
TRYPANOSOMA cruzi is the etiologic agent of Chagas’
disease, a parasitic disease of enormous importance
in Latin America. Herein we review the studies that
revealed the receptors from innate immunity that are
involved in the recognition of this protozoan para-
site. We showed that the recognition of T. cruzi and
its components occurs through Toll-like receptors
(TLR) 2/CD14. Further, we showed in vivo the
importance of the myeloid differentiation factor
(MyD88), an adapter protein essential for the func-
tion of TLRs, in determining the parasitemia and
mortality rate of mice infected with T. cruzi . We also
discuss the implications of these findings in the
pathophysiology of Chagas’ disease.
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Introduction

Over 100 years ago, Ilya Metschnikoff1 reported that
the phagocytes were responsible for the innate
immune response. At the same time, Paul Ehrlich

reported the role of antibodies in the acquired
immune response.2 In 1909 both researchers received
the Medicine Nobel Prize for their contributions,
which had major implications in the understanding

of how the immune system works. Since then, the
acquired immune response, present only in verte-
brates, has been the object of extensive research,
resulting in vast knowledge in this field of the

immunology.3 On the other hand, the innate immune
response, present in all live organisms, was largely
neglected and until recently was only poorly under-

stood.
By definition, inflammation is a sum of increased

flow in local blood vessels and increased vascular
permeability, plus the release of substances at the site
of inflammation causing pain and sometimes loss of

function of determined vascularized tissues.4 The
inflammation is largely influenced by the innate
compartment of the immune system, for a long time
considered an ‘unspecific’ response of the host to an

internal or external stimulus.4 For instance, cytokines
are endogenous mediators of inflammation, whereas
an exogenous microorganism or their molecules that

induce the production of cytokines are considered
exogenous mediators of inflammation.4

The discovery of Toll and Toll-like receptors

In 1985 Anderson et al .5,6 reported that the Toll
receptors were responsible for the establishment of
dorso-ventral polarity in the Drosophila embryos.
Eleven years later, Lemaitre et al .7 relate Toll recep-
tors with the innate immune response of Drosophila
to fungi infection. Following that, Medzhitov et al .8

and Rock et al .9 described receptors related to the
Toll Drosophila receptors in mammals, and named
them Toll-like receptors (TLRs). There are 10 TLRs
described in mammals to date.8,9 In a broad sense the
TLRs were included in a group of receptors from the
innate immune system that are denominated pattern
recognition receptors (PRR). The PRR recognize
pathogen-associated molecular patterns (PAMPs),
which are microbial targets of the innate immune
system. A PAMP is a highly conserved molecule that is
expressed by a class of microorganisms and not by
host cells, and thus allows the discrimination of the
invasive organism from self-tissues by the host innate
immune system. Soon after the discovery of various
TLRs, a list of counterpart agonists was identified.
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Table 1 presents a list of microbial molecules that act
as TLR agonists.10�20

Ozinsky et al .21 have shown that dimerization
between TLR2 and TLR6 is necessary so the host
cells can effectively respond to peptidoglycan. Later
there was a second report showing that TLR2 may
also dimerize with TLR1.22 Further, Adachi et al .23

described that with the disruption of the myeloid
differentiation factor 88 gene (MyD88) the functions
of IL-1 and IL-18 were lost, and Kawai et al . reported
unresponsiveness of MyD88-deficient mice to endo-
toxin.24 Then it was clear that this adapter protein is
very important to the function of most, if not all,
TLRs.22

Recognition of Trypanosoma cruzi parasites

through TLRs

T. cruzi is the etiologic agent of Chagas’ disease,
which infects 18 million people in Latin America. The
resistance to the existent drugs against this disease is
growing and there is no vaccine against T. cruzi
infection. The symptoms of the T. cruzi -infected
people could vary from one region to another, but
they can have cardiac, gastrointestinal or neurologi-
cal disturbs. Up to 25% from chagasic patients may
develop cardiac, oesophageal and colonic irreversi-
bly pathology. It is estimated that 120 million people
of Latin America are at risk of contracting the
infection (http://www.who.int/tdr/diseases/chagas/
direction.htm).

The T. cruzi recognition and activation of the
innate immune system during infection with this
protozoan parasite could have two main conse-
quences: first, it would be important for the control
of the parasite in the early phase of infection;
and, second, it could promote an excessive inflam-
matory process, through the induction of pro-inflam-
matory cytokines and chemokines, leading to the
characteristic symptoms of acute Chagas’ disease;
like, for example, fever, splenomegaly and myocar-

ditis (http://www.who.int/tdr/diseases/chagas/disea
seinfo.htm).

T. cruzi components responsible for the
activation of the innate immune response

In 2001, we reported the first example of TLR
recognizing a parasite molecule. We described that
T. cruzi -derived glycosylphosphatidylinositol (GPI)
anchors linked to the surface mucin-like glycopro-
teins and free GPI anchors named glycoinositolpho-
spholipids (GIPLs) were recognized through TLR2/
CD14, suggesting that these parasite glycolipids may
be a PAMP associated with protozoan parasites.20 T.
cruzi -derived GPI anchors and GIPLs were pre-
viously shown to have immunostimulatory and im-
munoregulatory properties.25�27 The purified GPI
anchors derived from T. cruzi tripomastigotes were
shown to be potent inducers of nitric oxide, tumor
necrosis factor (TNF)a and interleukin (IL)-12 by
macrophages, in concentrations ranging from 1 to 10
nM.20 The ceramide containing GIPLs were also
shown to activate macrophages (in the range of
mM).28

In vitro , using stable transfected Chinese hamster
ovary cells with a gene reporter, and ex vivo , in
macrophages of TLR2 knockout (KO) mice, we
showed that the recognition of T. cruzi -derived GPI
anchors (and live parasites) was through TLR2-
CD14.20 The ability to trigger TLR2/CD14 from most
T. cruzi -derived GPI anchors was in the range of
0.1�/1.0 mM. Further, the GPI anchors containing
extra galactose residues in the glycan core and
unsaturated fatty acids in the sn-2 position of the
alkylacylglycerolipid showed activity in the range of
1�/10 nM. This activity was essential for the induction
of IL-12, TNFa and NO.

Macrophage signaling and hypothetical
functions of TLRs during infection with T. cruzi

It was also shown in our laboratory that the T. cruzi -
derived GPI anchors trigger in macrophages the

Table 1. Toll-like receptors and their microbial agonists

Author Reference Year Agonist TLR

Poltorak et al. 10 1998 LPS (Escherichia coli) 4
Lien et al. 11 2000 LPS (E. coli) 4
Werts et al. 12 2001 LPS (L. interrogans) 2
Campos et al. 13 2004 LPS and lipid A (B. abortus) 4
Lien et al. 14 1999 Lipoprotein/lipopeptide, ara-lipo-

arabinomannam, S. aureus
2

Takeuchi et al. 15 1999 Peptidoglycan, LTA 2
Hemmi et al. 16 2000 CpG DNA 9
Kurt-Jones et al. 17 2000 Respiratory syncytial virus molecules 4
Hayashi et al. 18 2001 Bacterial flagelin 5
Alexopoulou et al. 19 2001 Double-stranded RNA 3
Campos et al. 20 2001 T. cruzi GPI 2

LPS, lypopolysaccharide; LTA, lypoteichoic acid; GPI, glycosylphosphatidylinositol.
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phosphorylation of mitogen-activated protein kinases
(MAPKs) as well as IkB.29 We propose that during the
initial steps of infection with T. cruzi , molecules such
as the parasite-derived GPI anchors stimulate cells
from the host innate immune system, like dendritic
cells or macrophages (step 1 from Fig. 1), through the
external receptors, like TLR2 (step 2). Today it is
accepted that TLR2 works in dimer,30 with TLR6 or
with TLR1.21 Then, the TLR2/TLR6 or TLR2/TLR1
dimer transduces the signal to MyD88, which recruits
IL-1-receptor-associated kinase (IRAK) (step 3),
which in turn activates TNF-receptor associated factor
6 (TRAF-6) that activates the MAPK pathway,31 and
drives the heterodimer Fos-Jun to the nucleus,
activating the AP-1 complex and activating gene
transcription.32,33 The TRAF-6 will also be responsi-
ble for phosphorylation of and ubiquitination of the
IkB, leaving the nuclear localization signal of NFkB
free, and then driving this transcription factor to the
nucleus34 (step 4). As a consequence, costimulatory
and proinflammatory genes are activated35 (step 5).
At the same time, antigens of T. cruzi are captured
(step 2a) and processed (step 3a). After that, the
innate and adaptive system interacts, with the costi-
mulatory molecules CD80, CD86 and CD40 working
together with the MHC complex, to make the antigen

presentation functional (step 6). Then, the cytokine
IL-12 works to drive the TH0 to TH1 (step 7), which
induces interferon-g (step 8), which in turn stimulates
the effector cells lymphocyte B (step 9) and CD8
(step10) to produce effective antibodies and destroy
the pathogen, respectively (step 11).

The in vivo role of TLRs during infection with T.
cruzi

In vivo36 we observe no major difference between
parasitemia of TLR2 KO and wild-type (WT) mice
infected with T. cruzi . Further, we observe no
difference also in mortality between the infected
WT and TLR2 KO mice. In experiments performed
with MyD88 KO mice, however, we could show that
these mice were more susceptible to T. cruzi , as we
observed higher parasitemia (40,000 tripomastigotes/
5 ml MyD88� /��/10,000 tripomastigotes/5 ml WT)
and greater mortality (100% MyD88� /��/38% WT, by
the 16th day post-infection), as compared with WT
mice.

When we stimulated the macrophages from TLR2
KO or MyD88 KO mice with T. cruzi -derived GPI
anchors, we observed that the production of the
cytokines IL-12 and TNFa and also of nitrite were

FIG. 1. Cell signaling and hypothetical functions of TLRs during infection with T. cruzi. After the external TLR domain
recognizes T. cruzi and/or its molecules (step 1), the Toll/IL-1 receptor (TIR) domain (step 2) transduces the signal, which is first
received by the MyD88 adaptor protein and then occurs a cascade (step 3) via IRAK, TRAF-6, IKK, IkB degradation, NFkB
driving to the nucleus (step 4) and activating genes like IL-12 and costimulatory CD80, CD86 and CD40 (step 5). Another via
after TRAF-6 is a cascade via MAPK, activating the Jun-Fos heterodimer, which drives to the nucleus, binding DNA and
activating transcription. At the same time, T. cruzi antigens are captured (step 2a), processed (step 3a) and presenting to TH0
cells (step 6), in an interaction from MHC with costimulatory molecules, to obtain an effective antigen presentation. Following,
the IL-12 drives the response to TH1 (step 7), which induces interferon (IFN)-g (step 8), which stimulates B cells (step 9) to make
antibodies and induces CD8 (step 10) to eliminate the parasites (step 11).
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completely abrogated, as compared with WT mice.
However, when we used the whole parasite as
stimulus, we observed a lack of response in macro-
phages from MyD88 KO mice, but only partial
inhibition of cytokines and no effect on nitric oxide
release by macrophages from TLR2 KO mice. We also
showed that the cytokine production by spleen cells
as well as serum levels of cytokines were greatly
reduced in MyD88 KO mice, but not in TLR2 KO
mice, infected with T. cruzi , as compared with
infected WT mice. Therefore, we conclude that the
host innate immune response to T. cruzi infection
requires MyD88, but clearly involves other TLR or
PRR, in addition to TLR2.

More recently, Oliveira et al .37 observed that T.
cruzi -derived GIPL ceramide, in high concentration,
could activate mice response cells through TLR4 in
vitro and in vivo . Further, it was reported that T.
cruzi DNA stimulates macrophage to express IL-12,
TNFa and nitric oxide.38 The receptor involved on
macrophage and dendritic cells activation by T. cruzi
DNA was not defined. Nevertheless, it is reasonable
to assume that this activation process may occur
through TLR9, which is activated by unmethylated
CpG motifs of bacteria DNA.16 This hypothesis is
supported by the fact that T. cruzi DNA has high CG
contents, and that the activity of parasite DNA was
blocked by digestion with DNAse as well as by DNA
treatment with methylase.36

Conclusion

Our results suggest an important role of TLR signaling
pathway in the innate immune response to T. cruzi .
While we found that MyD88 is an essential molecule
for activation of innate immune system during T.
cruzi infection, our findings suggest that more than
one TLR (or PRR) may be involved in this response.

Defining the role of TLRs in the pathophysiology of
infection with T. cruzi , as well as the characterization
of the T. cruzi-derived TLR agonists (e.g. GPI
anchors and DNA), may lead us to develop more
effective adjuvants to be employed in vaccines,
aiming to elicit protective immunity against Chagas’
disease. In addition, drugs that interfere with the TLR
signaling pathways may be proven useful to protect
individuals of excessive activation of cells from the
immune system, and inflammation and consequent
pathological effects observed during acute phase
Chagas’ disease.
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