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Abstract: Over the last few years, various industries have released wastewater containing high
concentrations of dyes straight into the ecological system, which has become a major environmental
problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries
has created an alarming situation in which further deterioration to the environment has been caused
due to substances being left in treated wastewater, including dyes. The application of activated
carbon has recently been demonstrated to be a highly efficient technology in terms of removing
methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood
products, are excellent sources of bio-waste for MB remediation since they are extremely efficient,
have high sorption capacities, and are renewable sources. Despite the fact that commercial activated
carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of
its comparatively high cost, which has prompted researchers to investigate alternative sources of
adsorbents that are non-conventional and more economical. The goal of this review article was to
critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for
MB’s removal, as well as related parameters influencing the performance of this process. The review
also highlighted the processing methods developed in previous studies. Regeneration processes,
economic challenges, and the valorization of post-sorption materials were also discussed. This review
is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents,
highlighting the accelerating need for the development of low-cost adsorbents and functioning as a
precursor for large-scale system optimization.

Keywords: methylene blue; activated carbon; agro-waste; wastewater; adsorption; cationic dyes;
low-cost adsorbents; bio-waste

1. Introduction

The pervasiveness of pollutants in the ecosystem is often linked to population growth
and anthropogenic activity [1]. Water resource contamination is an extremely contentious
issue on a worldwide scale, as it has long-term or even lethal consequences for living
creatures [2]. Dyes in effluents are a severe issue since they harm many sorts of life [3].
Toxicological and aesthetic issues are intertwined with regard to color dye pollution [4].
According to recent data, approximately 100 thousand commercially dyed products with a
total 7 × 105 tons of yearly production of dyestuff (about 10% of dyes used in industrial
applications) have been released into the aquatic environment [5–7]. The water pollution
issue was first caused by the textile industry, followed by the printing industries, as well as
paper, paint, and leather production companies [8,9]. The amount of textile wastewater
generated per year in the United States, United Kingdom, and China was estimated to be
around 12.4, 1, and 26 million tons, respectively. This is equivalent to 1–10 million liters of
textile wastewater being produced per day [10].
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Over a third of the world’s renewable freshwater resources are used for industrial, res-
idential, and agricultural purposes, and the majority of these activities pollute water with a
wide range of geogenic and synthetic substances, including dyes, pesticides, fertilizers, ra-
dionuclides, and heavy metals. [11,12]. As a result, it is not surprising that water poisoning
induced by a variety of human activities has created alarm regarding public health problem
on a global scale. Dye-induced water pollution is one of the most serious pollutants since it
alters water. Even at extremely low quantities, water retains its natural look [13,14]. These
industries consume a vast proportion of the coloration and produce dye-laden effluent
that is eventually released straight into the environment, posing significant environmental
problems due to the dyes’ toxic and unpleasant properties [15].

MB is much more commonly used dye and is a heterocyclic molecule with the chemical
formula C16H18N3SCl. Initially, it was manufactured as a synthetic aniline dye for textiles
in 1876 by Heinrich Caro of Badische Aniline and Soda Fabrik. Its utility in staining and
inactivating species of microbes was also revealed [16]. Additionally, it was identified in
1932 to be a cyanide and carbon monoxide antidote [17]. The ingredient is a dark green
powder that causes water to turn blue at room temperature. It absorbs the most visible
light at around 665 nm. MB is known to be an extensively explored dye because of its
favorable and negative qualities. Its application has a wide range, with it being used in
the pharmaceutical and textile industries as a coloring, as well as in the plastic, tannery,
cosmetics, paper, food, and medicinal industries, and it is also used as a staining agent
for the classification of microorganisms [18,19]. On the other hand, MB has garnered
considerable attention due to its antagonistic nature, which has a detrimental effect on
human health and the environment. This dye’s adverse effects include skin irritation, as
well as mouth, throat, and stomach irritation; in addition, esophagus irritation, nausea,
gastrointestinal pain, headache, diarrhea, vomiting, fever, dizziness, and high blood pres-
sure are all common side effects of this dye [20]. The discharge of colored waste without
sufficient treatment can cause severe environmental effects, including an increase in toxicity
via an increase in water bodies’ chemical-oxygen demand (COD) [21]. Due to the fact that
synthetic dyes in wastewater cannot be effectively decolored using currently available
technologies as a result of their synthetic roots and predominantly aromatic structures,
which are not biodegradable, the need to remove color from waste effluents has grown
in importance. Several strategies for removing MB from waste water have been studied,
including enzymatic procedures, photodegradation reactions, electrochemical extraction,
membrane filtration, physical adsorption, and chemical coagulation [22,23].

Adsorption as a physico-chemical treatment has been identified as one of the most
appropriate methods and has been extensively explored for MB elimination, with its total
use cases more than doubling in the last decade. The adsorption approach employed a
straightforward procedure with a cheap and plentiful adsorbent, and it was also capable of
achieving a high removal efficiency of MB [24,25]. Additionally, adsorption prevents the
formation of secondary contaminants due to the reactions of the oxidation or degradation
processes of MB [26,27]. As a result, the findings have attracted the interest of numerous
researchers over the last decade.

Most of the recent studies on adsorbent development focus on the application of
carbon-based adsorbents, including magsorbents [28], nano catalyst applications [29], and
the function of all types of carbon-based adsorbents [30] for MB’s removal from wastewater.
To the best of our knowledge, no recent literature has addressed the removal of MB through
the extensive use of bio-waste-derived adsorbents and compared the bio-waste-derived
adsorbents’ characteristics as well as related parameters that influence the performance of
the process. Aiming at the further evaluation of current advances and methods developed
in previous studies, this review also highlights regeneration processes, economic challenges,
and the valorization of post-sorption materials. This article provides new perspectives
for the development of adsorbents, serving as a precursor for large-scale and low-cost
adsorbent applications. Figure 1 depicts the trends in the research on the removal of MB
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from wastewater using carbon-based adsorbent and sources of activated carbon published
between 2008 and 2021.
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2. Carbon Structural Characteristics and Their Relationship to Adsorption Capacity

Carbon’s adsorbent quality is determined by its sorption capacity. The characteristics
of the adsorbent are considered to be the most critical factors that can affect MB’s adsorption,
and include the surface area, pore structure, carbon particle size, surface acidity, and func-
tionality [31–33]. As illustrated in Table 1, carbon adsorbents can be classified as superior
(adsorption capacity >1000 mg/g), excellent (500–1000 mg/g), moderate (100–500 mg/g),
and weak (adsorption capacity 100 mg/g) based on their MB adsorption capacities. The
surface area of carbon adsorbent was reported to be positively correlated with its adsorp-
tion capacity. Nonetheless, not all carbon adsorbents follow this trend, as some have low
adsorption capabilities due to having excessive surface areas. The highest MB adsorption
capacity, exceeding 800 mg/g, was found in adsorbents with large surface areas but small
pore diameters. The MB dimensions of 0.400 × 0.793 × 1.634 nm were reported in water.
In terms of facilitating MB’s diffusion via the adsorbent’s pores, the pore opening size is
critical. At its maximum, carbon was found to have an adsorption capacity of 1791 mg/g, a
surface area of 2138 m2/g, and a pore diameter of 3.33 nm [34]. Interestingly, pores with
dimensions of greater than 6 nm, with total surface areas of 500 m2/g, were reported to
have less adsorption capability than other adsorbents.

Table 1. Structural characteristics and adsorption capacity of adsorbent in relation to the efficiency of
the elimination of MB within the 2008 to 2020 period.

No Adsorbents Surface Area
(m2/g)

Diameter, φ
(nm) Qmax (mg/g) Sources

1 Activated charcoal 4.445–2854 1.0–15.9 0.71–1030 [35–41]
2 Biochar 2.05–2054.49 2.29–20.57 2.06–1282.6 [42–44]

3
Modified activated

carbon and modified
biochar

4.02–1229 1.038–7.477 9.72–986.8 [45–47]

4 Carbon graphics and
modifications 32–295.56 2–50 41.67–847 [45,47–49]

5 Porous Carbon 21–3496 0.74–5.45 8.96–1791 [50–53]
6 Carbon Nanotube 140–558.7 2.19–25 33.4–1189 [49,54–59]
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3. Wastewater Treatment Methods for MB’s Removal

Dye users, industrial entities, and the government should take all appropriate steps in
the treatment of dye effluents in order to improve public health and protect the environ-
ment. In general, industrial wastewater treatment technologies are divided into several
stages, including pre-primary, primary, secondary, and tertiary processes [60]. The initial
one is a preliminary process that is applied for the removal of contaminants (such as pa-
pers, grits, wood, plastics, cloths, etc.) with minimal effort, as well as the comminution
and screening of floating, suspended particles, and oil and grease traps. The following
process is the primary treatment, which includes skimming to remove frothy solids and
flotation and sedimentation to remove settleable inorganic and organic impurities. Sec-
ondary wastewater treatment involves the microbial breakdown of dissolved organic and
colloidal materials, which maintains the waste’s stability [61]. Biological agents are used
in advanced and tertiary treatment (i.e., anoxic, aerobic and anaerobic, facultative, or a
mix of these), chemical (ozonation, fenton reagents, chemical precipitation, ion exchange,
photocatalysis, ultrasound, and solar-driven processes) or physical (sedimentation, mem-
brane filtration, coagulation and flocculation, ultrafiltration, nanofiltration, adsorption,
and reverse osmosis) strategies for treating effluents that are incapable of being removed
during secondary treatment [62–64]. Likewise, during treatment of effluent-containing
dye, there could be substances left in treated wastewater which require post treatment
including the application of bio-waste-derived adsorbent. Previous studies reported on
the disadvantages of various wastewater treatment, including lower efficiency, greater
capital or operating costs, a large amount of sludge production, and high costs of main-
tenance, that make these technologies inappropriate for economic application [65,66]. In
contrast, adsorption technology offers a wide range of techniques due to its cost efficiency,
ease of operation, low energy consumption, simple set up, toughness towards harmful
contaminants, capacity to eliminate all dyes, and great efficiency [67,68]. Furthermore, no
harmful materials are generated as a consequence of using this treatment method. Figure 2
depicts tertiary treatment and adsorption technology as an alternative for MB’s removal
from wastewater.
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Current color removal treatment approaches involve chemical, physical and biological
processes. There are two sorts of dye molecules: chromophores, which provide colors, and
auxochromes, which not only act as a substitute for the chromophore but also increase the
solubility of dye in water, thus increasing its affinity (ability to join) to fibers [69]. Chemical,
physical, and biological remediations are the most often used ways for treating colored
wastewater. These technologies, however, have both advantages and disadvantages. Most
of these traditional procedures are inapplicable on a broad scale because of the high expense
and disposal issues associated with the significant the quantity of sludge produced in the
final treatment process [70].

3.1. Physical Techniques

Membrane filtration, reverse osmosis, electrolysis, and adsorption technology are
classified as physical treatment methods. The main disadvantage of the membrane tech-
nique, in particular, is the short life due to fouling, and thus, frequent maintenance is
needed. As a result, costs associated with periodic chemical cleaning and replacement
have to be considered during the evaluation of its viability economically. The adsorption
procedure is considered to be the most effective way for water purification among all phys-
ical treatments [71]. Adsorption is acknowledged as a potential strategy with substantial
significance in the decolorization process, due to its simplicity in operation and comparably
cheap application. From the point of view of its commercial scale potential, activated
carbon is an extraordinary substance that is sustainable in treating polluted groundwater
and industrial contaminants such as colored effluents. These natural adsorbents have
been studied extensively to recover undesired hazardous chemicals at a relatively low
cost from polluted water [72]. Nevertheless, the application of activated carbon is limited
due to its expensive cost; thus, improvement in terms of development and regeneration is
indispensable. Numerous non-traditional low-cost adsorbents have also been proposed,
including zeolites, clay materials, agricultural wastes, siliceous material, and industrial
waste products, in an attempt to develop more affordable and effective adsorbents [73,74].

3.2. Chemical Techniques

Coagulants and flocculants are the primary agents used in the treatment of dye
wastewater chemically [75]. It is accomplished by adding chemicals to the influent, such
as ferric ion aluminum and calcium, to produce flocs [76]. Moreover, the utilization of
various chemical agents, for instance, ferric sulphate, polyaluminium chloride, and several
organic synthetic polymers, in chemical treatment was previously reported [77,78]. The
combination of more than one coagulant or flocculant could be applied for improving
the removal rates, as suggested by Shi et al. [75]. In a nutshell, the chemical technique is
generally economical and efficient, but the main disadvantage is that chemical cost is high,
and prices fluctuate in the market due to the demand and manufacturing cost. Furthermore,
despite its efficiency, major drawback of this technique is the formation of large sludge
volume, which causes disposal issues including higher operating costs and pH dependence,
thus limiting its application as a biofertilizer [79].

3.3. Biological Techniques

Biological treatment is the most cost-effective treatment method as compared with
physical and chemical treatments. In the treatment of industrial effluents, biodegradation
technologies including the use of adsorbents as alternatives for filter media to promote
microbial population, have gained attention for treating bio-waste in fungal decolorization
processes. Microorganisms such as algae, yeasts, fungi, and bacteria can accumulate and
decompose various contaminants; however, their applications are frequently limited due
to technical limits. Aerobic and anaerobic biological treatments are both possible [80].
Conversely, the main disadvantage is that it requires a large area of land and is restricted
by sensitivity to diurnal change as well as chemical toxicity [73]. Furthermore, contrary
findings were published in a study of existing technologies [81], which reported that the
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biological remediation process is incapable of achieving good color eradication while
utilizing present conventional technologies. Furthermore, due to their complicated chem-
ical structure, synthetic organic origin, and xenobiotic character, azo dyes are not easily
biodegradable. Table 2 summarizes the benefits and drawbacks of different approaches for
treating dye-contaminated water.

Table 2. Benefits and drawbacks of various wastewater treatment technologies for MB’s removal.

Technologies Benefits Drawbacks Reference

Advanced oxidation
process

At normal atmospheric
pressure and temperature, the
dyes are degraded efficiently,
and organic contaminants are

transformed into carbon
dioxide.

Significant operating
and maintenance

expenses; inflexibility
[69,73]

Chemical
precipitation

Simple; low-cost; can manage
high pollutant loads; is easy to

use; has an integrated
physio-chemical process; and

results in a significant
reduction in COD.

Contains a huge
amount of chemicals
and generates a lot of

sludge

[82]

Ion exchange

Absence of sludge; requires
less time; water of superior
purity is generated; and an

effective decolorization
procedure is used. No
adsorbent loss during

regeneration

pH has a significant
effect on performance;

not suitable for all
colors; costly in terms
of recharging and the

formation of significant
amounts of sludge

[73,81]

Electrochemical

Chemicals are either
unnecessary or are limited; the
process is quick; suited to both

insoluble and soluble dyes,
with a lower COD.

High operating
expenses; rising
electricity prices;
sludge formation;

contamination from
chlorinated organics

and heavy metals as a
result of indirect

oxidation

[65,69]

Oxidation
Dyes are completely degraded,

and the reaction time is
minimal.

pH maintenance;
catalyst required for

optimal treatment; high
cost

[69,83]

Ozonation

Disinfection that is quick and
effective, as well as equipment
installation that is simple; no

volume growth in the gas
phase

A relatively brief
half-life; costly process;
hazardous by-products

and intermediates in
manufacturing; strict
pH control of effluent

[81,84]

Hydrogen peroxide

Oxidation causes
water-insoluble colors to

decolorate; reduction in COD;
and non-toxic by-products of

manufacturing

Increased reaction time;
increased need for
space; more costly

[65]

Fenton reagents
Removal of both soluble and
insoluble dyes with effective

decolorization
Sludge production [63]

Sodium hypochloride Cleavage of azo bonds
develops and accelerates

Production of aromatic
amines [63]

Electrochemical
destruction

The breakdown products are
not dangerous. Electricity is costly [63]
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Table 2. Cont.

Technologies Benefits Drawbacks Reference

Coagulation–
Flocculation

A wide range of
physiochemical approaches

used for color elimination; the
coagulating agent entirely

removes dyes from remediated
wastewater; it is effective and

simple to operate, and as a
result decolorization occurs

completely.

Recycling high-priced
chemicals is impractical;

not suited for very
water-soluble colors;

generates colorful
coagulated solid waste;

produces hazardous
sludge; raises TDS in
treated wastewater; is

not ecologically
sustainable.

[65,82]

Ultrafiltration and
Nanofiltration Effective with all types of dyes

Extreme operational
pressure, significant
energy consumption,

high price of
membrane, limited

lifespan, and
concentrated

production of sludge

[83,85,86]

Reverse osmosis

The most efficient decolorizing
and desalting technology, with

maximal salt removal, and
high-quality water

Extreme pressure and
operating costs, as well
as membrane clogging,

are involved on a
frequent basis.

[83,86]

Biological techniques
(aerobic and
anaerobic)

Low-cost, environmentally
friendly, and non-dangerous
product; is fully mineralized.

Dye biodegradability is
lower, extremely

dependent on reaction
circumstances, design

and operation
inflexibility, requires a
vast land area, and the
requires a longer period

for decolorization

[69]

Adsorption technique

Highly efficient and easy;
simple and adaptable to a wide
variety of pollutants; excellent

capacity to remove a wide
variety of impurities;

economical; adsorbents can be
made from wastes; potential
regeneration of the adsorbent

Adsorbents’
compositions influence

their efficacy; their
chemical modification
is necessary to boost

their adsorption
capacity; certain

adsorbents are highly
expensive.

[83,86]

Despite significant advances in dye wastewater treatment methods, achieving com-
mercially viable, cost-effective, and short-retention-time treatment remains a challenge. A
previous study concentrated on an adsorption technique for dye treatment from wastew-
ater [87]. This approach is capable of handling relatively high flow rates while creating
high-quality effluent that does not develop hazardous chemicals such as free radicals and
ozone [88]. Furthermore, it can eliminate or reduce a variety of contaminants, giving it a
broader range of applications in the controlling of pollution. Adsorption is thus acknowl-
edged as the most adaptable technique employed in less developed countries, and it is now
widely used for the removal of organic pollutants from aquatic environments [89].
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4. Adsorption

The adsorption process is an efficient, affordable, and widely utilized color removal ap-
proach [90]. Biomass is commonly used as a low-cost activated carbon in wastewater reme-
diation for the removal of impurities. Several non-conventional and cost-effective biomass-
derived adsorbents have been studied in relation to the treatment of dye-containing wastew-
ater, as shown in Figure 3.
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Environmentally friendly sorbents, which include organic waste compounds (com-
pounds from leaves, barks, and peels) and microbial biomass (fungus bio-sorbents, green
algal, and bacterial biomasses), are gaining popularity as types of commercial activated car-
bon (CAC). Likewise, carbon nanomaterials (graphene, carbon nanotube, and derivatives)
have also been employed for decolorization [91]. Zeolite, as an inorganic adsorbent and
activated carbon, can be categorized as a type of carbon compound with high oscillation
and internal surfaces. Special techniques for producing them in the form of granular,
powdered, and spherical activated carbons have been devised. Activated carbon is made
by pyrolyzing carbon or carbon-containing plant materials such as coal, bamboo wood,
charcoal, kernels, or fruit shells, for example, coconut shells [92]. Carbon can be activated
by steam, carbon dioxide, or chemical means, thus making it an ideal material for dye
binding. Steam activation is the most eco-friendly and cost-effective approach, whereas
chemical activation leads to the highest porosity and surface area. Following the activation
process, carbon can be easily rinsed and dried to eliminate the chemicals used (includ-
ing acid) [92]. In terms of the sorption capacity of carbon groups, the highest theoretical
adsorption capacities were recorded at 348, 527, and 394 mg/g at 25◦ C for Norit Darco
12–20 (DARCO).

Charcoal-derived activated carbon was revealed to be the most superior adsorbent
with an efficiency of 99.8%, and it can handle different types of dyes. Researchers discovered
that MB performed better as an adsorbate as compared to Rhodamine B in wastewater [93].
At a pH of 2 and a temperature of 25 ◦C, the highest capabilities of microalgae and CAC in
the adsorption of dye were 482.2 mg/g and 267.2 mg/g, respectively. Dye was removed
at a rate of 93.6–97.7% using AC and at a rate of 94.4–99.0% with microalgae. In another
investigation, CAC outperformed olive stone activated carbon in the adsorption of Re-
mazol Red [94]. The replacement of CAC via the development of alternatives requires
comprehensive research on activation methods and adsorbent characteristics. The initial
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dye concentration, pH, temperature, adsorbent dose and type, and contact duration are
the parameters that determine the dye-adsorption ability. Effective adsorbents should
have the capacity for high adsorption amounts and quick adsorption rates, be effective
against a range of dyes or pollutants, and be easily regenerable and reusable to ensure
efficient treatment [95].

Despite the good functioning of activated carbon, which has successfully removed
dyes from industrial wastewater effluents, it has drawbacks such as high capital costs,
high energy consumption, and sorption–desorption cycles. For color and heavy metal
elimination, bio adsorbents made from bacteria or fungi are promising ecologically accept-
able adsorbents [90].

5. Adsorption Mechanism

Functional groupings such as the aromatic ring, —C=O, —C—O—C-, —OH, —NH2,
—C=S, —C=N, and —S=O on the carbon surface also play important roles in improving the
adsorption capacity in terms of MB’s disconnection from water [96,97]. MB is a positively
charged chemical. It has a six-carbon aromatic ring, sulfur, and nitrogen in its chemical
structure. Figure 4 shows that the electron dispersion forces between the carbon surface
functional groups and MB molecules induce, via electrostatic contact, hydrogen bridge
generation, electron donor–acceptor relationships, and π—π forces after MB’s adsorption
on carbon [57,59]. Most commonly, thermal activation involves the annealing of carbon
adsorbent at high temperatures with nitrogen gas (N2) flowing through it. Furthermore,
MB’s adsorption capacity can be maximized by increasing the carbon’s porosity and surface
area. This technique is known as the addition of carboxyl group numbers (—COOH) [40,41].
Another technique to improve carbon surface functionality is to use compounds that contain
the functional groups required for the chemical activation of the composites. Carbon from
bio-waste is treated with propylene diamine, ethylene diamine, aniline, and ethylene amine
to form amino radical (NH2) groups. Additionally, poly (sodium 4-sterenesulfonate) can be
used to enclose carbon nanotubes to graft sulphur trioxide (SO3) groups [57]. This occurs
via reactions with cysteamine, on the nanocarbon surface, with carboxylic groups to form
imidogen (NH) and —sodium hypochlorite (SH) functional groups [58]. Another method
that can be applied to increase the MB adsorption capability involves coating charcoal
with sodium dodecyl sulfate (SO3) groups [98]. For charcoal and chitosan groups, the
improvement of MB’s adsorption can be obtained through enhanced numbers of —C=O,
—OH, and —NH2 [99].
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6. Characterization and Formation of Carbon-Derived Adsorbents

Adsorption processes are influenced by adsorbent structures, fluid characteristics, the
nature of contaminant structures, operating circumstances, and system design features.
The adsorbents used for removing impurities from wastewater include biochar, activated
carbon, clays, silica gel, composites, zeolites, agro-wastes, and biological and polymeric
materials [100]. Most of the pollutants are easily absorbed by carbon-based materials,
including hazardous metal ions, medicines, insecticides, metalloids, and other inorganic
and organic compounds [101]. The role of adsorbents in water or wastewater treatment
is to concentrate and transfer contaminants, thus improving the performance of the pro-
cess. The reaction also depends on adsorbate–adsorbent interactions. pH, ionic strength,
and temperature are the factors that influence the adsorption capability of carbon-based
adsorbents [102]. The forces involved in the removal process are hydrogen, van der Waals
bonds, covalent and electrostatic interactions, and the hydrophobic effect. Meanwhile,
donor–acceptor forces are responsible for the binding and accumulation of chemical com-
pounds on the surfaces of adsorbents [102,103]. These reactions occur in all carbon-based
adsorbents including carbon aerogels, carbon nanotubes, carbon nanofibers, and graphene
(CAs). The carbon-based materials (CBMs) utilized in adsorption are shown in Figure 5.
The advantages and disadvantages of CBMs are tabulated in Table 3.
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Table 3. Classification of various carbon compounds and their associated benefits and drawbacks.

Classifications Adsorbents Formation Benefits Drawbacks Sources

Composition
of carbon

Activated
carbon

Carbonized and
activated (e.g.,

lignite, coal, peat,
wood)

Large and specific
chemical functional

groups; large
surface area; large

pore volume

Hygroscopicity;
pore resistance;
flammability;
incomplete

desorption; high
permeability

[104]

Biochar

Formed under
moderate pyrolysis

conditions in an
inert environment

Abundant
resources; highly

efficient; affordable;
low energy usage

Plug hole;
flammability;

hygroscopicity; gas
release

[105]

Carbon
fiber,

activated

A microfilament
fiber

Hydrophobic and
efficient Expensive [106]

Graphene

2D graphene is
made up of carbon
sheets hexagonal
that portion three

extra carbon atoms’
sp2 hybridized

orbitals

Superior electrical
conductivity; a
large amount of
physical specific

surface area; great
mechanical

strength

Synthesis is
difficult and
dangerous

[107]

Carbon
nanotubes

The cylindrical
structure is

composed of
carbon atoms that
have undergone

sp2 hybridization.

Strong thermal
stability; good

electrical
conductivity; wide

surface area;
inherent

hydrophobicity

Serious
aggregation [108]
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Table 3. Cont.

Classifications Adsorbents Formation Benefits Drawbacks Sources

Materials
containing

oxygen
Zeolite

Zeolite is
composed of an

endless (3D)
arrangement of

TO4 tetrahedra in a
crystalline

aluminosilicate
frame (T is Al or Si)

High adsorption
capacity; huge
surface area;

tunable porosity;
incombustibility;

hydrothermal and
chemical stability;

good
hydrophobicity

The synthetic
technique is

intricate, lengthy,
and costly

[109]

Frameworks
of metal
organic

Metal ions or
coordination

clusters containing
organic ligands are
created in a single-,

two-, or
three-dimensional

manners.

Extremely large
surface area;
outstanding

thermal stability;
oxidizable porous

structure;
simplicity of

functionalization

A large vacuum
space; a weak

dispersion force; an
unsuitable

environment for
coordination; an

inadequate number
of active metal
catalyst areas;

expensive
preparation costs

[110]

Clay

Clay is a layered
aluminosilicate

mineral that
contains water and

is found in rocks
and soils

Strong thermal
stability; excessive

heat resistance;
great surface area;

a special
micro-porous

medium;
inexpensive cost

Because of its
underdeveloped
pore structure,

clay’s adsorption
affinity for

carbon-based gases
is restricted

[111]

Silica gel

Silica gel is a
three-dimensional

tetrahedral
inorganic

substance with
silicol groups on its

surface

Low density;
substantial porous

surface area;
multiple functional

groupings;
excellent

mechanical,
thermal, and

chemical stabilities

Hygroscopicity [112]

Organic
polymers

Macroporous
and hyper

cross-
linked

polymers

Other known
porous materials

have a higher
density than

organic polymers
made of light
nonmetallic

components such
as C, H, O,
N, and B

Large specific
surface area;

excellent porosity;
low weight;

excellent thermal
stability,

repeatability, and
hydrophobicity

Complex synthesis [113]

Activated Carbons

Recently, activated carbon has been reported to be useful in the remediation of heavy
effluents and dye. Activated carbons are generated from commercially available wood,
animal-based sources, or coal, and are all natural materials. However, practically any
carbonaceous substance can be employed as a precursor in the synthesis of carbon adsor-
bents [114]. Coal is a widely utilized precursor for activated carbon generation due to its
accessibility and low cost [115,116]. Various carbon and mineral combinations emerge from
the decomposition of plants to form coal. The sorption qualities and the characteristics
of coal are established as a result of the nature, source, and scope of the physical and
chemical changes that happen upon deposition. Karaka et al. [117] investigated coal’s
use as a dye sorbent. Furthermore, the irregular surface of coal can influence its sorption
properties. Peanut shell, [118], bael shell carbon [119], powdered pine cones (both raw
and acid-treated) [120], Calotropis procera [121], neem leaf [122], coconut shell [123], and
polyvinyl acetate (PVA) alginate super paramagnetic microspheres [124] were successful in
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reducing the contaminant concentrations of wastewater. Their sorption capacities increased
as their adsorbent dosages increased [125].

7. Low-Cost Adsorbents

Many variables influence the characteristics of low-cost adsorbents. The precursor
should be easily accessible, cheap, and non-toxic. Recent research has focused on natural
solids that can remove contaminants from polluted water at cheap cost. Cost is a crucial
factor when comparing sorbents. Generally, a sorbent is considered “low cost” if it needs
minimal processing, is plentiful in nature, or is a by-product of another business. Many
low-cost adsorbents have been employed to remove dyes including agricultural waste,
natural materials, and bio-sorbents. Their efficacy in dye removal has been thoroughly
investigated. Trash-derived adsorbents have been identified as the most challenging field
since they can treat wastewater and reduce waste.

7.1. Natural Adsorbent
7.1.1. Clay

Clay is a layered natural adsorbent; with layers including vermiculite, smectites
(saponite and montmorillonite), pyrophyllite (talc), mica (illite), kaolinite, serpentine, and
sepiolite, clay minerals are accessible [126]. Adsorption occurs as a result of the minerals’
net-negative charge, and this negative charge allows the clay substance to absorb positively
charged ions. Their high surface area and porosity account for the majority of their sorption
properties [127].

7.1.2. Siliceous

Siliceous is one of the most common materials and reasonably priced adsorbents. It
contains glasses, silica beads, alunite, dolomite, and perlite. These minerals were utilized
on the basis of the hydrophilic surface’s chemical reactiveness and stability, which was due
to a silanol group’s presence. However, special consideration was given to the use of silica
beads as adsorbents due to their low resistance to the application of alkaline solutions,
limiting their use to media with pH values of less than 8 [73,128–130].

7.1.3. Zeolites

Zeolites are aluminosilicate porous materials that naturally form porous aluminosil-
icates with a variety of cavity configurations linked together by common oxygen atoms.
There are numerous species of zeolite [131]. The natural species include chabazite and
clinoptilolite. Conversely, clinoptilolite, a heulandite mineral, is the most common in-
vestigated substance due to its strong selectivity for specific pollutants. Zeolite has a
special characteristic, namely a cage-like structure that is perfect for the elimination of trace
pollutants including phenols and heavy metal ions. [132,133].

7.2. Bio Adsorbents

Different technologies can be used for the treatment of wastewater that contains
dyes. Biological adsorbents that use nonliving biomass have been identified as the most
promising approach due to their environmentally safe treatment capability [134]. The
effective removal of dyes from the effluent depends on the unique surface chemistry with
the presence of different functional groups in the cell wall of microorganisms, such as
alcohol, aldehydes, ketones, carboxylic, ether, and phenolic compounds, which make
the bio-sorbents have a high affinity toward dye and are attractive materials for dye
removal [135]. Biological materials including chitin, peat, chitosan, yeast, and fungi biomass
are frequently used in the sorption of dye from the solution through the mechanism of
chelation and complexion [136]. A good adsorbent used in the removal of dye must have
several desirable properties, including a large surface area, high adsorption capacity, large
porosity, easy availability, stability, feasibility, compatibility, eco-friendliness, and ease of
regeneration, as well as being highly selective in terms of removing different varieties of
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dyes [137]. The pore volume of the bio adsorbents and the functional groups of dyes are the
deciding factors in the achievement of high dye adsorption. The presence of a large pore
volume allows the binding of the highest number of dye molecules to the adsorbent [92].
Higher surface area, higher porosity, and low ash content lead to high adsorption capacity.
Functional groups (hydroxyl, carboxyl, etc.) on the surface of biomass-based adsorbents
are important properties determining the hydrophobicity or hydrophilicity of biochar as
well as their adsorptive mechanism [138]. Likewise, the diversity of microbes consisting
of different species of bacteria, fungi, yeast, and algae was studied in relation to the
removal of dye molecules [139]. Besides the high sorption capacity toward dye, the dye
removal performance can be improved by combining the biosorption process with the
biodegradation processes using living cells [140]. The pH, bio-sorbent dose, initial dye
concentration, temperature, and contact time are the influencing factors for the biosorption
capacities of biomass [141].

7.2.1. Bacterial

Bacteria can play a role in bioremediation processes by adsorbing pollutants from
aqueous media through a variety of methods, including dead biomasses [142]. Due to
their tiny size, widespread distribution, and capacity to grow in a variety of environmental
circumstances, they make excellent adsorbents [143]. Bacterial species were identified
to successfully adsorb reactive dyes from wastewater under optimal environmental con-
ditions [144]. The rates of bacterial dye decolorization vary according to the bacterium
type, dye reactivity, and operational factors such as temperature, pH, co-substrate, electron
donor, and dissolved oxygen content. It is possible to successfully treat textile dyes using
extremophiles. According to the Langmuir adsorption isotherm, the maximum solubility
capacity of basic blue dye is 139.74 mg/g. Carboxyl and phosphonate groups that are
present on adsorbent surfaces may operate as possible surface functional groups, which are
capable of binding cationic contaminants [145]. Numerous functional groups on the surface
of the Penaeus indicus biomass were probably involved in the binding of the Acid Blue
25 dye, although the amino groups and alpha-chitin were by far the most significant [146].
Bacillus subtilis was immobilized on a calcium alginate bead and then used in batch and
continuous reactors to remove MB. The kinetic analysis of the batch and continuous contac-
tors revealed a removal rate of more than 90% [147]. Additionally, bacteria were adapted
for MB’s removal using electro-spun nanofibrous-encapsulated cells (Sarioglu et al., 2017a).
Due to their variable cell wall compositions, biosorption fidelity is dependent not only on
the group of ions but also on the type of bacteria.

7.2.2. Fungal

Fungal biomasses include sugars, proteins, and lipids, as well as functional groups
(alcohols, carboxyls, and alkanes), which provide them with specific qualities and uses
in wastewater treatment [148]. The biotreatment of dye-containing wastewater effluent
by fungal cells was reported to be cost-effective, simple to implement, environmentally
benign, and devoid of nutritional requirements [149]. Numerous fungi have been applied
as effective candidates for the removal of a variety of dyes from effluents, including
Trichoderma sp. [149], Sarocladium sp. [150], growing Rhizopus arrhizus [151], and several
varieties of white-rot fungi [152]. It was shown that the removal rate of anionic dyes
increases whereas the removal rate of cationic dyes decreases in low-pH solutions. In
contrast, a high-pH solution enhances the removal of cationic dyes and results in a low
proportion of anionic colors being removed [148]. The point of zero charges (pHpzc) is a
critical metric for understanding the adsorption mechanism and its favorability. The pHpzc
value provides information on the active sites and adsorption capacity of adsorbents. When
the pH is larger than the pHpzc, cationic dye adsorption is more advantageous owing
to the presence of functional groups (OH−, COO−), but anionic dye adsorption is more
favorable when the pH is less than the pHpzc due to the positively charged surfaces of the
adsorbents [95]. In general, the use of fungal biomass as a dye decolorizer and adsorbent
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is a viable alternative to existing technology. Along with the regulation of environmental
factors, it is critical to consider the genotype and preparation of the biomass in order to
ensure optimum dye-adsorption performance.

7.2.3. Algae

Algae are one of the best sources of bio-sorbents since they have high biosorption
ability and are readily accessible [153]. The algal cell wall is composed of polysaccharides,
including xylan, mannan, alginic acid, and chitin. In addition to proteins, these components
may include amino, amine, hydroxyl and imidazole, phosphate, and sulfate groups [143].
Pretreatments such as encapsulation and surface modification may improve the sorption
capacity of algae. The adsorption ability of citric acid-functionalized brown algae for
textile dye (crystal violet) removal in aqueous solutions was investigated. It was found
to improve the uptake capacity by up to 279.14 mg/g [154]. This process was also due to
electrostatic interactions.

The adsorption of five water-soluble dyes was performed using magnetically sensitive
brown algae (Sargassum horneri). Using microwave-synthesized iron oxide nano- and
microparticles, the magnetic modification allowed for quick and selective separation [155].
After 2 h contact time, the sorbent demonstrated maximal acridine orange sorption ca-
pacity (193.8 mg/g) but not malachite green sorption capacity (110.4 mg/g). Sargassum
macroalgae are frequently investigated for their ability to remove colors. MB is a popular
dye that is removed by dye species. Anionic dyes are eliminated in acid, and cationic dyes
(e.g., MB) are eliminated in alkaline. This is because hydrogen (H+) ions are involved in
the biomass–pollutant interaction mechanism. To reduce the quantity of absorbed dye,
the adsorbent’s surface might be charged positively to compete with the dye’s cations.
At increased pH, carboxyl groups have a negative charge, resulting in the electrostatic
binding of cationic dyes. Other criteria that influence the biosorption efficiency include the
processing of the biomass into the adsorbent, the starting contaminant concentration, and
the biomass dose, temperature, and contact duration.

7.2.4. Yeast

Yeast is a single-celled organism that has numerous advantages over filamentous
fungus in terms of the adsorption and accumulation of pollutants, as well as its growth
rate, decolorization rate, and ability to live in harsh settings [156]. The carboxyl hydroxide,
polymer, amino, and phosphate functional groups on the yeast surface alter the pH of
the tested solution [157]. Yeast biomass has been shown to bio-adsorb several types of
colors. The bio-sorption process is affected by the pH, pollutant concentration, yeast mass,
temperature, and contact duration [158]. Reactive Blue 19 (RB 19) and Red 141 (RR 141)
were studied in Antarctic yeast (Debaryomyces hansenii F39A). At pH 6.0, with 100 mg/L
as the initial dye concentration, and a 2 g/L biomass dose, 90% of RR 141 and 50% of RB
19 were adsorbed. However, at a 6 g/L biomass dose, 90% of RB 19 was adsorbed. The
Langmuir isotherm was defined as the pseudo-second-order kinetics for each dye system,
and the Langmuir isotherm was the best-matched model [159].

The removal of Reactive Blue 160 dye using residual yeast and diatomaceous earth
(RB 160) was also investigated. The dye removal capability of the two bio-sorbents was
8.66 mg/g and 7.96 mg/g at pH 2 [160]. The biomass functional group’s positive charge
interacted with the anionic dye. The yeast biosorption data were better fitted to the
Freundlich isotherm model, whereas the diatomaceous earth data were better fitted to the
Langmuir isotherm. Another study used brewer’s yeast biomass that was able to adsorb
the basic dyes safranin O (SO), MB, and malachite green (MG)) from aqueous solutions
within 1 h. This study also reported that MB’s and MG’s adsorption kinetics were pseudo-
second-order, whereas those of SO were pseudo-first-order. Yeast was also found to adsorb
hydroxyl, cyano, and other functional groups [161].
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7.3. Agricultural and Industrial Materials’ Adsorbents
7.3.1. Agricultural Waste and Plant Adsorbents

The use of agricultural wastes and plants to adsorb organic and inorganic contaminants
is considered to be a viable alternative to standard wastewater treatment procedures [162].
Numerous investigations on the elimination of MB have recently been conducted, which
involved employing dead or living agro-waste, algae, fungi, and a variety of naturally
occurring and low-cost agro-waste sources as adsorbents, including fruit peels, seeds,
leaves, straw, sawdust, bark, sludge, and ash [163].

Numerous studies demonstrated that the dye-adsorption properties of certain biomasses
are highly dependent on the kind of dyes used, and the processing procedures used were
successful in reducing the contaminant concentrations of wastewater. This group of biolog-
ical compounds of agro-waste-derived adsorbents was capable of collecting and concen-
trating dyes in aqueous solutions. Due to the non-selective nature of these biomaterials,
all pollutants, both target and non-target, became concentrated on the adsorbent’s surface,
providing significant removal for the purpose of pollution control. The technique allows
the adsorption of only those ions for which it has a particular affinity. In comparison to
other methods, bioadsorption is rated as preferable due to its low cost, simplified design,
great efficiency, and capacity to separate a wide variety of contaminants [164].

7.3.2. Industrial Products

Fly ash, metal hydroxide sludge, bio solids, red mud, and waste slurry are examples
of industrial products that may be employed as dye adsorbents since they are low-cost and
readily available. Adsorbents made from industrial waste may be used instead of more
expensive traditional adsorbents [165].

Fly Ash

Fly ash is a type of industrial waste that may be used to adsorb dyes. Fly ash is
generated in enormous quantities during combustion operations and may include certain
harmful chemicals, such as heavy metals [166]. However, bagasse fly ash, created in the
sugar industry, is devoid of hazardous metals and is often employed for color adsorption.
Its qualities are very variable and are dependent on its source. Adsorption investigations
were conducted on congo red and MB textile dye solutions and it was discovered that
the monolayer development on the adsorbent surface and the adsorption process are
exothermic in nature. Fly ash from thermal power plants may be efficiently utilized
as an adsorbent to remove colors from dyeing industry effluents [167]. The removal of
methylene blue, using fly ash as an absorbent, was investigated and a maximum removal
of 58.24 percent was reported at pH 6.75 and 900 mg/L adsorbent for an initial methylene
blue dye concentration of 65 mg/L. At various beginning conditions, fly ash could remove
95–99 percent of the dye from the solution, and the Langmuir constant qm was 1.91 mg/g
and the Ka value was 48.94 L/mg with a liner regression coefficient of 0.999 [168].

Metal Hydroxide Sludge

Sludge made from metal hydroxide is used to clean up azo dyes. It has insoluble metal
hydroxides and salts. Researchers discovered that at 30 ◦C and pH 8–9, electroplating
industrial hydroxide sludge had maximal adsorption capacities of 45.87 and 61.73 mg/g for
Reactive Red 120 and Reactive Red 2, respectively. The pH also influenced the adsorption
and development of dye–metal complexes. Sludge of metal hydroxide was used as an
adsorbent and it was found to have a maximum adsorption capacity of 270.8 mg/g at 30 ◦C
and an initial pH of 10.4. Metal hydroxide, as a low-cost adsorbent for the removal of the
Remazol Brilliant Blue reactive dye from a solution, was reported to have a 91.0 mg/g
monolayer adsorption capacity at 25 ◦C and pH 7 [169].
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Red Mud

Red mud is another industrial byproduct and bauxite manufacturing waste product
used to make alumina. The capacity of discarded red mud as an adsorbent for the removal
of dye from its solution was examined, and it was found to be effective. It was found
that the greatest dye removal via adsorption occurred at pH 2, and this was followed
by the Freundlich isotherm [170]. Red mud was used as an adsorbent to remove a basic
dye, methylene blue, from its aqueous solution. The adsorption capacity of red mud was
determined to be 7.8 × 10−6 mol/g. The use of discarded red mud as an adsorbent was
shown in order to extract congo red from aqueous solution. The dye-adsorption capability
of the red mud was determined to be 4.05 mg/g. Using acid-activated red mud, the
adsorption of congo red from wastewater was examined [171]. The Langmuir isotherm
provided the greatest match to the experimental data. Using red mud, the removal of
methylene blue, quick green, and rhodamine B from wastewater was investigated. Fast
green, Methylene blue, and rhodamine B were removed with red mud at percentages of
75.0, 94.0, and 92.5, respectively; the adsorption process followed both the Langmuir and
Freundlich isotherms and was exothermic in nature [172].

7.4. Activated Carbon-Based Adsorbent Derived from Low-Cost Waste

Agricultural wastes are rich in hemicellulose, cellulose, and lignin. Their surfaces
are covered with a variety of active groups, including carboxyl, hydroxyl, methyl, and
amino [95]. These functional groups may adsorb dyes in a variety of ways, including via
complexation, hydrogen bonding, and ion exchange [152]. Tables 4–13 highlight different
agricultural and forest waste types, their biosorption capacity, and the activation reagents
required. Numerous acids have been utilized to activate biosorbents to increase their
binding sites, aqueous solution chemistry, specific surface area, and porosity. Phosphoric
acid increases the bond-breaking process in agricultural waste biomass, thereby boosting
its carbon output [173]. Sodium hydroxide (NaOH), sulphuric acid (H2SO4), and potas-
sium hydroide (KOH) are often utilized as activators in the manufacturing of agricultural
waste-based bioadsorbents (Tables 4–13). Numerous environmental factors, including the
adsorbent dosage, temperature, contact time, solution pH, particle size of the plant-based
adsorbent, agitation, and initial dye concentration, all have a significant influence on the
biosorption process. The pH of the solution, the particle size of the plant-based adsorbent,
the rate of agitation, and the initial dye concentration all have a substantial effect on the
biosorption process. The pH of a solution has an effect on both the aqueous solution’s
chemistry and the binding sites on the surfaces of the adsorbents [174]. Due to the abun-
dance of low-cost products, they constitute excellent raw materials for the manufacturing
of activated carbon. Tables 4–13 summarize the different types of activated carbon derived
from biomass and their maximal adsorption capacities for MB elimination. A schematic
clarification of bio-waste-derived adsorbents is shown in Figure 6.

Isotherm Equilibrium and Sorption Capacity of Biowaste-Derived Adsorbents

Tables 4–13 show the outstanding capabilities and operating conditions of bio-waste-
derived adsorbents with high sorption capacities that have been established over the last
decade. Furthermore, this review sought to enclose a broad range of recent research on
unconventional adsorbents to educate researchers about the design parameters and sorption
capacities for the adsorption of various bio-waste materials. Phosphoric acid improved
dye biosorption by grafting phosphate functions onto the biomass and enhancing the acid
functions involved in dye fixation

Previous studies addressed equilibrium isotherms and kinetic features by employing
models ranging from Henry’s law to the Langmuir (monolayer), Redlich–Peterson, Sips,
and Freundlich models for fitness analyses. The kinetic and isotherm models are useful
predictive tools for adsorbent system regeneration, design parameter optimization, and
adsorption and desorption capacity maximization, and can, by these means, optimize
waste disposal. Additionally, most of the previous studies were conducted in batch mode,
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which enables more cost-efficient and effective treatments for the design of continuous
systems. The adsorption capacity of an adsorbent can be determined using equilibrium
isotherms. Equilibrium isotherms link the equilibrium concentration of the adsorbate
(Ce) to the quantity of the adsorbent (qe). Furthermore, the adsorbate characteristics and
adsorbent surfaces can be studied in detail using liquid–solid isotherms.

Tables 4–13 illustrate the operating conditions, sorption capacities, and appropriate
kinetic isotherms for adsorbents derived from bio-waste over the last decade. Furthermore,
this review sought to enclose a broad range of recent research on unconventional adsorbents
in order to educate researchers about the design parameters and sorption capacities related
to the adsorption of various bio-waste materials [175–177].
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Table 4. Summary of bio-waste-derived adsorbent studies in 2012.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Pink Guava leaf 250 L-K2 NA 30 300 [178]
Malted sorghum

mash 357.1 L 7.3 33 18 [179]

Rice husk 8.13 L-K2 5.2 25 NA [180]
Water Hyacinth 8.04 L-K2 8 25 80 [181]

Date stones 398.19 S-K2 7 30 270 [182]
Oil palm shell 133.13 NA NA 30 10 [183]

Swede rape
straw 246.4 L NA 25 NA [184]

Pyrolysis of
wheat 12.03 S 8–9 20 50 [185]
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Table 5. Summary of bio-waste-derived adsorbent studies in 2013.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Pea shells 246.91 L 2–
11.5 25 180 [185]

Coconut fiber 500 L-K2 7.8 30 30 [186]
Papaya leaves 231.65 L 2–10 30 300 [187]
Untreated Alfa

grass 200 L-K2 12 20 180 [188]

Neem leaf
Powder

401.6,
352.6 F-K2 7 87 60 [189]

Corn husk 662.25 F 4 25 120 [190]
Lagerstroemia

microcarpa 229.8 L-K2 NA 30 360 [191]

watermelon
(Citrullus
lanatus)

489.80 L-K2 NA 30 30 [192]

Sugarcane
bagasse 95.19% NA 8.76 25 193 [193]

Table 6. Summary of bio-waste-derived adsorbent studies in 2014.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Iron
oxide-modified
montmorillonite

69.11 L-K2 8 35 240 [194]

Magnetic NaY
Zeolite 2.046 L 10.3 50 45 [195]

Fe3O4
graphene/MWCNTs 65.79 L-K2 7 10 30 [196]

Water hyacinth 111.1 L 8-10 30 300 [197]
Lantana camara

stem 19.84 F-K2 3-11 20 60 [198]

Natural peach
gum (PG) 298 L-K2 6-10 25 30 [199]

Activated fly ash
(AFSH) 14.28 F-K2 3.0-

10.0 20 100 [200]
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Table 7. Summary of bio-waste-derived adsorbent studies in 2015.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Magnetic
biochar derived
from empty fruit

bunch

31.25 L-K2 2-10 25 120 [201]

Magnetic
adsorbent

derived from
corncob

163.93 L-K2 NA 25 500 [202]

Fe3O4 bentonite NA K2 7 NA 20 [203]
Magnetic chi-
tosan/organic

rectorite
24.69 L-K2 6 25 60 [204]

Poly acrylic
acid/MnFe2O4

NA K2 8.3 25 NA [205]

Fe3O4
xylan/poly
acrylic acid

438.6 L-K2 8 25 NA [206]

Fe3O4 modified
graphene
sponge

526 L-K2 6 NA NA [207]

Xanthate/Fe3O4
graphene oxide 714.3 L-K2 5.5 25 120 [208]

Magnetic
carbonate

hydroxyapatite/
graphene oxide

405.4 L-K2 9.1 25 90 [209]

Table 8. Summary of bio-waste-derived adsorbent studies in 2016.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Palm shell 163.3 F-K2 NA 25 NA [210]
Fe3O4-activated
montmorillonite 106.38 L-K2 7.37 20 25 [211]

Clay (montmo-
rillonite and
vermaculti)/

polyaniline/Fe3O4

184.5 L-K2 6.3 25 30 [212]

Magnetic
chitosan/active

charcoal
200 L-K2 7.73 25 200 [99]

Fe3O4 /poly
acrylic acid 73.8 L-K2 NA 45 NA [213]

Magnetized
graphene oxide 306.5 L-K2 9 25 360 [214]

Corn straw 267.38 F-K2 8 25 20 [215]
Magnetic

chitosan and
graphene oxide

243.31 K2-L 12 60 60 [216]
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Table 9. Summary of bio-waste-derived adsorbent studies in 2017.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C) Time(min) Reference

Corn shell 357.1 L 4 25 30 [217]
Magnetic

activated carbon 2.046 F-K2 10 25 120 [218]

Magnetic
halloysite
nanotube

nano-hybrid

689.66 L-K2 10 25 180 [219]

Magnetic
polyvinyl alco-
hol/laponite

RD

251 L-K2 5.5 25 60 [220]

Aegle marmelos
leaves 500 F-K2 6 25 120 [221]

Oak-acorn peel 109.43 L-K2 7 24 120 [222]

Geopolymers 15.95-
20.22 S-K2 4-12 25 80 [223]

Ouricuri fiber 31.7 S-K2 5.5 25 5 [224]

Table 10. Summary of bio-waste-derived adsorbent studies in 2018.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Carboxymethyl/
cellulose/

Fe3O4/SiO2

31.02 L-K1 11 NA 60 [225]

Cellulose-
grafted 7.5 L 8 5.5 [226]

NiFe2O4Ca/
alginate 1243 R-K1 6.5 25 180 [227]

Magnetic
alginate 161 L 7 20 120 [228]

Magnetic
hydrogel

Nanocomposite
of poly acrylic

acid

507.7 L-K1 7 25 120 [229]

Magnetized
graphene oxide 232.56 L-K2 9 30 10 [230]

Soursop 55.397 R-K2 5.5 25 300 [231]
Sugarcane

Bagasse 17.434 S-K2 5.5 25 300 [231]

Palm sawdust 53.476 F-K2 8 25 120 [232]
Eucalyptus

sawdust 99.009 F-K2 6 20 60 [232]
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Table 11. Summary of bio-waste-derived adsorbent studies in 2019.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Fir bark 330.00 F-K2 NA 25 40 [233]
Pumpkin peel 198.15 L-K2 7 50 180 [234]

Rice husk 608 L 7 25 60 [235]
date stones 163.67 F-K2 10 25 360 [236]

Seaweed 1279.00 L-K2 4 25 50 [237]
Moroccan cactus 14.04 L 5 25 60 [238]
Syagrus oleracea 893.78 L-K2 7 25 20 [239]

Mentha plant 588.24 L 10 25 30 [240]
Palm leaf 500 L 2 30-60 30 [241]

Table 12. Summary of bio-waste-derived adsorbent studies in 2020.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Kendu fruit peel 144.90 L-K2 6 25 100 [242]
Magnesium

oxide
nanoparticles

163.87 L-K2 7.3 25 70 [243]

Fava bean peel 140.00 L 5.8 27 NA [244]
Dicarboxymethyl

cellulose 887.60 L-K2 3 25 60 [245]

Alginate-based
beads 400.00 L-K1 7 25 NA [246]

Black cumin
seeds 16.85 F-K2 4.8 25 20 [247]

Dragon fruit
peels 195.2 L-K1 3-10 50 60 [248]

Litsea glutinosa
seeds 29.03 L-K2 9 40 600 [249]

Moringa oleifera
leaf 136.99 F-K2 7 25 90 [250]

Table 13. Summary of bio-waste-derived adsorbent studies in 2021.

Biosorbents Qmax
(mg/g)

Most
Appropriate

Model
pH Temperature

(◦C)
Time
(min) Reference

Grass waste 364.2 L 10 45 15 [251]
Mangosteen

peel 871.49 L-K2 10 25 60 [252]

Coconut shell 156.25 F-K2 4.9 25 360 [253]
Core shell 34.3 L-K2 7 25 120 [254]

Banana stem 101.01 F-K2 7 25 90 [255]
Alginate beads 769 L-K2 8 30 NA [256]

Ulva lactuca 344.83 L-K2 11 25 NA [257]
Cassava Stem 384.61 L-K2 9.2 25 60 [258]

Corncob 864.58 L-K2 5 25 360 [259]
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General equation

Qmax =
(C0 − Ce)V

W
(1)

where V is the solution volume (L) and W is the adsorbent mass (mg/L) (g), C0 and Ce are
the initial and equilibrium dye concentration in mg/L, respectively.

Langmuir (L) isotherm model:

qe =
Q◦·K·Ce

1 + K·Ce
(2)

where qe is the adsorbate quantity per unit of adsorbent (mg/mg), Ce is the equilibrium
concentration of the adsorbate (mg), K is the Langmuir adsorption coefficient (mg/g)
(L/mg) 1/n.

Freundlich (F) isotherm model:

qe = Kf Ce
1/n (3)

where qe is the quantity of adsorbates per unit of adsorbent (mg/g), Ce is the adsorbate
equilibrium concentration in the solution (mg), n is the empirical coefficient, Kf is the
Freundlich adsorption coefficient (mg/g) (L/mg) 1/n.

Redlich–Peterson (R) isotherm model:

qe =
KRCe

1 + aR Cg
e

(4)

where qe is the adsorbate quantity per unit of adsorbent (mg/mg), KR (L g−1) and aR
(Lg·mg−g) are constants, Ce is the equilibrium concentration of the adsorbate (mg), g is the
exponent (0 ≤ g ≤ 1).

Sips (S) isotherm model:

qe =
qmsKsCns

e

1 + KsCns
e

(5)

where qms is the maximum adsorbed amount (mg/g), Ks (Lns·mg−ns) and ns are the Sips
constants, Ce is the equilibrium concentration of adsorbate (mg), qe is the quantity of
adsorbate per unit of adsorbent (mg/mg).

Modeling adsorption kinetics:
Adsorption kinetics were used to explore the pace and mechanisms of adsorption,

which may occur due to physical and chemical events, and to compare these with experi-
mental data.

Pseudo-First-Order Kinetics (K1):

ln (Qe − Qt) = ln Qt − k1t (6)

where Qt is the adsorbed amount at time t, Qe is the equilibrium amount, t is the time in
minutes, and k1 is the rate constant.

Pseudo-Second-Order Kinetics (K2):

t
Qt

=
1

k2Q2
e
+

(
1

Qe

)
t (7)

where Qt is the adsorbed amount at time t, Qe is the equilibrium amount, t is the time in
minutes, and k2 is the rate constant.

8. Cost Analysis of Adsorbents

Several authors indicated that the application of bio adsorbents derived from microor-
ganisms and forest and agricultural waste is lower than the cost of traditional treatment
methods. Nonetheless, none of these research works considered the cost analysis in their
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final assessment. For a cost effective system, the volume of adsorbent used, the simplicity
of preparation or processing, green chemistry ideas, and the activation process used are the
factors that need to be considered [260]. In contrast, another study emphasized the term
“low-cost adsorbents” to refer to their initial costs, and their local availability, transportation,
treatment process, recycling, and lifespan concerns, as well as regenerating and treatment
methods [95]. Additionally, most of the previous research works on biomass-based adsorp-
tion were undertaken on a laboratory scale using simulated wastewater, thereby restricting
the cost of the analysis to be undertaken.

The ability to remove Basic Red 09 dye from wastewater was investigated using
coconut shell, groundnut shell and rice husk. The study revealed the cost of 1 g of adsor-
bent used to remove 4.54, 0.91, and 0.97g when operational expenses such as production,
maintenance, feedstock, transportation, labor, and distribution costs are included [261].
Groundnut shell-based biochar showed the highest adsorption capacity (46.3 mg/g) and
the lowest cost-per-unit in grams of Basic Red 09 dye removal (0.91). A phosphoric acid-
functionalized locust bean pod adsorbent was produced for the removal of RhB dye, and the
initial cost of this adsorbent was determined. They revealed that the activated carbon gen-
erated by these plant sources was roughly six times less costly than conventional activated
carbon. The expense is mostly borne by phosphoric acid and deionized water [262].

9. Regeneration and Economic Challenges of Bio-Waste-Derived Adsorbents

The desorption process can induce the application of reused adsorbent, thus reducing
waste and minimizing capital and operational costs [95]. Common desorption methods
include thermal, acid (i.e., hydrochloric acid (HCl), H2SO4, phosphoric acid (H3PO4), and ni-
tric acid (HNO3)) NaOH, organic solvent (methanol), vacuum, and biological methods [92].
Solvent desorption through drying processes can vaporize and remove the dye with suit-
able a combination ratio between the adsorbent and the solvent. [95]. On top of reuse or
regeneration of the adsorbent, the selection of an appropriate adsorbent, particularly at
large scales, plays a vital role in terms of ensuring an efficient and economical treatment
method. Powdered activated carbons were reported as being inappropriate for industrial
applications due to their high costs and times, and complex recovery processes [263]. This
can lead to high energy consumption due to inefficient processes. However, the post-
treatment of adsorbent and effluent that contains contaminants is necessary after dye’s
removal from wastewater [264]. Immobilization and stabilization immobilization are two
possible ways of securely disposing of the final effluent; for example, utilizing in concrete
technology as a binder material [265,266].

Dahiru et al. [267] reported that the efficiency of banana peel adsorbent reduced to 64%
after 5 uses. Despite there being numerous studies on the development of bio-waste-derived
activated carbon, there were minimal efforts focused on the technoeconomic assessment
and life cycle analysis of these applications. This signifies the need for the development of
adsorbents that are more robust in order to maintain removal rates, optimize costs, and
promote the sustainable regeneration of adsorbents.

10. Management of Post-Adsorption Materials

After usage, the adsorbent can be managed in a variety of ways, including regen-
eration, re-use, and safe disposal (Figure 7). Regeneration may be accomplished in a
variety of ways, including with a chelating desorbing agent, an alkali desorbing agent, a
salt desorbing agent, or via thermal regeneration [268]. In addition to the forementioned
approaches, organic pollutants may be regenerated via ultrasonic regeneration, microbi-
ological regeneration, microwave-assisted regeneration, thermal regeneration, chemical
regeneration, ozonation, photo-assisted oxidation, and electrochemical oxidation [269].
After many adsorption–regeneration cycles, the adsorbent’s efficacy decreases [270]. After
many adsorption–regeneration cycles with the same pollutant, the method renders the
adsorbent redundant. The used adsorbent may be disposed of in a landfill or burnt or
recycled [271]. Prior to landfill disposal, used adsorbents containing hazardous elements
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can be stabilized/solidified [272], thus increasing the expense of the adsorbent’s life cycle
evaluation. Enhancing the adsorbent’s sustainability may be accomplished by properly
disposing and reusing it in other applications. The used adsorbent can be used in a variety
of ways, including as a catalyst [273], in brick formulations [274], in road construction [275],
or in cement clinkers [276]. The three major applications of wasted adsorbents are as
follows: as a catalyzer, in the manufacturing of ceramics, and as a fertilizer.
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10.1. Application as a Catalyst

Following the adsorption process, the used adsorbents can be employed as catalysts
throughout the processes of photodegradation [277], nitrophenol’s reduction to aminophe-
nol [278], hydrocarbon oxidation [277], the conversion of xylose and xylan to furfural,
and also the conversion of phenylacetylene to acetophenone [279]. Depending on the
type of pollutant, the final product can be further analyzed using nuclear magnetic reso-
nance (NMR) spectroscopy, high-performance liquid chromatography (HPLC) [279], gas
chromatography [273], ultra-violet spectroscopy [278], and Fourier-transform infrared spec-
troscopy (FTIR) [277]. In some cases, the catalytic activity of the metal ion varies according
to its position on the adsorbent, the conversion and selectivity inside the oxidation of
cyclohexanol, as well as the increasing of ethyl benzene [280]. Despite the vast potential of
expended adsorbents to induce catalysis, several issues must be addressed, with the most
significant being the leachability of the pollutant or other materials from the adsorbent
during their usage as catalysts. The majority of research employed either the California
waste removal test or the Toxicity Characteristic Leaching Procedure (TCLP) for leaching
measurement [281]. In many situations, wasted adsorbent contains dangerous elements,
and environmental organizations (e.g., the USEPA in the United States, the CPCB in In-
dia, and DEFRA in the United Kingdom) enforce strict disposal rules. Consequently, this
problem can be eliminated by increasing the use of nontoxic waste adsorbents [282].
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10.2. Application in Ceramic Production

Used adsorbents can also be employed as ingredients in the manufacturing of ceramic
materials, including as fillers in the cement industry. The issue of the adsorbent’s hazardous
nature may be mitigated by its application in the manufacturing of ceramics as well as
in road building. The leaching of dangerous materials from the used adsorbent can be
managed with the correct preparation conditions. Spent adsorbent (zeolite- and perlite-
supported magnetite following molybdenum adsorption) was combined with sludge at a
ratio of 3/97, which corresponded to the adsorption capacity of the loaded adsorbent [283].
Additionally, ceramic products may help in preventing the leaching of additional heavy
metals (including Nickel, Chromium, Copper, Zinc, Arsenic and Cadmium) that spike
during the application of the ceramic synthesis technique. This is advantageous in the
treatment of polluted eluent generated during desorption operations. Additionally, the
used adsorbent may be disposed of by immobilizing it inside the phosphoric glass ma-
trix. It was also shown that around 20% of wasted adsorbent can be integrated during
glass production [284].

10.3. Application as Fertilizer

The used adsorbent can be converted into a user-friendly material, including fertilizers.
The properties required for fertilizer production include affinities for anions and cations
and long-term stability in various environments. Charcoal is mainly used as a fertilizer.
Calcium (Ca), Nitrogen (N), Potassium (K), and Phosphorus (P) are abundant in biomass.
By applying this method, nutrients are returned to the soil, potentially improving soil
fertility [285]. The use of biodegradable organic adsorbents as fertilizers is possible. It was
reported that 20 days is required for carboxy methyl cellulose, a copper-removing chitosan,
to break down [286].

The pyrolysis of discarded bio-sorbent, occurring as a result of the adsorption of
contaminants in biochar or direct soil applications, yields charcoal, biochar, and a variety
of products, each with a distinct economic value [287]. Toxic substances that are present in
soil can be reduced by adding charcoal. The use of charcoal (15 g/kg) was found to lower
chromium and cadmium contents in a plant by 33.50 and 28.73 percent, respectively [288].
Additionally, crops need nitrates and phosphates for their growth, and charcoal is inefficient
in terms of serving these needs. Consequently, metal ions such as Ca, Mg, and Al may be
added to charcoal [289]. In the case of phosphate, these components increased the formation
of H bonds or precipitation, whereas in the case of nitrate, they increased the electrostatic
attraction [289]. Meanwhile, the nonfuel fraction gases (carbon monoxide (CO), methane
(CH4), and other hydrocarbons) may be utilized to synthesize various chemical reagents
in order to synthesize biofuels [290]. Additionally, the use of adsorbents as fertilizer can
improve metal sequestration [291], improvement of soil’s nutritive value [292], increased
soil organic carbon (SOC) (due to the application of activated carbon) [282], and increased
water-holding capacity of the soil [285]. The content of each heavy metal in charcoal has a
specific threshold level. Lead concentrations in basic and premium biochar should be lower
than 120 and 150 g/t. This includes the need for higher charcoal demands as compared to
commercial fertilizer, and the regulated release of nutrients to prevent soil contamination
as well as metal ion accumulation. This has influenced the initial capital cost of recovering
all products from pyrolysis, such as heat and gases during biomass feedstocks [292].

11. Cost-Effectiveness: Desorption versus Disposal

Following adsorption process, adsorbents may be desorbed and renewed until the
pollutant content in the effluent is maintained below the permitted level established by
regulatory bodies. The used adsorbent may be repurposed for different applications such as
catalyst synthesis, ceramic manufacture, and pollutant removal, or it can be discarded. The
desorption of pollutants may be accomplished using an alkali or acid reagent, a chelating
agent, or salt; or, for organic pollutants, chemical, thermal, microwave, or other processes
can be used [293]. Alkali was reported as the most effective method for removing heavy
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metals from chemical-based adsorbents (Table 14). The employment of an acid, an alkali, a
chelating molecule, or a chemical as a desorbing agent result in waste creation (secondary
pollution) in contaminated eluent. As a result, this approach suffers from the same disposal
issues as other approaches, such as wasted adsorbent, which have environmental and
economic implications. Nonetheless, there are rare occasions when metals that are laced
with other heavy metals can be recovered, such as chromium (Cr) being recovered from
barium chloride (baCl), and mercury (Hg) from the ethylenediaminetetraacetic acid (EDTA)–
Hg combination being recovered as mercury chloride (HgCl) [294].

Table 14. Desorbing agents for various adsorbents.

Adsorbents Desorbing Agents Agent References

Chemical sorbents Alkali NaOH [295]
Bio-adsorbents Acid HCl, H2SO4, HNO3 [295]

Biomass (fungi, algae) Complexing agents EDTA [295]

12. Limitations and Strategies

The primary disadvantage of the previously reported adsorption studies is that they
are generally applied at the laboratory scale without any pilot study or commercial-scale
column filtration system. On top of the limitations of the adsorbents used, the bulk of
the research work employed batch mode experiments with simulated mono-pollutant
solutions, with just a handful using genuine wastewater. Most investigations on bio-waste
adsorption focused on removing a single contaminant from actual dye-containing effluent.
To meet the needs of wastewater treatment, more research should be conducted in multi-
pollutant systems with real textile wastewater. Additionally, the review demonstrates
certain inherent limits of recent developments in the use of activated carbon in terms
of operational efficiency, overall costs, energy consumption, and the potential to form
harmful by-products, even when these approaches work well against a specific pollutant.
Although most bio-wastes had high elimination efficiency up to 99%, various and different
parameters were used as indicators in the previous research works, which limits the
potential for comparative studies. Finally, most of the previous research works on biomass-
based adsorption were undertaken at a laboratory scale using simulated wastewater, and
thus, the undertaking of cost analyses was restricted.

13. Conclusions and Recommendations

Bio-waste is the richest economically available source of carbon synthesis and is often
transformed into activated carbon. From 2012 to 2021, bio-waste has emerged as a low
cost, effective, and renewable source of activated carbon for the removal of MB. Low-cost
bio-waste-derived adsorbents can be characterized and defined in terms of their initial costs,
local availability, stability, eco-friendliness, transportation, applied treatment processes,
recycling, lifespan concerns, regeneration potential, and pore volume after deactivation. In
terms of the parameters that influence performance, the most critical characteristic affecting
the adsorption of cationic dyes is the pH level; high pH values are necessary to achieve
maximum dye uptake. Additionally, the initial dye concentration, temperature, adsorbent
dose, type, and contact duration are the parameters that determine the dye-adsorption
ability.

The processing methods employed in the adsorption studies include activation by
steam, carbon dioxide, and chemical methods. Steam activation is the most cost-effective
approach, whereas chemical activation produces the highest porosity and surface area. In
terms of regeneration processes, the available desorption methods include thermal acid
and nitric acid, sodium hydroxide, organic solvent, vacuum, and biological approaches.
For a cost-effective system, the volume of adsorbent used, the simplicity of preparation
or processing, green chemistry ideas, and the activation process used are the factors that
can be considered. Additionally, catalyzer, ceramic, and fertilizer applications all show
potential in the management of post-adsorption material.
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In a nutshell, the adsorbent’s stability and affordability are other important characteris-
tics that influence its applicability in terms of ensuring an efficient on-site treatment. Local
availability, transportation, economic feasibility, potential for regeneration, and lifespan
difficulties can also be investigated in future research works. Regeneration studies are also
necessary to reduce process costs, recover adsorbed pollutants, and reduce waste genera-
tion.
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