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ABSTRACT: Perovskites are bringing revolutionization in a various fields due to their
exceptional properties and crystalline structure. Most specifically, halide perovskites (HPs),
lead-free halide perovskites (LFHPs), and halide perovskite quantum dots (HPs QDs) are
becoming hotspots due to their unique optoelectronic properties, low cost, and simple
processing. HPs QDs, in particular, have excellent photovoltaic and optoelectronic applications
because of their tunable emission, high photoluminescence quantum yield (PLQY), effective
charge separation, and low cost. However, practical applications of the HPs QDs family have
some limitations such as degradation, instability, and deep trap states within the bandgap,
structural inflexibility, scalability, inconsistent reproducibility, and environmental concerns,
which can be covered by encapsulating HPs QDs into porous materials like metal−organic
frameworks (MOFs) or covalent−organic frameworks (COFs) that offer protection,
prevention of aggregation, tunable optical properties, flexibility in structure, enhanced
biocompatibility, improved stability under harsh conditions, consistency in production quality,
and efficient charge separation. These advantages of MOFs-COFs help HPs QDs harness their full potential for various applications.
This review mainly consists of three parts. The first portion discusses the perovskites, halide perovskites, lead-free perovskites, and
halide perovskite quantum dots. In the second portion, we explore MOFs and COFs. In the third portion, particular emphasis is
given to a thorough evaluation of the development of HPs QDs@MOFs-COFs based materials for comprehensive investigations for
next-generation materials intended for diverse technological applications, such as CO2 conversion, pollutant degradation, hydrogen
generation, batteries, gas sensing, and solar cells. Finally, this review will open a new gateway for the synthesis of perovskite-based
quantum dots.

1. INTRODUCTION
Perovskites have gained significant attention in recent years
due to their unique properties and potential applications in
various fields, particularly CO2 conversion, pollutant degrada-
tion, hydrogen generation, batteries, gas sensing, and solar
cells.1−4 Perovskites have the general formula ABO3, and if we
replace O with X they become more efficient HPs that exhibit
excellent optical and electronic properties, including high
absorption coefficients, long carrier diffusion lengths, and low
defect densities.5 However, among them, lead-based HPs have
high toxicity and environmental concerns that need to be
addressed, and researchers have developed LFHPs with the
same properties as their lead-based counterparts.6 However,
HPs QDs have limited structural adjustability and poor
stability against heat, oxygen, water, etc., limiting their use in
various practical applications.7 To overcome these short-
comings, many semiconductor materials have attracted
considerable attention, including metal−organic frameworks
(MOFs) and covalent−organic frameworks (COFs). MOFs
are porous materials composed of metal ions or clusters

coordinated to organic ligands, while COFs are crystalline
porous polymers with extended π-conjugated frameworks.8,9

They possess high surface areas, enhanced stability, and
tunable pore sizes, making them suitable for coupling with HPs
QDs to develop hybrid materials known as HPs QDs@MOFs-
COFs.10 By incorporating MOFs or COFs into HPs QDs,
researchers have achieved enhanced performance in various
practical applications such as CO2 conversion, pollutant
degradation, hydrogen generation, batteries, etc. In CO2
conversion, HPs QDs@MOFs-COFs have shown great
potential as catalysts, enabling the conversion of CO2 into
valuable chemicals or fuels by enhancing the catalytic activity
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and stability, leading to improved CO2 conversion efficiency.
In this regard, Wang et al. reported CsPbBr3@PCN-222 as a
photocatalyst for CO2 reduction which demonstrated 2.1 times
improvement in CO2 to HCOOH.11 Pollutant degradation is
another application where HPs QDs@MOFs-COFs have
demonstrated significant potential as they can effectively
degrade pollutants in water or air through photocatalytic or
adsorption processes due to their large surface area and
efficient charge transfer pathways.12 Very recently, Ai and co-
workers utilized CsSnBr3@ZIF-67 for effective malachite green
pollutant degradation.13 Moreover, hydrogen generation is a
key process for clean energy production, in which HPs QDs@
MOFs-COFs have been explored as photocatalysts for water
splitting due to enhanced light absorption and charge
separation, leading to improved hydrogen generation effi-
ciency. In addition, Meng et al. reported a variety of HPs QDs
(CsPbBr3, CsPbBr2I, ESY-CsPbBr3, and RB-CsPbBr2I)@COF-
SH for photocatalytic activities (such as degradation, hydrogen
generation, etc.) and have light-harvesting capability for higher
yields.14 HPs QDs@MOFs-COFs also have significant
potential in the field of batteries, solar cells, and sensors.15,16

Based on the above discussion, it is a hot and emerging
research field. Further research and development in this area
are expected to unlock the full potential of HPs QDs@MOFs-
COFs and pave the way for advanced technologies with
enhanced performance and sustainability.

2. EXPLORING PEROVSKITES
Perovskites make up a class of materials with a unique crystal
structure that gives rise to their exceptional properties. The
perovskite name was given after the mineral, whose chemical
formula is CaTiO3.

17 ABO3 is the general formula of
perovskites, where A and B signify different metal cations
and O corresponds to an anion, typically oxygen.18,19 The A-
site cation consists of different elements, like earth metals (e.g.,
calcium, strontium) or alkaline rare earth metals (e.g.,
lanthanum, neodymium).20 Transition metal ions are generally
utilized as B-site cations.21,22 The perovskite structure is
characterized by a three-dimensional arrangement of metal
cations surrounded by an octahedral cage of oxygen anions.23

Notably, perovskites have the ability to undergo structural
phase transitions that occur in response to external conditions
like temperature and pressure. For example, the perovskite

phase transition from a cubic phase to an orthorhombic or
tetragonal phase is the most studied transition which often
comes from the changes in physical parameters, e.g., magnetic
ordering and electrical conductivity, etc.24 The flexibility in the
perovskite structure allows a variety of elements to be
incorporated into its lattice, resulting in the innovation of a
wide range of perovskites with distinct properties; e.g.,
perovskite oxides are utilized in fuel cells and catalytic
converters due to their efficient catalytic activity. There are
many approaches used for the synthesis of perovskites, as
shown in Table 1 and Figure 1. Mostly solution-based methods

are used for the preparation of perovskite materials due to their
versatility and simplicity. The sol−gel technique is the most
utilized solution-based method. In this approach, a precursor
solution consisting of metal−organic compounds or metal salts
is mixed with a solvent to prepare a sol. The sol is then
subjected to a gelation process, which can be achieved through

Table 1. Examples of Perovskites and Their Applications

Perovskite type Synthesis method Nature Applications Output Ref.

GdFeO3 Solution Based Perovskite nanorods Pollutant degradation and CO2
conversion

High surface area and enhanced
catalytic activity

23

CaTiO3 Hydrothermal Perovskite Thermoelectric ceramics Lowcost and eco-friendly 17
CoMoO4/CoMoB Solvothermal Boron doped perovskite Electrocatalytic water splitting Enhanced electroconductivity 18
SrO/LaFeO3 One-pot SrO/Perovskite Organic pollutant degradation

and CO2 conversion
High charge separation and
surface activity

20

CH3NH3PbI3‑xClx Spin coating Perovskite PSCs Better crystallinity and large size 38
La0.4Sr0.6Co0.7Fe0.2Nb0.1O3‑δ Sol−gel Perovskite Energy storage High stability and power density 39
CH3NH3PbX3 Ligand-assisted HP nanocrystals Photodetectors Self-powered and DMF, good

solvent for synthesis
26

La−Sr−Co Mechanochemical Perovskite composite Degradation High catalytic degradation and
nontoxic

28

PbCl2/PbICl CVD Mixed HPs PSCs Grains size >2 μm 29
PrBaMn0.5Fe1.5O5+δ/FDC ALD CeO2 decorated perovskite Fuel cells Improved electrocatalytic activity 30
SnO2/LaFeO3 Template−

adsorption−
calcination

Yolk shell perovskite
coupled with SnO2

Photocatalytic degradation High charge separation 33

MA2SnCl6 - HPs Energy storage and harvesting High capacity and stability 37

Figure 1. Overview of the applications, morphology, properties, and
synthesis of perovskites.
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various techniques, such as hydrolysis or condensation
reactions. The gel obtained is dried and then calcined at
high temperatures to get the required perovskite material.25

One more solution-based technique is the precipitation
method, which requires the controlled precipitation of metal
ions from a solution consisting of suitable precursors. Usually,
two separate solutions containing the A-site and B-site
precursors are prepared and mixed under controlled
conditions. The reaction between the precursors allows the
formation of insoluble perovskite nanoparticles that can be
collected by centrifugation or filtration and further processed
to obtain the final product.26 The second one is solid-state
techniques, which involve the direct reaction between solid
precursors to prepare perovskite materials. The most employed
solid-state techniques are the ceramic or solid-state reaction
method. In this method, the starting materials, normally
carbonates or metal oxides, are completely mixed and heated at
high temperatures to promote the diffusion of ions and the
formation of the perovskite phase. The temperature profile and
reaction kinetics play a vital role in determining the
crystallinity and phase purity of the final product.27 Another
type of solid-state method is ball milling or mechanochemical
synthesis, in which precursors are added to the ball mill, and
then mechanical forces are applied by milling balls. Due to
these high-energy collisions between precursors and balls,
perovskite is formed. Mechanochemical synthesis has various
advantages such as lower reaction temperature, shorter
reaction times, and final product homogeneity.28 Now we
discuss the vacuum-based methods in which precursor vapors
are deposited on a substrate by annealing to prepare perovskite
films. The most commonly used vapor-based methods are
chemical vapor deposition (CVD) and atomic layer deposition
(ALD). In CVD, suitable carrier gas and precursors are added
in the reaction chamber at high temperatures, which leads to
the perovskite film deposition on the heated substrate. CVD
gives good control over composition and film thickness which
makes it suitable for commercial scale.29 ALD involves
substrate exposure to different precursors in the form of
vapors which lead to the controlled growth with atomic
precision of films.30 Overall, perovskite synthesis needs careful
control over several parameters including solvent selection,
precursor choice, annealing conditions, and the film deposition
method, which significantly affect the structure, properties, and
final composition of perovskites. Due to their unique
properties, perovskites have been uncovered in various fields,
e.g., solar cells and catalysis, where they have shown great
capability as efficient photovoltaic and low-cost materials.
Additionally, Tan and his team prepared the CsPbI3 solar cell

which has enhanced stability, temperature reliability, and
improved photovoltaic properties.31 Moreover, perovskite solar
cells (PSCs) have achieved high power conversion efficiencies
(PCEs) comparable to traditional silicon-based solar cells.32

Furthermore, perovskite catalysts are used in various reactions
including oxygen reduction reactions in pollutant degradation,
water splitting, fuel cells for hydrogen production, and CO2
conversion for renewable energy storage. In addition, Khan et
al. synthesized LaFeO3-based nanocomposite as an efficient
photocatalyst for 2,4-dichlorophenol dye degradation.33 Per-
ovskites also find great potential in gas sensing due to their
high sensitivity and surface area which enables perovskites to
detect various gases like carbon monoxide (CO), nitrogen
dioxide (NO2), and volatile organic compounds (VOCs) at
low concentrations, making them suitable for industrial safety,
healthcare, and environmental monitoring applications.34,35

Also, perovskites have also shown potential in magnetic storage
devices such as high-temperature superconductors, solid-state
batteries, and solid oxide fuel cells due to their efficient ion
conduction, magnetism, superconductivity, and thermoelec-
tricity.36 Very recently, Li et al. used a perovskite (CsPbI2Br)
photovoltaic module to prepare solid-state Li−S batteries
which exhibited high storage and conversion efficiency.37

Regardless of their potential, there are still some limitations
such as scalability and stability that need to be addressed.
Perovskites are sensitive to oxygen and moisture, which
reduces their performance over time. Researchers are keenly
working on developing approaches to improve the stability of
perovskite materials and make them more suitable for large-
scale applications.

3. INVESTIGATING HALIDE PEROVSKITES
HPs have been getting a significant spotlight in recent years
due to their exploited optoelectronic properties and potential
applications such as solar cells, lasers, CO2 conversion,
pollutant degradation, water splitting, field effect transistors,
etc.40,41 HPs are donated by the general formula ABX3, where
the A cation is typically an organic or inorganic cation, while
the B cation is a metal−cation and X a halide anion. Halides
provide more degrees of freedom to the perovskite structure,
which may be used to adjust the material’s characteristics.42

HPs are more adaptable for a range of applications since the
presence of halides may alter the material’s bandgap, carrier
mobility, and stability. In the HPs structure, the A cations
occupy the corners of a cube, while the X anions occupy the
face centers of the cube. The B cations are located at the center
of the cube.43 This arrangement creates a three-dimensional
network of corner-sharing BX6 octahedra, where each B cation

Table 2. Examples of HPs and Their Applications

Halide perovskite type Synthesis method Nature Applications Output Ref.

Cs3Cu2X5 Hot injection method Metal HPs Light emission compounds PL quantum yield exceeding 90% 48
(BA)2(MA)n‑1PbnI3n+1 Spin-coating and scalable

blading
3D-like perovskites High-performance devices (solar

cells)
Enhanced PCE 51

Cs2AgBiBr6 Microwave-assisted
solvothermal

Double perovskite
nanoparticles

Optoelectronic Promising moisture and thermal
stability

52

α-FAPbI3 Vapor deposition Lead-based HP Solar cell PCE over 20% 53
α-FAPbI3 Solution based HP Semiconductor More efficient carrier transport 54
Cs2AgBiI6 Simple antisolvent

approach
LFHP Pollutant degradation High photocatalytic performance 56

g-C3N4/CsPbBr3 Hot injection method HP nanocrystals CO2 photoreduction and water
splitting

Enhanced charge separation 57

CH3NH3PbBr3@TiO2 Solution based HP QDs Photoelectrochemical sensor Water stability 60
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is surrounded by six X anions. The octahedra formed by the
BX6 units give rise to several important structural features of
the HPs. First, these octahedra can tilt or rotate relative to each
other, leading to different structural distortions.44 In various
cases, this tilting shows outcomes such as lower symmetry
structures like tetragonal (CsSrCl3), monoclinic (Rb3Sb2I9),
and orthorhombic (Cs3BiI6).

45 For example, orthorhombic
CsPbI3 shows higher octahedral tilting as compared to
tetragonal CsPbI3.

46 These distortions can impact the optical
and electronic properties of the material. Moreover, interstitial
spaces or voids are created by corner-sharing of octahedra
within the crystal structure which can accommodate additional
molecules that can improve HPs properties such as device
performance and stability.47 The interstitial spaces created by
the BX framework are occupied by A-site cations, which serve
as a pillar to the perovskite structure stability. Also, HPs can
show various types of bonding interactions including partially
covalent and purely ionic depending on the combination of
elements at A, B, and X sites. The bond nature affects the
charge transport and electronic band properties of HPs.48 For
example, different band gaps can be accomplished by changing
the A-site cation, which helps in tuning the emission and
optical absorption properties. Moving on the synthesis of HPs
involves the preparation of high-quality crystalline nanorods,
QDs, nanoparticles, or films with controlled morphology and
composition.49 There are various synthesis methods used for
HPs preparation, such as high-temperature, hybrid, and wet
chemical approaches, as shown in Table 2 and Figure 2. Wet

chemical methods include solution-based, solvothermal, and
hydrothermal approaches. The solution-based technique is the
most commonly used wet chemical method which further
includes inkjet printing, spin coating, and doctor blading
techniques.50 In this approach, the precursor is deposited on a
substrate, and then the solvent is removed by heating. The final
film formed can be further annealed at low temperatures to
improve the optoelectronic properties and crystallinity.51 The

second wet chemical method is solvothermal which involves
the metal halide reaction with organic ligands at temperature
and pressure that control the morphology and crystal growth
of perovskites.52 The third technique is the hydrothermal
technique in which the precursor solution is heated in an
autoclave under high pressure. Moving forward, high-temper-
ature processes consist of solid-state reactions and vapor-
assisted deposition that typically involve the reaction of solid-
state precursors at high temperatures to prepare the desired
perovskite phase.53 In addition to high-temperature and wet
chemical methods, there are techniques for HPs synthesis, e.g.,
electrospinning and CVD. As we know, the HPs structure is
highly versatile and can accommodate a wide range of
compositions and substitutions. This flexibility allows for the
engineering of HPs with desired properties for various
applications.54 One of the notable applications of HPs is in
the removal of pollutants. These materials have shown
promising results in the photocatalytic degradation of organic
pollutants, such as dyes and pesticides, through the generation
of reactive oxygen species (ROS) under light irradiation.55

Very recently, Huang et al. prepared Cs2AgBiI6-GO with high
stability for effective organic pollutant photocatalytic degrada-
tion.56 HPs have also been explored for photocatalysis, where
they can efficiently convert solar energy into chemical energy
for various reactions, including water splitting, to produce
hydrogen fuel. In this regard, Laishram and his research team
synthesized water- and air-stable g-C3N4/CsPbBr3 for water
splitting and CO2 photoreduction.57 This application holds
great potential for renewable energy production. Furthermore,
HPs have demonstrated excellent performance in ions and gas
sensing.58 Their high surface-to-volume ratio and tunable
bandgap make them suitable for detecting a wide range of ions
and gases with high sensitivity and selectivity.59 This capability
opens up new possibilities for environmental monitoring,
industrial safety, and healthcare applications. A team of
researchers prepared a novel CH3NH3PbBr3@TiO2 photo-
electrochemical sensor for cholesterol detection with facile,
high sensitivity, and low cost approach.60 HPs with ferro-
electric properties have also been studied for applications like
memory devices, sensors, actuators, and energy storage
systems.61 Despite the tremendous progress made in the
field of HPs, there are still ceratin challenges that must be
addressed before their widespread commercialization. One
major concern is the stability and deep trap states within the
bandgap of these materials, as they tend to degrade when
exposed to moisture or heat and hinder the charge carrier
dynamics. Efforts are underway to develop encapsulation
techniques and improve the stability of HPs. Another challenge
is the toxicity of lead-based perovskites, which has raised
environmental concerns. Researchers are actively exploring
alternative compositions that are lead-free while maintaining
similar properties.
In summary, perovskites of the common variety (ABO3)

have numerous advantages compared to their halide counter-
parts (ABX3). These materials exhibit excellent thermal and
chemical stability, making them highly suitable for long-term
use in a wide range of environmental conditions. In addition,
ABO3 materials are frequently found in larger quantities and
are more affordable, leading to reduced production expenses.
They are more environmentally friendly because they do not
contain toxic halide components, which can be difficult to
dispose of and recycle. Moreover, perovskites of the ABO3
variety exhibit superior mechanical properties, such as

Figure 2. Overview of the applications, morphology, properties, and
synthesis of HPs.
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increased hardness and resilience, which render them highly
suitable for structural applications. They have a wide range of
applications beyond photovoltaics.

4. UNDERSTANDING LEAD-FREE HALIDE
PEROVSKITES

Lead-based HPs have gained significant attention in the field of
optoelectronics due to their exceptional photovoltaic proper-
ties. However, the presence of lead in these materials raises
concerns regarding their environmental impact and potential
health hazards. For this reason, lead-free halide perovskites

(LFHPs) are hotspots in the research field. Additionally, the
structure of LFHPs is similar to that of their lead-based
counterparts.62 They consist of a 3D crystal lattice with an
organic cation, inorganic metal halides, and an additional
component to stabilize the structure. The absence of lead
necessitates the incorporation of alternative elements such as
tin (Sn), germanium (Ge), bismuth (Bi), or antimony (Sb)
into the crystal lattice.63 Chen and his co-workers prepared
LFHP (Cs3Bi2xSb2−2xI9) for photocatalytic hydrogen evolution
(PHE) and compared it with lead-based HP ((CH3NH3)PbI3)
which demonstrated that Cs3Bi2xSb2−2xI9 has better efficiency

Table 3. Examples of LFHPs and Their Applications

LFHPs type Synthesis method Nature Applications Output Ref.

Cs2TeBr6 Hydrothermal Inorganic LFHP c sensors Good repeatability, stability, and short response time
(4 s)

62

(PEA)4AgBiBr8,
(PEA)2CsAgBiBr7, Cs2AgBiBr6

Slow crystallization Double LFHP Light emitting Weak dimensional confinement 63

Cs3Bi2xSb2−2xI9 - LHHP Hydrogen evolution High optical absorption and stability 64
Cs3Sb2Cl3Br6 Solution based LHHP Self-powered

photodetector
High responsivity (1 μA·W−1) 66

MA3Bi2I9, MA3Bi2I6Br3,
MA3Bi2I6Cl3

CVD LFHP Photodetector Flexible, self-powered, and stable 68

Cs2TeCl6 Mechanochemical LFHP Stress recording Reported the first time and has irreversible recording
and long storage time

69

Cs3Sb2Br9 Antisolvent LFHP hollow
nanospheres

CO2 reduction Efficient photocatalytic activity 71

Cs2AgInCl6 Precipitation Double LFHP Organic pollutant
degradation

Highly stable and efficient 73

CsSn1‑xGexI3 LFHP Solar cells Twice PCE 74
(iBA)2(MA)3Pb4I13 Spin-coating Hybrid LFHP Rechargeable

batteries
91% retention 79

Figure 3. Overview of the applications, morphology, properties, and synthesis of LFHPs.
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for hydrogen production due to enhanced optical absorption
than (CH3NH3)PbI3.

64 Also, several factors that influence the
morphology and structure of LFHPs such as the choice of
cation and anion composition, precursor stoichiometry, solvent
choice, processing conditions, additives or dopants, and
substrate choice all play crucial roles in determining the
morphology, crystallinity, and stability of these materials.
Understanding and optimizing these factors are essential for
developing high-performance LFHP-based materials.65 For the
synthesis of LFHP single crystals, colloids, and thin films,
various methods such as solution-based, vapor-based, and
solid-state methods can be employed, as shown in Table 3 and
Figure 3. Solution-based methods are commonly used for
synthesizing LFHP single crystals and colloids. One of the
most commonly used solution-based methods is the hot
injection technique. In this method, a precursor solution
containing the organic cation, metal halide, and solvent is
heated to a high temperature. Then, a second solution
containing a reducing agent is rapidly injected into the
precursor solution under vigorous stirring. The growth and
nucleation of LFHP colloids or crystals can be prompted by
rapid injection. Finally, colloids or crystals obtained can be
purified and characterized for several applications. In this
regard, Pramod et al. produced LFHP (Cs3Sb2Cl3Br6) by a
solution-based method and utilized it for photodetectors.66

One more solution-based approach is the antisolvent vapor-
assisted crystallization technique in which the precursor
solution is spin-coated on the substrate and then exposed to
antisolvent vapor, e.g., toluene, chlorobenzene, etc. These
vapors diffuse into the precursor film to form the LFHP film.
This approach helps in controlling the crystallinity and
morphology of film by varying antisolvent vapor exposure
time and concentration.67 There are vapor-based techniques as
well such as CVD used to prepare LFHP films where volatile
precursors react and deposit on the substrate in a reaction
chamber. With this approach, film thickness, crystallinity, and
composition can be optimized by controlling deposition
parameters like pressure, precursor flow rate, and temper-
ature.68 The third one is the solid-state techniques, which are
generally used for thin films and single crystals because of their
compatibility, scalability, and simplicity, but they are less
efficient than vapor-based and solution-based techniques. One
of the most used solid-state techniques is grinding in which the
precursor is ground and annealed at high temperatures.69

Notably, the choice of synthesis approach depends on factors

such as required morphology, specific application, and
scalability. LFHPs are environmentally friendly and have
demonstrated potential in different applications including
pollutant degradation, energy storage, and CO2 conversion.

70

In CO2 conversion, LFHPs can be employed as catalysts to
convert CO2 into useful fuels or chemicals by photo-
electrochemical reactions because their high surface area and
exceptional electronic properties make them competent for
capturing and utilizing solar energy. Very recently, Mu et al.
synthesized hollow Cs3Sb2Br9 which exhibited enhanced
charge separation, surface activity, and photoresponse in
photocatalytic CO2 reduction.71 Moreover, LFHPs have
shown exceptional performance in pollutant degradation
applications. They can be utilized as photocatalysts to break
down organic pollutants in air or water by utilizing solar
energy. This capability makes them promising candidates for
addressing environmental pollution and improving the quality
of air and water resources.72 Also, a team of researchers
synthesized a highly stable and efficient lead-free Cs2AgInCl6
photocatalyst for organic pollutant degradation.73 Additionally,
LFHPs have shown potential in battery technologies. Their
ability to store and release charge efficiently makes them
suitable electrodes materials in rechargeable batteries. By
replacing the lead-based materials with lead-free alternatives,
the safety and sustainability of battery systems can be
enhanced. In addition, solar cells based on lead HPs have
achieved remarkable PCEs exceeding 25%.74 However, the
toxicity and instability associated with lead-based HPs have
motivated researchers to discover alternative materials. LFHPs,
such as tin-based (e.g., methylammonium tin iodide) and
bismuth-based (e.g., methylammonium bismuth iodide) per-
ovskites, have shown promising photovoltaic properties.75,76

These materials exhibit suitable bandgaps, high absorption
coefficients, and long carrier lifetimes, making them attractive
for solar cell applications.77,78 Although the PCEs of LFHP
solar cells are currently lower than their lead-based counter-
parts, ongoing research efforts aim to enhance their perform-
ance and stability.79 Conversely, challenges related to stability,
performance, scalability, and cost-effectiveness need to be
overcome for their widespread adoption. Continued research
and development efforts are crucial in unlocking the full
potential of LFHPs for sustainable and eco-friendly tech-
nologies.

Table 4. Examples of HPs QDs and Their Applications

HPs QDs type Synthesis method Nature Applications Output Ref.

APbX3 Hot injection HPs QDs LEDs High PLQY and binding energy 85
CsPbX3 Hot injection HPs QDs Laser, LEDs, and

solar cells
Improved stability in the external environment 105

CsPb1‑xSnxBr3 Room temperature HPs QDs LEDs High PLQY and stability 87
CsPbBr3 QDs/
PMMA

Ball milling HPs QDs LEDs and solar cells High PLQY and stability 89

CsPbX3 Microwave based HPs QDs Sensors Tunable photoluminescent emissions 90
Zr-doped CsPbBr3-
KSCN

In-situ and solution based HPs QDs Green LEDs Low toxicity, external quantum efficiency of 13.8%, and
brightness of 24800 cd m−2.

92

α-CsPbI3 Facile HPs QDs Solar cells 8.28% PCE 94
CsPbIxBr3‑x Room-temperature

recrystallization
3D HPs
QDs

CO2 reduction Improved photocatalytic reaction 97

MnSnO2@CsPbBr3 Solvothermal HPs QDs Pollutant degradation 85.74% degradation rate 99
Cs−Cu−Cl Sonochemical and in situ HPs QDs H2 evolution High stability 101
NS-CsPbBr3 One pot HPs QDs Biomedical Outstanding results in gas, chemo-, and photothermal therapies 102
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5. COGNITION OF HALIDE PEROVSKITE QUANTUM
DOTS

Artificial nanoscale crystals known as “quantum dots” have
special optical and electrical characteristics, such as the
capacity to move electrons and release a range of colored
light when exposed to ultraviolet light.80 HPs QDs are a class
of nanoscale materials that have attained significant recognition
in recent years due to their unique properties and potential
applications in various fields, including optoelectronics,
photovoltaics, and light-emitting devices.81 Inorganic HPs
QDs are a subclass of HPs QDs that consist solely of inorganic
components which offer various benefits over organic−
inorganic counterparts like high PLQY, tunable bandgap,
improved charge transport, and enhanced stability.82 Also, the
inorganic nature of HPs QDs makes them more suitable for
applications that need long-term stability, such as optoelec-
tronic devices. HPs QDs have a similar crystalline structure to
large-scale perovskite materials but at the nanoscale with
reduced dimensions.83 The HP QD general formula is ABX3,
where A shows an inorganic or organic cation; B shows a
metal−cation; and X shows a halide anion.84 HPs QDs which
are most studied contain a combination of halides such as I, Cl,
or Br as the anion and Sn or Pd as a metal−cation. HPs QDs
form crystalline three-dimensional structures with the help of
BX6 octahedra. Inorganic or organic cations occupy the A site
in the crystal lattice. Notably, we can precisely control the
composition and size of QDs during their synthesis, allowing
us to tune their optoelectronic properties.85 Typically, HPs
QDs demonstrate cubic or spherical morphology, with sizes

ranging from a few to tens of nanometers. Furthermore, recent
advances in synthesis techniques such as encapsulation and
surface passivation strategies have enhanced the stability of HP
QDs against heat, light, and moisture.86 Moving forward, the
synthesis methods of HPs QDs consist of room temperature
and hot injection techniques as shown in Table 4 and Figure 4.
The hot injection approach further consists of solvothermal
and colloidal methods that offer precise control over
morphology, composition, and size but involve high temper-
atures and utilize inert gases which make it unsuitable and cost-
ineffective for the commercial scale.87 While the room
temperature approach consists of cation exchange reactions
and ligand-assisted reprecipitation, it provides scalability and
simplicity but has stability and size control limitations. As a
result, the community of researchers is trying to explore
various techniques that can help to prepare HPs QDs under
ambient conditions.88 Ball milling or grinding is one of these
techniques that involves the mechanical grinding of solid
precursors by using ligand or solvent. This approach provides
various benefits such as offering QDs with narrow-size
distributions, scalability, simplicity, synthesis at room temper-
ature, no use of inert gases, and cost-effectiveness.89 Another
such technique is microwave irradiation, in which the
precursor solution is subjected to microwave radiation. This
approach encourages rapid heating, high yields, good particle
size control, and fast reaction rates.90 It also removes the
requirement for inert gases and high temperatures, making it a
good alternative to the hot injection method. HPs QD’s unique
properties (such as stability, optical, and electronic) make

Figure 4. Overview of the applications, morphology, properties, and synthesis of HPs QDs.
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them attractive for various fields.91 In optoelectronics, they
have been utilized as active materials in LEDs, where their
tunable emission properties enable the generation of different
colors. Moreover, Yang et al. synthesized improved green
LEDs by using Zr−Pb doped CsPbBr3 QDs that showed
enhanced operating half-life and external quantum efficiency.92

They have also been incorporated into solar cells as light-
absorbing materials due to their high absorption coefficients
and long carrier diffusion lengths.93 Very recently, Yang and his
team prepared α-CsPbI3 QDs for solar cell applications with a
PCE of 8.28%.94 In recent years, HPs QDs have gained
significant attention as photocatalysts in the fields of CO2
conversion, pollutant degradation, and hydrogen generation.
HPs QDs have shown great potential in CO2 conversion
through photocatalytic reduction.95 When exposed to light,
these QDs can absorb photons and generate electron−hole
pairs. The excited electrons can then participate in the
reduction of CO2 to produce valuable fuels or chemicals,
such as CH4, CH3OH, or HCOOH.

96 The efficiency of CO2
conversion using HPs QDs as photocatalysts has been
demonstrated in several studies. Cheng et al. synthesized
CsPbIxBr3‑x QDs for efficient photocatalytic CO2 reduction
which displayed enhanced reactions.97 HPs QDs also exhibit
excellent photocatalytic activity for the degradation of various
pollutants present in air or water. These QDs can effectively
generate ROS under light irradiation, which can oxidize and
decompose organic pollutants into harmless byproducts. For
example, HPs QDs have been used for the degradation of
organic dyes, pharmaceutical compounds, and even persistent
organic pollutants (POPs) such as polychlorinated biphenyls
(PCBs). The high surface area and efficient charge separation
properties of these QDs contribute to their enhanced
photocatalytic performance.98 A team of researchers utilized
CsPbBr3/MnSnO2 QDs for the photocatalytic degradation of
organic pollutants which demonstrated an 85.74% degradation
rate.99 HPs QDs have also shown promise as photocatalysts for
hydrogen generation via water splitting. By absorbing photons,
the QDs can generate electron−hole pairs, where the excited
electrons can reduce protons (H+) from water to produce H2
gas.100 The unique electronic structure and efficient charge
transfer properties of HPs QDs enable them to achieve high
hydrogen evolution rates. Notably, Li et al. synthesized
photocatalyst Cs−Cu−Cl QDs with enhanced stability to use
for H2 evolution.101 This shows their potential in future
storage and energy conversion systems.102 Moreover, HPs
QDs have demonstrated potential in sensing and bioimaging
fields due to their brilliant photoluminescence properties.103

However, various limitations, such as instability and degrada-
tion under ambient conditions, need to be dealt with before
their use as photocatalysts. The instability problem occurs due
to the intrinsic HPs nature which can be improved by
encapsulating them.104 Moreover, the reproducibility and
scalability of HPs QDs with consistent quality at the
commercial scale remain vital problems. To overcome these
challenges, the encapsulation of HPs QDs in or with COFs or
MOFs can help address these problems and improve their
performance.

6. METAL−ORGANIC FRAMEWORKS
In recent years, MOFs have been getting a lot of attention from
the research community due to their distinctive properties and
potential applications in several fields such as separation, gas
storage, sensing, and catalysis.106,107 The highly porous
structure of MOFs consist of clusters or metal ion coordination
with organic ligands. MOF dimensions can be modified by the
shape and size of organic ligands and clusters of metal ions
used. Generally, MOFs have a 3D structure with pores. The
shape and size of these pores can be varied depending on
ligands which allow for selective molecules or gas separation
and adsorption.108 MOFs can be classified into one-dimen-
sional (1D), two-dimensional (2D), and three-dimensional
(3D) depending on the connectivity between the ligands and
clusters or metal ions.109 In 1D MOFs, metal ion linear chains
are connected with organic ligands. In the case of 2D MOFs, a
network of ligands and metal ions is formed. MOFs consist of
various types depending on the ligands or metal ions, e.g.,
pillared layered (PL), UiO type, zeolitic imidazolate frame-
works (ZIFs), etc. PL is composed of metal−organic layers
linked through organic pillars, while UiO consists of zirconium
ions directed with ligands based on carboxylate.110 ZIFs are
made of zinc ions linked with ligands based on imidazole.
Some commonly studied MOFs include HKUST-1
(Cu3(BTC)2), MIL-53 (Al), UiO-66 (Zr6O4(OH)4(BDC)6),
and MOF-5 (Zn4O(BDC)3). Such types of MOFS have
received much attention in the research field because of their
porosity, stability, and efficient applications.111 MOFs can be
prepared by using a variety of techniques such as hydro-
thermal, diffusion, microwave, mechanochemical, sonochemis-
try, and electrochemical techniques, as shown in Table 5 and
Figure 5. In the hydrothermal approach, high temperature and
pressure are utilized for the speedy preparation of MOFs.112 In
the case of the diffusion approach, ligands and metal ions are
slowly mixed in a solvent to obtain MOF crystals over time.
The microwave approach uses microwave irradiation to speed

Table 5. Examples of Common MOFs and Their Applications

MOF type Synthesis method Nature Applications Output Ref.

UiO-66 Solvothermal 3D MOF Pollutant removal 96% removal efficiency 108
Fe-MOF Hydrothermal MOF Urea oxidation and water

splitting
High stability and activity 111

Ce-La-MOFs Hydrothermal MOF Adsorption Removal efficiency is more than 90% 112
NiCo-MOF-74 Microwave-assisted Bimetallic

MOF
CO2 capture High uptake and selectivity for CO2 113

CsPbBr3/MOF-
808

Mechanochemical HP/MOF-808 Photocatalytic Efficient removal under visible light 114

Zr-MOF Sonochemistry Nano popcorns Tumor thermal therapy 120% higher temperature change value as compared to
UIO-66

115

Fe(II) MOFs Solution based MOF Degradation Degradation rates up to 91.96% 117
Zr-MOF Surfactant-assisted Microspheres Adsorption of uranium 1.75 times adsorption capacity than UiO-66-AO 120
3D-ZGC - MOF Batteries High stability, long-term cycling, and low cost 121
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up the reaction between ligands and metal ions.113 The
mechanochemical approach uses ball milling or grinding to
perform reactions between ligands and metal ions.114 Ultra-
sonic waves are used for the sonochemistry approach to
accelerate the reaction and formation of MOFs. On the other
hand, the electric current is utilized to form MOFs on
conductive substrates in an electrochemical approach. MOFs
offer a variety of applications in a wide range of fields because
of their unique properties.115 MOFs can act as heterogeneous
catalysts in catalysis for various reactions, e.g., oxidation, CO2
capture, CO2 reduction, and hydrogenation.116 Chen et al.
constructed Fe-MOF with the acid regulator to improve the
degradation.117 Also, Xi et al. reported CsPbBr3@2D-MOF as
a photocatalyst for enhanced CO2 reduction activity.

118 MOFs
are useful for gas storage and separation applications because
of their high surface area and variable pore size, which provide
effective gas adsorption and separation.119 In this regard, Ma
and his team prepared a hierarchical porous MOF for
enhanced uranium absorption.120 MOFs also have great

potential as sensors for detecting VOCs, gases, and heavy
metals because of their high sensitivity and selectivity. Also,
MOFs have been investigated for electrochemical charge
storage applications, such as supercapacitors and batteries, due
to their large surface area and capacity to accept guest species
within their pores. Additionally, Xue et al. utilized MOFs in Zn
metal batteries to improve long-term cycling and stability.121

Likewise, MOFs demonstrate extraordinary structural diversity
because there are so many different ways that organic ligands
and metal ions can be combined.122 This diversity allows
researchers to create MOFs with required pore geometries,
chemical functionalities, and pore sizes for desired applications.
This ability to modify MOF structures opens new possibilities
for tackling various challenges in several fields and continuing
to be an active zone of research.123

7. COVALENT−ORGANIC FRAMEWORKS
COFs are a type of porous material that has been receiving
tremendous attention in recent years because of its distinctive
properties and applications.107 The COF structure consists of
organic building blocks that are linked by covalent bonding,
resulting in a highly porous crystalline structure with high
surface area, improved chemical stability, pore size tunability,
and distinct functionality.124 These properties make them a
promising material for many applications like sensing, catalysis,
electrochemical energy, and gas storage. COFs depend on the
arrangement and connectivity of organic building blocks.
COFs are categorized on the basis of their dimensions into 2D
and 3D.125 In 2D structures, the stacked layers of organic
building blocks are held together by the help of weak interlayer
interaction forces, which result in accessible pores and high
surface areas, for example, imine-, triazine-, and boronate ester-
linked COFs. While 3D COFs consist of interconnected 3D
networks of covalent bands, e.g., imine, boronate ester, and
amine linked, which leads to higher porosity and structural
stability than 2D COFs.126 COFs can be synthesized through
various methods such as mechanochemical, hydrothermal,
interfacial polymerization, microwave-assisted, and ionother-
mal under normal conditions, as shown in Table 6 and Figure
6. In the ionothermal approach, the ionic liquids are used as
templates and solvents for COF synthesis. Generally, the
reaction is carried out at high temperatures to form the
covalent bonds between the organic building blocks.127 The
hydrothermal method consists of a reaction at high pressure
and temperature which promotes the controlled growth of

Figure 5. Overview of the applications, morphology, properties, and
synthesis of MOFs.

Table 6. Examples of COFs and Their Applications

COF type Synthesis method Nature Applications Output Ref.

2D keto-enamine-linked COF Ionothermal 2D COF Gas storage, catalysis,
optoelectronics, and
separation

High stability and surface area 127

TAPA-PMDA-COF, TAPB-PMDA-
COF, TAPE-PMDA-COF, Py1P-COF

Hydrothermal Imide-linked
COF

Wide range such as photo-
and electrocatalysts, etc.

High modularity 128

TH-COF Microwave Dioxin-linked
COF

Microextraction Reused 20 times, have high chemical
and thermal stability

129

TpBD-COF Mechanochemical COF Uranium removal High reusability, adsorption rates,
and capacity

130

Por-PD-COF Condensation
reaction

2D COF Organic pollutant removal
and gas separation

No photocatalytic and absorptive
capacity lost after 4 times reused

133

XJCOF-1,2,3 Solvothermal Zwitterionic COF Ion conduction, catalysis and
gas/molecular separation

High adsorption capacity and
selectivity

134

TPB-DMTP-COF Schiff base reaction Benzoquinoline-
linked COF

Li−S batteries and
electrocatalytic O2
reduction

High cycling durability and initial
capacity

136
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crystals and covalent bond formations.128 In the case of the
microwave-assisted approach, microwave irradiation is used for
heating which fastens the reaction and improves yield.129 In
the case of interfacial polymerization, the reaction is between
two immiscible phases, generally liquid−solid or liquid−liquid.
This technique is used for thin film formation on different
substrates. Moving towards the mechanochemically scalable
and simple approach that involves mechanical forces like ball
milling or grinding under ambient conditions makes it useful
on a commercial scale.130 COFs have demonstrated large
potential in a variety of applications, such as sensors,
adsorption, catalysts, gas, and electrochemical charge storage,
due to their unique properties. COFs can effectively work as
heterogeneous catalysts in a lot of chemical reactions such as
oxidation, photocatalysis, C−H activation, and hydrogenation
due to their functional groups, tunable pore size, and large
surface area.131 The high porosity and surface area also enable
COF usage in sensing applications such as chemical sensing,
biosensing, and gas detection.132 Very recently, Wu et al.
designed and synthesized porphyrin-based COFs as photo-
catalysts and efficient adsorbents for organic pollutant
degradation and specific molecule adsorption.133 COFs are
also explored for the adsorption and storage of gases such as
CO2, VOCs, and CH4 due to their well-defined porous
structure, which leads to their application in gas storage,
separation, and carbon capture. Fu and his group utilized
zwitterionic COFs for ion conduction and gas separation
which showed high selectivity, adsorption capacity for SO2/
CO2, and outstanding proton conductivity.134 COFs can also

be utilized for energy storage devices, e.g., batteries and
supercapacitors as electrodes.135 The high porosity and surface
area of COFs provide many active sites for charge storage, and
tunable electronic properties help to optimize the electro-
chemical performance. In this regard, Wu and co-workers
utilized COFs for Li−S batteries and electrocatalytic O2
reduction.136 Moreover, COFs can improve the functionalities
and properties of other materials when they are utilized as
coatings or additives. The increasing amount of research in the
characterization and synthesis of COFs can lead to unlocking
its full potential for commercial applications.

8. HPS QDS@MOFS-COFS BASED MATERIALS
8.1. HPs QDs@MOFs. HPs QDs have emerged as

promising materials for optoelectronic devices due to their
excellent photophysical properties such as narrow emission line
width, tunable bandgap, and high PLQY. However, their
environmental sensitivity and stability are huge problems for
large-scale applications. To overcome these challenges,
researchers encapsulated HPs QDs within MOFs which give
protection against heat, moisture, and oxygen. This serves as a
key to the long-term performance of optoelectronic devices.137

Furthermore, the high porosity of MOFs leads to improved
diffusion and charge transport, which provides reduced
recombination rates and enhanced charge carrier dynamics.
There are also various synthesis techniques for the develop-
ment of HPs QDs@MOFs. The most used method is the in
situ growth of MOFs around already prepared HPs QDs. This
approach generally involves the addition of the organic linkers

Figure 6. Overview of the applications, morphology, properties, and synthesis of the COFs.
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and metal ions to HPs QDs containing solution and then
controlled crystallization to prepare the MOF structure around
HPs QDs.138 Another approach is the coprecipitation of HPs
QDs precursors, organic ligands, and metal ions in one
solution which allows the simultaneous synthesis of HPs QDs
and MOFs to prepare a well-defined hybrid.139 Another
approach is template-assisted growth in which preformed HPs
QDs are embedded into presynthesized MOFs by chemical or
physical methods.140 The last one is postsynthetic encapsula-
tion which involves the diffusion of HPs QDs into the
preformed MOF pores in a suitable solvent. These techniques
require careful control over reaction conditions like reaction
time, solvent composition, and temperature to get the desired
structure of hybrids.141 MOFs/HPs QDs have shown their
potential and flexibility in many applications such as sensor
photocatalysis, decryption/encryption, water purification,
adsorption, LEDs, storage, pollutant degradation, and solar
cells. In photocatalysis, MOFs/HPs QDs have emerged as
effective catalysts for several reactions due to their tunable
bandgap and large surface area which allows them to effectively
absorb light and produce charge carriers in photocatalytic
reactions involving organic pollutant degradation, CO2
conversion, and hydrogen generation through water splitting.
Wang et al. prepared Cs3Bi2I9(QDs)@NH2-UiO-66 for
enhanced photocatalytic hydrogen production and light
harvesting.142 As sensors, HPs QDs@MOFs offer high
sensitivity and selectivity towards specific analytes due to
strong fluorescence signals upon interaction with the target
analyte, which is applied in the detection of various gases,
heavy metals, and biomolecules. Very recently, a research team
ma d e a h i g h - p e r f o rm a n c e s e n s o r b y u s i n g
CH3NH3PbBr3(QDs)@ZIF-8 for monitoring aflatoxin.143

Additionally, solar cells and LEDs benefit from the HPs QDs
due to their excellent optoelectronic properties. In this regard,
Zhao and his team utilized CsPbX3(QDs)@ZIF-8 for bright
white LEDs which demonstrated high stability.144 These
materials can be used as active layers in photovoltaic devices
and light-emitting diodes to enhance their efficiency and
performance. Significant progress has been made in under-

standing and utilizing HPs QDs@MOFs. However, there are
undeniably many advanced applications that have yet to be
discovered.145

8.2. HPs QDs@COFs. The development of HPs QDs@
COFs has emerged as a promising area of research due to their
exceptional properties and potential applications, as shown in
Table 7 and Figure 7. COFs are highly ordered, crystalline
porous materials composed of organic building blocks
connected by covalent bonds. On the other hand, HPs QDs
are nanoscale semiconductor crystals with excellent optoelec-
tronic properties. The hybrid structure is formed by
encapsulating HPs QDs within the pores or frameworks of
COFs. This enhances the stability and performance of HPs

Table 7. Examples of HPs QDs@MOFs-COFs-Based Materials and Their Applications

HPs QDs@MOFs-
COFs type Synthesis method Nature Applications Output Ref.

CsPbX3/MOF-5 In-situ growth in
presynthesized MOF

HPs QDs/
MOF

Optoelectronic High photo and thermal stability 137

MAPbBr3@UiO-66 In-situ HPs QDs@
MOF

Encryption/decryption High PLQY and tunability 138

CsPbBr3@PCN-
333(Fe)

Sequential deposition
approach

HPs QDs@
MOF

Photocatalysis and cathodic Improved cycling stability 140

CsPbX3@MOF In-situ growth in
presynthesized MOF

HPs QDs@
MOF

Displays, solar cells, photodetectors,
and lasers

High PLQY and adsorption 141

Cs3Bi2I9@NH2-UiO-
66

Postsynthesis HPs QDs@
MOF

Hydrogen production and light
harvesting

High hydrogen production rate 142

CH3NH3PbBr3
@ZIF-8

In a simple solution approach HPs QDs@
MOF

Sensors High sensitivity and selectivity 143

CsPbX3@ZIF-8 Postsynthesis HPs QDs@
MOF

Bright white LEDs High stability 144

CsPbX3@COF-SH In-situ passivation HPs QDs@
COF

Optoelectronic High operating stability and showed
PLQY 81.5%

147

δ-CsPbI3@TaPt-TP-
COF

In-situ HPs QDs@
COF

PHE High PHE rate and stability 148

CsPbBr3@COF-V Postsynthesis HPs QDs@
COF

Zn-air batteries and sensors High output voltage (1.556 V) and
performance

149

CH3NH3PbBr3@COF In-situ growth HPs QDs@
COF

LEDs High water stability 150

Figure 7. Overview of the applications, morphology, properties, and
synthesis of HPs QDs@MOFs-COF-based materials.
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QDs by preventing surface degradation and aggregation.146

Also, they provide synergistic effects which lead to enhanced
functionalities and properties. For the synthesis of COFs/HPs
QDs, various methods are used for COF preparation, e.g.,
microwave-assisted, solvothermal, etc., and HPs QDs are
prepared separately by solution-based techniques like the
ligand-assisted or hot-injection approach. Finally, encapsula-
tion is done by the postsynthetic method in which HPs QDs
are added to a solution containing COFs and given time for
HPs QDs to self-assemble in the COF structure. The second
technique is in situ growth where precursors of COFs and HPs
QDs are added in the same reaction mixture for simultaneous
formation and growth of HPs QDs in COF structures.147

COFs/HPs QDs have emerged as an efficient material for
several applications such as catalysis, energy storage, and
optoelectronics. Furthermore, HPs QDs improve the charge
transfer, while the porosity of COFs gives a high surface area

for catalytic reactions that make them appropriate for catalytic
applications like electrocatalysis and photocatalysis. Notably,
Yuan et al. prepared δ-CsPbI3(QDs)@TaPt-TP-COF for PHE
which showed a high PHE rate and stability.148 HPs QDs@
COFs also find applications in energy storage devices such as
supercapacitors and batteries. As HPs QDs can improve charge
storage and enhance device performance, on the other hand,
the highly porous structure and large surface area of COFs
increase the ion transport and energy storage capacity. Adding
more, Xiao and co-workers synthesized CsPbBr3(QDs)@
COF-V and used it for Zn-air batteries in diagnostic sensors.149

The unique optical properties of HPs QDs combined with the
high surface area and stability of COFs make these hybrids
promising materials for optoelectronic devices. They can be
used in LEDs, photodetectors, and solar cells to enhance the
device's performance and stability. In this regard, the
researchers used CH3NH3PbBr3(QDs)@COF for LEDs

Table 8. Examples of the HPs QDs@MOFs-COF-Based Material Applications

HPs QDs@MOFs-COFs type Synthesis method Nature Applications Output Ref.

CsPbBr3@Cu-TCPP In-situ growth HPs QDs@2D-
COF

Photocatalytic CO2 reduction Improved electron−hole
separation

151

MAPbI3@PCN-221(Fex) Post synthesis HPs QDs@Fe
based MOF

Photocatalytic CO2 conversion and
reduction

CH4 and CO with 66% and 34%
conversion rates

152

MAPbBr3(QDs)@MA-Mn(HCOO)3 Mechanochemical HPs QDs@MOF Photoelectrochemical activities High stability 153
CsPbBr3@ZIF-67 Facile in situ HPs QDs@MOF Photocatalytic CO2 reduction High catalytic activity 154
Cs2AgBiBr6@Ce-UiO-66-H In-situ LFHPs QDs@

MOF
Photocatalytic CO2 reduction and
capturing

High reduction rates, stability,
and nontoxicity

155

CsPbBr3/Cs4PbBr6@COF Simple solution based HPs QDs@COF Photocatalytic degradation Recyclability up to six cycles 156
CH3NH3PbBr3@MOF-5 Facile two-step HPs QDs@MOF Metal ion and temperature detection

and future heavy metal remediation
High thermal and water stability 157

CsPbX3@MOF Facile two-step in situ
growth

HPs QDs@MOF Metal ion detection and future heavy
metal remediation

High stability 158

MAPb(Br/I)3, MAPbCl3@Y346 Coprecipitation two-
step in situ growth

HPs QDs@MOF Photoredox catalysis and photocatalytic
conversion

High stability 159

MAPbBr3@TAPT-DMTA In-situ HPs QDs@COF Wide future Structural stability 160
CsPbX3@AMOF-1 Mechanochemical

postsynthesis
HPs QDs@MOF Photovoltaic and optoelectronic Good processability and

stability
161

CsPbBr3@ZIF-8 Mechanochemical HPs QDs@MOF Photocatalytic H2 evolution 19.63 μmol·g−1 H2 productivity
in 2.5 h

162

Cs(Pb:Pt)Br3 in Ni-MOF Simple solution-based
in situ growth

HPs QDs@MOF Photocatalytic H2 evolution Good charge transfer and
enhance photothermal
stability

163

MAPbBr3@UiO-66 In-situ growth HPs QDs@Co-
doped Ti-MOF

Photovoltaic and light-emitting High PLQY of 43.3% 164

HP@Co-doped Ti-MOF Solvothermal HPs QDs@MOF PSCs High surface area and electron
transport

165

CsPbBr3@PCN-333(Fe) Sequential deposition HPs QDs@Fe
based-MOF

Photoassisted Li−O2 batteries and
photocatalytic CO2 reduction

Enhanced cycling stability 166

CsPbX3@ZJU-28 In-situ growth HPs QDs@MOF Multifunctional applications like
batteries, LEDs, etc

Better stability and optical
properties

167

CH3NH3PbBr3 Solution based HPs QDs Gas sensing High PLQY 168
MAPbBr3@In-pdda-1,2 In-situ growth HPs QDs@MOF Detection Stable and tunable luminescence 169
EDAPbCl4@ZIF-67 In-situ growth HPs QDs@MOF Electrochemical sensor The detection limit of 15 μM 170
TpPa-1/Cs2PdBr6 Post synthesis HPs QDs@2D-

COF
NO2 detection High sensitivity and selectivity 171

CsPbBr3/HZIF-8 In-situ growth HPs QDs/MOF Cu(II) detection Good stability under UV light
and moisture

172

CsPbBr3@ZIF-8 Post synthesis HPs QDs@MOF NH3 detection High stability and sensitivity
with a 16 ppm detection limit

173

HP@[(TPA)1(TPhT)1]−C=N‑ In-situ HPs QDs@2D-
COF

PSCs Stability over 90% 174

(FAPbI3)0.83(MAPbBr3)0.17(CsPbI3)0.05@
Car-ETTA

High-temperature
solution based

HPs QDs@COF PSCs Efficiency up to 19.8% 175

HP@MOF-derived ZnO Coordination
reaction

MOF-derived
ZnO-based
PSCs

PSCs Efficient electron extraction and
light harvesting

176

Cs3Cu2I5@MOF-74 Room temperature LFHPs QDs@
MOF

Optoelectronic High stability and nontoxicity 177
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which demonstrated improved water stability.150 The unique
combination of HPs QDs@COFs provides enhanced proper-
ties and stability, making them attractive materials for future
technological advancements.

9. APPLICATIONS OF HPS QDS@MOFS-COF-BASED
MATERIALS

This section highlights the potential applications of HPs
QDs@MOFs-COF-based materials such as CO2 conversion,
hydrogen generation, gas sensing, pollutant degradation,
batteries, and solar cells as shown in Table 8 and Figure 8.

9.1. CO2 Conversion. CO2 conversion is a crucial area of
research and development aimed at mitigating climate change
and utilizing carbon dioxide as a valuable resource.178,179

However, perovskites are hardly reported for CO2 conversion
due to their instability and less active sites.180 Coincidently,
HPs QDs@MOFs-COFs hybrids are emerging as potential
materials in various applications related to CO2 conversion,
including photocatalysis, electrochemical reduction, and CO2

capture due to their efficient and sustainable approaches to
addressing the global challenge of CO2 emissions as shown in
Figure 9.181

9.1.a. Photocatalytic CO2 Conversion. One of the key
applications of HPs QDs@MOFs-COFs hybrids in the CO2
conversion is photocatalysis. These materials can act as
efficient photocatalysts for the conversion of CO2 into value-
added chemicals or fuels using solar energy.182 The HPs
QDs@MOFs-COFs can absorb a broad range of solar
radiation due to their tunable bandgaps, allowing for efficient
light harvesting. The absorbed photons generate electron−hole
pairs, which can then participate in various redox reactions to
convert CO2 into useful products such as CH4, formate, or
methanol.183,184 The MOF or COF frameworks provide a
stable and porous structure that facilitates the adsorption and
activation of CO2 molecules, enhancing the overall efficiency of
the photocatalytic process. Notably, Zhang et al. prepared
CsPbBr3(QDs)@2D-Cu-TCPP with boosted electron−hole
separation for photocatalytic CO2 conversion and reduction.

151

Additionally, Wu and his research team synthesized the
MAPbI3(QDs)@PCN-221(Fex) photocatalyst and used it for
CO2 reduction to CH4 and CO with 66% and 34% conversion
rates.152

9.1.b. Electrochemical CO2 Conversion. Another applica-
tion of HPs QDs@MOFs-COFs hybrids in CO2 conversion is
electrochemical reduction. These hybrid materials can be used
as catalysts in electrochemical cells to convert CO2 into
valuable chemicals or fuels using electricity as an energy
source.185 The HPs QDs@MOFs-COFs can serve as efficient
electrocatalysts due to their high surface area, abundant active
sites, and excellent charge transport properties. The structure
of COFs or MOFs gives conductivity and stability, which
allows the activation and adsorption of CO2 molecules,
improving the electrochemical reduction. Products like CO,
ethylene, and formic acid can be synthesized by carefully
controlling the structure and composition of hybrids. Notably,
a team of researchers manufactured MA-Mn(HCOO)3/
MAPbBr3(QDs) and utilized them for photoelectrochemical
activities with improved stability.153

9.1.c. CO2 Capture. In addition to CO2 conversion, HPs
QDs@MOFs-COFs hybrids can also be utilized for CO2
capture. These materials can selectively adsorb CO2 from
flue gas or other emission sources, enabling its efficient capture
and subsequent storage or utilization. The porous structures of
MOFs and COFs provide a large surface area and high

Figure 8. HPs QDs@MOFs-COFs-based materials applications.

Figure 9. Schematic diagram of photocatalytic, electrochemical CO2 conversion, and CO2 capture through HPs QDs@MOFs-COFs hybrids.
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adsorption capacity, allowing for the effective capture of CO2
molecules. HPs QDs embedded within the frameworks can
further enhance the CO2 capture performance by providing
additional adsorption sites and facilitating the diffusion of the
CO2 molecules within the materials. The captured CO2 can
then be released through thermal or pressure swing desorption
for further utilization or sequestration.154 Ding et al. prepared
Cs2AgBiBr6(QDs)@Ce-UiO-66-H for outstanding photocata-
lytic CO2 reduction and capturing.155

9.2. Pollutant Degradation. Pollutant degradation is very
needed nowadays to mitigate the harmful effects of pollutants
on human health, ecosystems, and the environment.186,187 To
overcome these shortcomings, HPs QDs@MOFs-COFs
hybrids have demonstrated great potential in the degradation
of both organic and inorganic pollutants.188,189 Their unique
combination of MOFs or COFs with HPs QDs allows for
synergistic effects that enhance pollutant degradation through
mechanisms such as photocatalysis, adsorption, oxidation, and
ion exchange, as shown in Figure 10.
9.2.a. Organic Pollutants. HPs QDs@MOFs-COFs have

been extensively studied for the degradation of various organic
pollutants.190 These materials can effectively degrade organic
pollutants through different mechanisms such as photo-
catalysis, adsorption, and oxidation.191 In photocatalysis,
these hybrid materials can act as efficient photocatalysts
under visible light irradiation.192 HPs QDs exhibit strong
absorption in the visible range, allowing them to generate
electron−hole pairs upon light excitation. These charge carriers
can then react with organic pollutants adsorbed on the surface
of MOFs or COFs, leading to their degradation into harmless
byproducts. Moreover, MOFs and COFs possess high surface
areas and well-defined pore structures, which make them
excellent adsorbents for organic pollutants. By encapsulation of
HPs QDs within these frameworks, the hybrid materials can
combine the adsorption capacity of MOFs or COFs with the

photocatalytic activity of QDs. This synergistic effect enhances
the removal efficiency of organic pollutants from contaminated
water or air.193 HPs QDs@MOFs-COFs can also promote the
oxidation of organic pollutants through the generation of ROS.
Under light irradiation, the excited QDs can transfer electrons
to molecular oxygen, producing ROS such as hydroxyl radicals
(•OH) or superoxide radicals.194 These ROS are highly
reactive and can effectively oxidize organic pollutants, breaking
them down into less harmful substances. Notably, Kour et al.
used CsPbBr3/Cs4PbBr6@COF for photocatalytic methyl
orange degradation which demonstrated enhanced recyclability
for up to six cycles.156

9.2.b. Inorganic Pollutants. In addition to organic
pollutants, HPs QDs@MOFs-COFs have also shown promise
in the degradation of various inorganic pollutants. The unique
properties of these hybrid materials enabling them to efficiently
remove and degrade inorganic pollutants through different
mechanisms.157 Similar to the degradation of organic
pollutants, the photocatalytic activity of hybrid materials can
be harnessed for the degradation of inorganic pollutants.195

Under light irradiation, HPs QDs@MOFs-COFs generate
charge carriers that can react with inorganic pollutants, leading
to their degradation or transformation to less toxic forms.
MOFs and COFs have been widely studied for their
adsorption capabilities towards inorganic pollutants. By
encapsulating HPs QDs within MOFs−COFs frameworks,
the hybrid materials can combine the high adsorption capacity
of MOFs or COFs with the photocatalytic activity of QDs.
This allows for the efficient removal and degradation of
inorganic pollutants from contaminated environments.196

Moreover, some MOFs and COFs possess ion exchange
properties, which can be utilized for the removal of specific
inorganic pollutants.197 By incorporation into these frame-
works, the hybrid materials can enhance their ion exchange
capabilities and improve the removal efficiency of targeted

Figure 10. Schematic diagram of pollutant degradation through HPs QDs@MOFs-COFs hybrids.
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inorganic pollutants. Very recently, Ahmed et al. prepared
CsPbX3(QDs)@MOF for metal ion detection and future
heavy metal remediation, which showed good stability.158

9.3. Hydrogen Generation. Hydrogen gas is considered a
clean and renewable energy carrier, as it can be produced from
various sources such as water, biomass, or even waste
materials.198,199 However, the current methods for hydrogen
production often rely on fossil fuels or expensive noble metal
catalysts, which are not sustainable or cost-effective in the long
run.200 Thus, it is the need of the hour to develop alternative
catalysis that can help in hydrogen production from
inexpensive and abundant resources.201 In this regard, HPs
QDs@MOFs-COFs have been seen as an effective hydrogen
production approach, as shown in Figure 11. HPs QDs are

semiconductor nanocrystals with unique optoelectronic
properties, and encapsulating them within COFs-MOFs
makes them more stable and enhances their catalytic activity.
HPs QDs@MOFs-COFs provide various benefits in hydrogen
generation.159 For example, the COFs-MOFs porous structure
gives abundant active sites and high surface area for catalytic
reactions that lead to the efficient activation and adsorption of
reactant molecules involved in hydrogen production. Second,
COFs-MOFs protect HPs QDs from degradation and improve
stability under harsh conditions. Likewise, HP QD properties,
such as high absorption coefficient and tunable bandgap,
facilitate effective light harvesting for use in photocatalytic
hydrogen production. So, HPs QDs@MOFs-COFs show
improved charge transport and light absorption leading to
enhanced photocatalysis and overall high hydrogen gener-
ation.160 Hydrogen generation through HPs QDs@MOFs-
COFs can be done by several approaches depending on the
experimental conditions and specific materials. One of the
common pathways is photocatalytic water splitting in which
absorbed photos produce electron−hole pairs in HP QDs.
These charge carriers are then transferred to MOFs-COFs,
where they take part in redox reactions with H2O molecules to
produce H2 gas.161 Another feasible pathway involves the
activation of small molecules like formic acid or alcohols that
can work as a H2 source. The MOF/COF catalysts can
facilitate the dehydrogenation reactions of these molecules,
releasing hydrogen gas as a byproduct. The encapsulated HPs
QDs can enhance the catalytic activity by promoting charge
transfer and facilitating the regeneration of active sites within

the MOF/COF matrices. Notably, a group of researchers
showed HP QDs@MOF ability for clean energy production
and LEDs.202 Feng and his co-workers prepared photocatalyst
CsPbBr3@ZIF-8 for hydrogen evolution, which demonstrated
19.63 μmol·g−1 H2 productivity in 2.5 h.162 Moreover, Zhang
et al. confined Cs(Pb: Pt)Br3 QDs in Ni-MOF pores to
overcome the poor charge transfer and enhance photothermal
stability to get higher hydrogen production.163 Further
research and development in this field are needed to optimize
the design and synthesis of MOF/COF encapsulated HPs QDs
for practical applications in sustainable hydrogen production.

9.4. Batteries. HP QDs@MOFs-COFs have shown great
potential in the field of batteries. This hybrid material offers
several advantages that can enhance the performance and
efficiency of batteries, as shown in Figure 12. One of the HPs

QDs@MOFs-COFs applications is in the field of batteries due
to COFs-MOFs providing a large surface area for the
deposition of HPs QDs, allowing more active material loading
in the battery that increases energy storage capacity.164

Moreover, the large surface area provides efficient ion diffusion
and electrolyte penetration, followed by enhanced charge/
discharge rates. HPs QDs@MOFs-COFs also improve the
cycling performance and stability of batteries by preventing
degradation under harsh conditions like oxygen, heat, and
moisture.165 Additionally, the use of LFHPs QDs can also
enhance the safety of batteries. In this regard, Qiao et al.
prepared CsPbBr3(QDs)@PCN-333(Fe) to improve the
stability of photoassisted lithium oxide batteries with enhanced
cycling stability.166 Ren and his team synthesized
CsPbX3(QDs)@ZJU-28 for multifunctional applications like
batteries, LEDs, etc., with better stability and optical
properties.167 For solar cells or batteries, lead-based HPs
materials are widely studied due to their better efficiency but
are toxic to the environment. Thus, toxicity can be eliminated
by using LFHPs QDs. Lastly, these materials have the potential

Figure 11. Schematic diagram of hydrogen generation through HPs
QDs@MOFs-COFs-based materials.

Figure 12. Schematic diagram of a battery consisting of HPs QDs@
MOFs-COFs-based materials.
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to revolutionize the field of battery technology by addressing
key challenges and improving the overall performance.

9.5. Gas Sensing. Gas sensing is a crucial technology used
for detecting and monitoring the presence of various gases in
the environment. It finds applications in diverse fields such as
industrial safety, environmental monitoring, healthcare, and
homeland security. The ability to accurately detect and
quantify different gases is essential for ensuring human safety
and environmental protection. Despite the great potential of
HP QDs as sensing materials, researchers are still dealing with
the stability and water resistance challenges in this field. Singh
et al. prepared CH3NH3PbBr3(QDs) for gas sensing, but they
demonstrated instability and decreased PL intensity in the
presence of NH3.

168 That is why encapsulating HPs QDs
within MOFs or COFs has emerged as a novel approach to
enhance the performance of gas sensors. The combination of
HPs QDs with MOFs or COFs offers several advantages,
including improved stability, enhanced optical properties, and

increased surface area for gas adsorption.169 This hybrid
material system has shown huge potential for gas-sensing
applications, particularly in the detection of toxic gases,
environmental pollutants, and VOCs as shown in Figure 13.
One example of the application of HPs QDs@MOFs-COFs in
gas sensing is the detection of the oxide boron ligands of NO2.
NO2 is a highly toxic gas that is primarily emitted from vehicle
exhaust and industrial processes, causes respiratory problems,
and contributes to air pollution. Conventional NO2 sensors or
detectors frequently suffer from low selectivity and sensitiv-
ity.170 However, gas sensor performance can be improved by
using LFHPs and QDS@MOFs-COFs. HPs QDs can perform
as effective electron acceptors that improve the charge
transport between the sensing material and the target gas
molecules. This allows higher selectivity and sensitivity towards
NO2 detection. Additionally, a group of researchers prepared
TpPa-1(2D-COF)/Cs2PdBr6 for NO2 detection with high
sensitivity and selectivity.171 The detection of VOCs is also an

Figure 13. Schematic diagram of gas sensing through HPs QDs@MOFs-COFs-based materials.

Figure 14. Schematic diagram of the solar cell consisting of HPs QDs@MOFs-COFs-based materials.
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example of gas sensing. VOCs are organic chemicals that can
easily vaporize at ambient temperature, are mostly found
indoors, and have harmful effects on human health. HPs
QDs@MOFs-COFs have demonstrated great potential in
VOC detection, e.g., benzene, toluene, and formaldehyde. HPs
QDs provide efficient optical properties for signal transduction,
while COFs/MOFs provide many active sites for gas
absorption due to their porosity and large surface area. In
return, this increases the selective and sensitive detection of
VOCs at low concentrations.172 Moreover, HPs QDs@MOFs-
COFs can also be used for the detection of other gases such as
H2S, CH4, CO2, and NH3. In this regard, Ahmad et al.
synthesized CsPbBr3(QDs)@ZIF-8 for NH3 detection which
displayed high stability and sensitivity at ambient conditions
with a 16 ppm detection limit.173 Every gas has its own unique
properties and poses several challenges for sensing. However,
by modification of the structure and composition of sensing
materials, it is possible to make gas sensors with high specificity
and performance for different target gases.

9.6. Perovskite Solar Cells. The need for LFHPs QDs@
MOFs-COFs in the field of solar cells is rising due to the quest
to overcome the challenges related to lead-based PSCs.203

LFHPs QDs@MOFs-COFs materials can also enhance the
performance of PSCs by improving their stability, versatility,
and efficiency of solar cells. One of the key pros of utilizing
HPs QDs@MOFs-COFs in solar cells is their capability to
improve light absorption. HPs QDs exhibit efficient absorption
in visible light, as 50% of sunlight is visible. On the other hand,
COF/MOF porous structure and high surface area give a large
interface for QD deposition which leads to effective light
harvesting. Figure 14 demonstrates the improved photocurrent
generation and light absorption in solar cells achieved by the
resulting hybrid.204 Moreover, COFs or MOFs also work as
hole transport layers (HTLs) or as electron transport layers
(ETLs) in solar cells, which play an important role in effective
charge transport and separation. This led to enhanced device
performance and electronic properties such as high hole
mobility or electron affinity.174 COFs/MOFs also provide
stability to HPs QDs against oxygen and moisture, preventing
their degradation and providing effective charge transport.
Other than enhancing the stability and performance of solar
cells, COFs or MOFs are also used in the fabrication of
transparent and flexible devices such as building-integrated
photovoltaics and flexible electronics. By integrating COFs or
MOFs into the structure of the device, it is possible to achieve
bendable, semitransparent, and lightweight solar cells. Notably,
a t e a m o f r e s e a r c h e r s s y n t h e s i z e d ( F A P -
bI3)0.83(MAPbBr3)0.17(CsPbI3)0.05-based PSCs by using Car-
ETTA(COF) which showed efficiency up to 19.8%.175 Also,
Zhang and his co-workers prepared MOF-derived ZnO-based
PSCs with efficient electron extraction and light harvesting.176

LFHPs QDs@MOFs-COFs materials offer improved stability,
lower toxicity, and enhanced environmental sustainability,
making them a promising avenue for the future development of
efficient and eco-friendly solar energy technologies. Zhang et
al. confined Cs3Cu2I5(QDs) in MOF-74 for optoelectronic
applications with high stability and nontoxicity.177 Further
research and development in this field are expected to unlock
the full potential of HPs QDs@MOFs-COFs in solar cell
applications.

10. CONCLUSION
Perovskites are revolutionary materials, and their potential lies
in numerous industries as they have cost-effective synthesis and
versatility with good properties. Still, these materials have some
limitations and environmental issues that the structure can
address. and coupling/encapsulating with other materials like
COFs or MOFs because MOFs or COFs have simple
preparation, high chemical/thermal stability, large surface
area, and low density. In this review, we summarized the
importance, properties, morphology, synthesis, and applica-
tions of perovskites, HPs, LFHPs, HPs QDs, MOFs, COFs,
and HPs QDs@MOFs-COFs-based materials. After providing
a comprehensive overview, some potential applications of HP
QDs@MOFs-COFs-based materials in the fields of CO2
conversion, pollutant degradation, hydrogen generation,
batteries, gas sensing, and solar cells are discussed. Finally,
some current trends, future outlooks, and challenges regarding
QDs@MOFs-COFs-based materials and their applications are
discussed. Moreover, HP QDs@MOF-COFs are most
competitive with state-of-the-art materials due to their
adjustable optoelectronic characteristics and potential for
cost-effective manufacture in fields including LEDs, photo-
voltaics, sensors, and catalysis. LFHP QDs@MOF-COF
research is anticipated to advance in the upcoming years
because of developments in material design, synthesis
methods, and knowledge of structure−property connections.
Advancements focused on augmenting stability, optimizing
efficacy, and diminishing toxicity are anticipated to facilitate
the expansion of these materials’ uses in diverse sectors.
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