our method over the count-based methods for high-resolution
Hi-C contact map as it uses the nearest neighbors’ information
to decide about the significance of a structural change.
Compared to count-based methods, this strategy avoids the detec-
tion of noisy DCIs, because it borrows information for adjacent in-
teractions. We also showed that in high resolution Hi-C data,
count-basedmethodsmay be used, but they requiremore cautious
manipulation as detailed in Lun and Smyth (2015).

FIND shows more reliable behavior than count-based methods

on real data

To assess the reliability of ourmodel on real data, we compared the
5-kb resolution Hi-C contact maps of K562 and GM12878 cells
(Rao et al. 2014). For each cell line, we used two replicates. The
data were normalized using the Knight-Ruiz matrix-balancing al-
gorithm (Rao et al. 2014). Additionally, to remove the between-
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Figure 3. Performance comparison between FIND and edgeR on simulated data. (A) Tile plot comparing the performance between FIND and edgeR
given different window sizes (W), percentages of significantly variable KNNs (P) and fold-change values. For each fixed configuration, we ran 10 simulations
and calculated the box plots shown in each tile. (B) An example simulation showing the positioning of the reported DCI by edgeR and FIND (blue and
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We observed that edgeR DIs tended to be more scattered in the heatmap, whereas FIND’s results tended to be near the real signal.
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replicates variability, we normalized the replicates of each condi-
tion using the MA-plot strategy (Methods).

We found that FIND detects approximately 1.6 times more
DCIs than edgeR (Fig. 4A). A reasonable explanation is that
edgeR missed some of the differential interactions with relatively
small fold change, whereas FIND can consider these interactions
as true differential interactions because it is backed up by the infor-
mation from the neighboring interactions.

SeveralHi-C-based comparative studies indicated that thema-
jority of the chromatin structural changes tend to occur within to-
pologically associated domains (TADs) (Rao et al. 2014;Dixon et al.
2015; Smith et al. 2016). Hence, we checked the span of the report-
edDCIs by bothmethods, and the results indicated that themajor-
ity of the DCIs detected by FIND have an interaction span <1 Mb
(mean span 58,229.4 kb); for edgeR, approximately 20% of the in-
teractions span >1 Mb, with a mean span of 107,555 kb (Fig. 4B;
Supplemental Fig. S4). We also calculated the proportion of DCIs
located within TADs (Fig. 4C; Supplemental Fig. S5). The results
are consistent with Figure 4B, showing that ∼70% of the DCIs de-
tected by FIND are located within TADs; for edgeR, only ∼20% of
the DCIs are within TADs. Additionally, because CTCF is a master
controller of the chromatin architecture (Rao et al. 2014; Tang
et al. 2015), we expected the DCIs to be located in the neighbor-
hoods of the differential CTCF peaks. Thus, we calculated the dis-
tance of edgeR- and FIND-detected DCIs to the differential CTCF
peaks (Fig. 4D). Compared with edgeR, FIND has a larger propor-
tion of peaks located <100 bp from the CTCF peaks. All of these re-
sults indicated that FIND tends to detect larger numbers of reliable
DCIs than edgeR.

Topological changes have a large effect on the cross-talk be-
tween enhancers and promoters that can alter gene expression
(Rao et al. 2014; Dixon et al. 2015). We classified genes located in
the proximity of DCIs according to their expression fold change

(FC) into two categories: FC≤ 2, genes that did not show a signifi-
cant difference in expression between the two cell lines, and FC >
2, genes that have a noticeable difference in expression. For FIND,
71.46% of the DCI-related genes show a significant expression
change (FC≥ 2); for edgeR, approximately 50.63%of theDCI-relat-
edgenes showanexpressionchangebetween thecell lines (Fig.5A).
Consistent with transcription results, DCIs detected by FIND are
closer to active gene signals such as H3K4me3, Pol II binding sites,
andEP300 (Fig. 5B–D).All of these results indicated that FINDtends
to detect larger numbers of functional DCIs than edgeR.

Interestingly, the functional analysis of the genes located in
the proximity of DCIs (≤5 kb) detected by FIND, shows a high en-
richment for GO terms related to the immune system (Table 1).
Meanwhile, for edgeR, only the term “immune system process”
showed a significant enrichment. These results further support
the reliability of FIND. These findings are consistent with previous
reports that indicate that many of the H3K4me1 peaks overlap
with known autoimmune disorder SNPs in the B lymphoblast
cell line GM12878 (Corradin et al. 2014).

Role of chromatin structure in K562 differentiation

The role of chromatin loops is well characterized at the classical al-
pha-globin locus, which is known for its exclusive expression in
erythroid cells (K562) and its silencing in lymphoblastoid cells
(GM12878) (Fig. 6; Vernimmen et al. 2007; Baù et al. 2011).
Genes at this locus are regulated by a cluster of remote DNase I hy-
persensitive sites (HSs) located approximately 30–60 kb upstream
of the alpha-globin genes (Vernimmen et al. 2007), and the silenc-
ing of these genes is due to the absence of the enhancer-promoter
interaction.

In Figure 6, we marked the different results reported by FIND
using the P-value cutoff of 1 × 10−4. We notice that all the reported

Figure 4. Performance comparison between FIND and edgeR with genomic characteristics. (A) The numbers of DCIs detected by FIND and edgeR. (B)
The distribution of the span of the DCIs reported by edgeR and FIND. We observed that the majority of FIND’s results have a span <1 Mb. (C) The pro-
portion of the genome-wide DCIs located inside TADs for both edgeR and FIND. (D) The distances of edgeR- and FIND-reported DCIs to the CTCF differ-
ential peaks.

DCI detection using spatial Poisson process

Genome Research 417
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212241.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.212241.116/-/DC1


differently interacting regions are located around interactions that
show a significant differential binding of the CTCF protein.
ChromHMM tracks at this region also indicate a major change in
chromatin state (Ernst and Kellis 2012), from a strong enhancer
state (shown in orange in the ChromHMM track) to a heterochro-
matin state (shown in gray in the ChromHMM track). In addition
to the alpha-globin locus, the localization of FIND’s result around
differential CTCF binding sites can be observed in many regions
(Supplemental Fig. S6).

Job Dekker and his group used the low-throughput 5C exper-
iment to investigate the chromatin cross-talk between selected re-
gions in different cell lines (Sanyal et al. 2012). The comparison of
our results in the proximity of the differential 5C interactions in-
dicates that FIND’S DCIs are closer to the differential 5C peaks
than edgeR ones (Supplemental Fig. S7).

Discussion

Here, we present a novel computational method that detects dif-
ferential chromatin interactions between two Hi-C experiments.
We argue that in high-resolution Hi-C maps, the spatial depend-
ency between neighboring interactions should be considered.
First, we used the directional semivariogram metric to verify the
existence of the neighborhood dependency in Hi-C data. Then,
taking this relationship into account, we developed a computa-
tional method that detects differential chromatin interactions
that show a correlated change with the pairwise interactions with-
in the surrounding window.

In our model, we consider the Hi-C matrix in the 3D space,
which enabled us to consider an interaction change as a change
in intensity (height). Then, we exploited a spatial Poisson process

to estimate the changes in the intensities of the k-nearest neigh-
bors around the pairwise interactions between two Hi-C condi-
tions. We showed that this change can be estimated using a
Fisher distribution. Given the Fisher cumulative distribution func-
tion (CDF), we showed that more-distant neighbors show more
sensitivity to change due to the fast convergence of their associat-
ed CDF. Therefore, we used the rth ordered P-value (rOP) method
to minimize the effect of this sensitivity.

To assess the performance of ourmethod,we performed some
simulation analyses inwhichwe compared the performance of our
method to the widely adopted count-based method edgeR. We
showed that, in general, our method outperformed edgeR. For
high fold-change interactions, we showed that there is essentially
no large performance gap between ourmodel and edgeR; however,
our false positives tend to localize near the real differential interac-
tions, whereas edgeR false positives tend to be scattered along the
heatmap.

Figure 5. Comparison of performance between FIND and edgeR with transcriptional characteristics. (A) The proportion of genes with different fold
changes located near the DCIs. (B) The distribution of the distances between DCIs and the H3K4me3 peaks. (C) The distribution of the distances between
DCIs and the Pol II peaks. (D) The distribution of the distances between DCIs and the EP300 peaks.

Table 1. Functional enrichment of genes near the DCI sites predicted
by FIND

GO term Q-value Type

GO:0002376 immune system process 3.83 × 10−18 Up
GO:0001775 cell activation 3.48 × 10−7 Up
GO:0002520 immune system development 4.86 × 10−5 Up
GO:0002521 leukocyte differentiation 1.27 × 10−4 Up
GO:0002682 regulation of immune system

process
4.08 × 10−4 Up

GO:0001816 cytokine production 1.141 × 10−3 Up
GO:0006325 establishment or maintenance of

chromatin architecture
0.02 Down
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In addition to the simulation experiments, we tested our
method on Hi-C interaction data comparing K562 and
GM12878 cells. We showed that the DCIs detected by FIND tend
to be more located inside TADs, whereas a large proportion of
the edgeR results are outside TADs. Additionally, theDCIs reported
by ourmethod are located near differential CTCF binding cites and
are associated with differentially expressed genes.

The increasing availability of high-resolution chromatin con-
formation data opens the door to understanding the principles
that govern the spatial organization of the chromatin between dif-
ferent species and cell types. However, with the lack of differential
chromatin interaction detection tools, it is hard to make signifi-
cant conclusions. Using existing DCI detection methods without
considering the spatial dependence between neighboring interac-
tions may be prone to serious errors when analyzing high-resolu-
tion contact maps. Our tool, FIND, has resolved this issue, hence
presenting a valuable tool for many investigators.

However, more room remains for improvement; for example,
the methods can be extended to allow comparisons of more than
two conditions. It would also be beneficial to be able to remove the
rOP statistics step and replace it with a unified statistic.

Methods

Hi-C data analysis

We used Hi-C data published by Lieberman-Aiden’s group (Rao
et al. 2014). For the GM12878 cell line, we used the samples
GSM1551574 and GSM1551575; for K562, we used the samples
GSM1551620 and GSM1551623. Hi-C matrices were normalized
using the VC-squared method available in the Juicebox tool
(Durand et al. 2016). For each condition, inter-sample normaliza-
tionwas performedusing theMA-plot approach (described below).

For data visualization, we used the R Environment for
Statistical Computing (R Core Team 2016) for the generation of

Figures 1 and 2 and Supplemental Figures S1–S3; for Figure 6 and
Supplemental Figure S6, we used the Juicebox tool (Durand et al.
2016).

Gene expression data

The gene expression data were obtained from the ENCODE project
(The ENCODE Project Consortium 2012) with accession numbers
GSE78553 for GM12878 cells and GSE78625 for K562 cells.

Gene set enrichment

The gene set enrichment was done using the GAGE method (Luo
et al. 2009).

Simulation analysis

To simulate the contact frequencies of the different replicates, we
used the K562Hi-C heatmap as a reference. For each pairwise inter-
action (i, j), we used a negative-binomial distributionwith a disper-
sion of 1 × 104 using the R function rnbinom. The nondifferential
interactions are sampled from a negative binomial with a mean
equal to the value of the corresponding pairwise interaction in
the K562matrix, whereas the differential interactions are sampled
from a negative binomial with a mean equal to the fold change of
their corresponding pairwise interaction in the K562 Hi-C contact
map. We tried to make the simulated DCIs as sparsely distributed
as possible by selecting a small number of interactions to be DCIs
(approximately 1%). Among these DCIs, 40% showed an increase
in their interaction count with a given fold-change value. The ob-
tained new mean value (for the DCIs) is used to sample the fre-
quency counts of the DCI region of the replicates in the second
condition. Then, we applied a Gaussian smoother around the
DCI bins to simulate the effect of changes in the neighbors. We
also allowed the non-DCI sample to be an outlier with a probabil-
ity of 10%.

Figure 6. DCIs in the alpha-globin region as detected by FIND between K562 and GM12878 cells. (A) Hi-C contact map of the K562 at the alpha-globin
locus. Differential interactions (Q-value <1 × 10−4) are shown in blue squares; the CTCF signal change region is highlighted by the blue bars. (B) The cor-
responding region shown in the GM12878 with the same regions highlighted.
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Semivariogram calculation

The semivariogram calculation was done using the gstat (Pebesma
2004) package in R. The variogram (or semivariogram) measure is
widely used in geostatistics to describe the degree of spatial corre-
lation of a given spatial process. If y(x) is a spatial process defined in
a two-dimensional space, the variability between all pairs of points
separated by a distance h can be calculated as follows:

g(h) = 1
2 N(h)| |

∑
x

y(x) − y(x+ h)[ ]2
. (1)

For example, x and h∈R2 and N(h) is the set of all points sep-
arated by h, and |N(h)| indicates the size of this set.

Testing the significance of the kth-nearest neighbor
intensity change

The k-nearest neighbor intensity change test is based on the k-
nearest neighbor density estimator developed by Burguet et al.
(Burguet et al. 2009, 2011; Burguet and Andrey 2014). In this
part, we summarize their main model. If we consider the Hi-C in-
teractions in the 3D space, each interaction can be represented by
the Cartesian coordinates (i, j, fij), such that i and j are the genomic
coordinates and fij is the interaction frequency. Then, from
Burguet’s work, we know that for a given pairwise interaction (i,
j) with an interaction frequency μ, the probability of observing
the kth-nearest neighbor at the distance xik from (i, j, μ) in the
nth Hi-C replicate is

f (xn,k) = (4lp)k
3k−1 (k− 1)! x

k−1
n,k exp −l

4p
3

x3n,k

( )
. (2)

In Equation 2, we can see that the only parameter that needs
to be estimated is the density λ(μ), written as λ for clarity. Given the
Hi-Cmatrix of the experimental condition cwith nc replicates, the
density of the kth-nearest neighbor around the point μ can be es-
timated from the maximum likelihood of Equation 2, which gives

l̂ (c)
k (m) = nck− 1

4p
3

∑nc

n=1
x3n,k

. (3)

By doing some variable change and algebraic manipulation
(detailed in Supplemental Methods), we can show that under the
null hypothesis the ratio between the kth-nearest neighbor density
at μ in the first and second conditions follows a Fisher distribution
with 2n1 k and 2n2 k degrees of freedom:

R̂k(m) =
l̂ (2)
k (m)

l̂ (1)
k (m) � FS(2n1k,2n2k). (4)

Thus, given Equation 4 and given a confidence level α, the
two-sided P-value that R̂k(m) is significant will be equal to

P−value(k) = 2

×min Pr Rk(m) , R̂k(m)
( )

, Pr Rk(m) . R̂k(m)
( )( )

. (5)

FIND’s algorithm

Consider two Hi-C experiments performed under two conditions
c1 and c2 each with n1and n2 replicates. For a given pairwise inter-
action (i, j) between two genomic bins i and j, let μ1 be the mean
interaction frequency of (i, j) in c1, and let μ2 be the mean interac-
tion frequency of (i, j) in c2. Let W be the size of the window
around (i, j). The window around (i, j) will then be of size W2

and will include all the pairwise interactions of their coordinates

in the Cartesian product

i−W
2

, . . . , i, . . . , i+W
2

{ }
× j−W

2
, . . . , j, . . . , j+W

2

{ }
, (6)

where W/2 indicates the largest integer value smaller than W/2.
Using the mean interaction frequency of (i, j) in the first bi-

ological condition μ1 as a point of reference, we can associate
with each pairwise interaction in our defined window a P-value
that indicates if it significantly changes around μ1 between the
two conditions. A total of W2 P-values will be obtained. Then,
using the mean interaction frequency of (i, j) in the second bi-
ological condition μ2 as a point of reference, we can also calcu-
late W2 P-values that indicate the change of the interactions in
the defined window around μ2. In total, 2W2 P-values will be
obtained.

The rth ordered P-value (rOP) statistic will be used to estimate
the probability that rout of the 2W2 tests are significant.Wedefine
r as r = p × 2W2, where p∈ (0, 1] is the percentage of the signifi-
cantly variable KNNs between the two biological conditions re-
quired for a pairwise interaction to be considered as a DCI.
Briefly, given 2W2 P-values estimated through 2W2 tests, the
rOP statistic defines the following hypothesis setting HSr:

HSr : H0 :
⋂2W2

k=1

uk = 0{ } versus H1 :
∑2W2

k=1

I uk = 0{ } ≥ r

{ }
, (7)

where θk is the effect size of the test k. If Sr is the rth order statistic of
P-values, then

Sr � Beta(r, 2W2 − r + 1) . (8)

ROC calculation

Weused the ROCRpackage to estimate the prediction performanc-
es of each of edgeR and FIND. The true-positive signals are the re-
gions simulated to be DCI and reported to be DCI by the
algorithm. The false-positive signals are the regions that are not
DCI in the simulation but reported as DCI by the algorithm. The
false-negative signals are the regions simulated as DCI but reported
as not DCI by the algorithm. The true negatives are the regions not
DCI in the simulation that are reported as not DCI by the
algorithm.

MA normalization

To ensure consistency between the replicates of the same condi-
tion, we performed a between-samples normalization. The proce-
dure is similar to the MA-plot normalization for gene expression.
Briefly, for each interaction point (i, j) with interaction frequencies
f (1)ij and f (2)ij in replicate one and replicate two, respectively, we cal-
culated the log intensity (A) and the log ratio (M) as follows:

A =
log2 f 1( )

ij f 2( )
ij

( )
2

M = log2
f 1( )
ij

f 2( )
ij

( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(9)

The expected bias, Mbias, is then estimated by fitting a loess
curve in the MA-plot. The corrected M-value, Mcorrect =M−Mbias,
is calculated, and the rescaled values of f (1)ij and f (2)ij are calculated
as follows:

f̂ (1)ij = 2 A+0.5×Mcorrect( )

M = 2 A−0.5×Mcorrect( )

{
(10)
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5C data processing

The five interaction matrices were downloaded from the GEO un-
der the accession numberGSE39510. Both the first and second sets
of primers, ENm and ENr, were used.We considered an interaction
to be differential in 5C if the interaction between two primers is ab-
sent in K562 or GM12878.

Selection of the Q-value threshold in the real data case

Two possible ways can be used to select the cutoff Q-value. One is
using a hard cutoff. In this approach, it is advisable to use aQ-value
that corresponds to the rOP statistic. For example, if we require
that the rth P-value in each window should not be larger than
1×10−3, we can use a Q-value cutoff of Beta(1 × 10−3|α = r, β =
2W2− r + 1).

Using a hard cutoff can sometimes be very stringent and gen-
erally will remove some long-range DCIs due to the relatively weak
signal of the large interactions. Moreover, some of the long-range
DCIswill showa significantly differentQ-value than their counter-
parts that have the same interaction span. Thus, we used quantile
regression tomodel the relationship between interaction-span and
Q-value (Supplemental Fig. S8). In our analysis, all the Q-values
above the 99th percentile were considered, and none were larger
than Beta(1 × 10−3|α = 13, β = 18− 13 + 1).

Software availability

The software is published under the GNU GPL v3.0 license. The
source code of FIND is available in the Supplemental Material
and at https://bitbucket.org/nadhir/find.
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