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Simple Summary: Besides direct animal movements between farms; indirect transmission routes of
pathogens can have an immense impact on network structure and disease spread in animal trade networks.
This study integrated these indirect transmission routes between farms via transport companies or feed
supply as bipartite networks; which were compared to the monopartite animal movements network
representing the direct transmission route. Both bipartite networks were projected on farm level to enable a
comparison to the monopartite network. The number of edges increased immensely from the monopartite
animal movements network to both projected networks. Thus, farms can be highly connected over
indirect connections, although they are not directly trading animals. The ranking of the animals according
to their centrality parameters, indicating their importance for the network, showed moderate correlations
only between the animal movements and the transportation network. The epidemiological models based
on the different network representations revealed significantly more infected farms for the networks
including indirect transmission routes compared to the direct animal movements. Indirect transmission
routes had an immense impact on the outcome of centrality parameters, as well as on the spreading
process within the network. This knowledge is needed to understand disease spread and to establish
reliable prevention and control measurements.

Abstract: Besides the direct transport of animals, also indirect transmission routes, e.g., contact via
contaminated vehicles, have to be considered. In this study, the transmission routes of a German
pig trade network were illustrated as a monopartite animal movements network and two bipartite
networks including information of the transport company and the feed producer which were projected
on farm level (n = 866) to enable a comparison. The networks were investigated with the help of
network analysis and formed the basis for epidemiological models to evaluate the impact of different
transmission routes on network structure as well as on potential epidemic sizes. The number of edges
increased immensely from the monopartite animal movements network to both projected networks.
The median centrality parameters revealed clear differences between the three representations.
Furthermore, moderate correlation coefficients ranging from 0.55 to 0.68 between the centrality
values of the animal movements network and the projected transportation network were obtained.
The epidemiological models revealed significantly more infected farms for both projected networks
(70% to 100%) compared to the animal movements network (1%). The inclusion of indirect transmission
routes had an immense impact on the outcome of centrality parameters as well as on the results of the
epidemiological models.
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1. Introduction

Network analysis has become a valuable framework for the analysis of disease transmission in
animal trade networks [1–6]. Most of the studies focused thereby on the direct trade contacts between the
agricultural premises as these contacts present a key transmission route especially for highly contagious
diseases such as classical swine fever. Also, Fritzemeier et al. [7] stated that most of the secondary and
follow-up outbreaks in Germany from 1993 to 1998 were caused by the trading of live animals. For the
classical swine fever outbreak in The Netherlands from 1997 to 1998, Stegeman et al. [8] found comparable
results. Likewise, Ribbens et al. [9] stated that the direct virus transmission via animal movements
represents the largest contribution of the total disease transmission between farms before the first infected
farm was detected. These direct animal movements are illustrated as monopartite networks including
only one node type, e.g., the agricultural premises [10].

However, besides the direct trade contacts between the different farms, there are also other transmission
routes that should be included in epidemiological studies in order to obtain a more realistic picture of
disease transmission and to assess the importance of different transmission routes for the final epidemic
size [11–15]. These transmission routes can be illustrated as bipartite networks, including two node sets,
which are connected by edges entailing different kinds of meanings [10,16]. For instance, farms representing
one node set can be connected over the transport company representing the other node set that actually
ships the animals. Moreover, the actual truck, which is used for the transportation of the animals can
be included in these bipartite networks. Furthermore, all other possible connections, which represent
an indirect linkage between the farms, can be illustrated as bipartite networks, e.g., delivery of feed by
different feed producers or person contact by e.g., the veterinarian. Especially, the vector truck is an
important transmission route if the disinfection regulated by the Council Regulation (EC) No. 1/2005 was
not carried out thoroughly. Thus, disease can be spread over different shipments and can, in this way,
infect farms that do not directly trade with each other [17–20]. The same is true for the veterinarian or the
feed supplier [7,11,21]. Over these vectors, more transmission routes can be analyzed instead of the pure
direct animal movements between farms.

Due to the fact that the inclusion of different transmission routes offers the more detailed illustration
of the real probability of the disease spread, more recent studies also included indirect transmission routes
into the network analysis and evaluated their impact on potential disease spread [5,11,13,18,19,21–25].
However, most of these studies focused on the inclusion of indirect disease transmission via livestock trucks.
This can be explained by the fact that most of the attempts to account for indirect transmission routes
are hindered due to low data availability [21]. Since the introduction of the EU directive 2000/15/EC,
all animal movements have to be recorded in order to be able to perform backward tracing and to identify
the primary outbreak in the case of an epidemic. However, this only includes the direct trade contacts
between farms and does not include information about other transmission routes, e.g., truck rounds,
veterinarian or feed supply, person contact, and shared equipment, which also complicate the analysis of
indirect transmission routes within the animal trade networks.

Another reason for the lower number of studies dealing with indirect transmission routes in animal
trade networks can be that the analysis of monopartite networks is much more straight forward compared
to the analysis of bipartite networks. Furthermore, for bipartite networks, the tools for analysis are still
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under development so that they do not offer the huge toolbox already existing for monopartite network
analysis [10,16].

Although there are still problems regarding the data availability, as well as the methodological framework,
for the best possible realistic overview, all important transmission routes should be considered in the
investigations and their impact on the outcome of network analysis as well as on the potential epidemic
size have to be evaluated. Thus, the aim of the present study was to include additional transmission
routes as bipartite networks and to evaluate the impact on network parameters. Besides the effects
of different transmission routes on the outcome of network analysis, their impact on the results of
the spreading processes within the network should be evaluated. In this study, we focused not on a
specific disease, but mainly on the effect of the network structure on the spreading processes within
the network. For this study, besides the direct trade contacts, the bipartite networks considering the
transportation as well as feed supply information were analyzed and compared to ascertain which network
representation provides the best information. To the authors’ knowledge, this is the first study for the
pig trade network in Germany, which investigates also indirect transmission routes with the help of
network analysis. Furthermore, the impact of indirect connections between farms via feed producers was
not yet evaluated. Thus, the present study provides deeper insights into the transmission routes within
the pig trade network, which are needed in order to better understand potential disease spread and to
establish appropriate disease control and prevention measures.

2. Materials and Methods

2.1. Data

This study analyzed contact data from a producer community in Northern Germany. The observation
period encompassed the years 2013 and 2014. The data included the date of the movement, the supplier, the
purchaser, as well as the number and type of delivered livestock. Furthermore, additional information about
the transport company for each shipment of animals as well as the feed supply, e.g., information about the
feed producer of the farms, was available. Data on feed supply were recorded for a transparency program of
a large food retailer to provide more information about the meat products to the consumers (e.g., producer,
animal husbandry, feed, transportation, and geographical location of the farm), indicating that information
about the feed supply was not accessible for all farms. Only the information about the transport company
and the feed producer was available and not the vehicle that transported the animals or the feed. Moreover,
the data included information on the type of each farm.

2.2. Network Analysis

The transmission routes can be represented by nodes and edges forming a so-called network [10,16].
For instance, in animal trade networks focusing on the direct animal movements between the farms,
the farms are the nodes, which are connected by edges if two farms are trading animals with each other.
In this example, the edges have a clear direction pointing from the supplier to the purchaser of the animals.
Thus, directed edges can only be passed in this given direction. This kind of network and the edges
included in it are called directed. If no clear orientation of the edges is given, the network and its edges are
called undirected.

2.2.1. Monopartite vs. Bipartite Network Representation

Besides the above-given description of a network and its elements (nodes and edges), two types of
network representations have to be differentiated: monopartite and bipartite networks.
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A monopartite network includes only one set of nodes [10,16]. In the case of the pork supply chain,
one monopartite representation can be the direct connection between two farms when they are trading
animals with each other. Here, only one node set, namely the farms, is present in the network.

In contrast to monopartite networks, in a bipartite network, there are two node sets. Only between
nodes belonging to different node sets there can be a connection [10,16]. This means, besides the direct
animal movements, also indirect connections between the farms, e.g., via livestock trucks, veterinarians,
or feed supply, can be illustrated. Here, the farms represent one node set and the other node set might be e.g.,
the transport company, which organized the transport of the animals between two farms. Thus, the farms
are not directly connected anymore, but indirectly over the second node set, e.g., the transport company.

2.2.2. Network Construction

Data on direct animal movements, transport companies, as well as feed supply, were analyzed in
the present study. In this paragraph, the construction of different network representations based on the
available data is illustrated and explained in order to evaluate possible transmission routes in the pig
trade network. Figure 1 provides a detailed description of the different network representations with small
examples characterizing the features and the construction of each network representation.
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Figure 1. Network representations used in the present study. Monopartite network of animal movements
between farms (black), bipartite transportation network (blue) and feed supply network (red). For both
bipartite network representations, the monopartite projection on the farm level is illustrated.

In the first instance, three network representations were constructed out of the available data basis:
the monopartite animal movements network (AM), the bipartite transportation network (TR) (including
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only information about the farms and the transport companies) and the bipartite feed supply network (FS)
(including only information about the connections between farms and feed producers). The monopartite
animal movements network includes the direct trading activities between the farms, which implies that
there is only one node set present in the network. In contrast to this, both bipartite network representations
allow the inclusion of also indirect transmission routes into the network analysis including two node sets.
For the transportation network, the farms are indirectly connected with each other over the transport
company organizing the transport of the animals from the supplier to the purchaser. In the feed supply
network, the farms are indirectly connected with each other over the feed producer delivering feed to
each farm.

In order to be able to compare the direct trade contacts with the indirect transmission routes,
which means to compare the connections between the farms in the monopartite network with the bipartite
networks, both bipartite network representations were projected on farm level. These projections illustrate
the indirect connections which are possible over the transport company or the feed producer. The small
example networks provided in Figure 1 show the process of projection for both bipartite networks.

To create the monopartite projection on farm level for the bipartite transportation network (TRprojected),
a connection between the farms is drawn, if they are connected to the same transport company, e.g., farm A
is connected to farm F because transport company two is used for the animal transport between these
two farms with farm A as the supplier of the animals and farm F as purchaser (Figure 1). This specific
connection is not portrayed in the monopartite animal movements network, thus, focus on the direct trade
contacts might miss possible indirect transmission routes. For the projection of the bipartite transportation
network, the direction of the edges of the bipartite network were considered. In order to allow re-entry of
pathogens into the pork supply chain via contaminated livestock trucks, edge directions were removed
after the projection for the projected transportation network.

Similarly, the projection of the bipartite feed supply network was carried out. Because no information
about the routes of the single feed deliveries was known, the bipartite feed supply network was considered
undirected. Thus, also its projection on farm level (FSprojected) was undirected. As can be seen in the small
example network in Figure 1, not all farms were connected and thus isolated in the projection because
they do not share the same feed producer. This was also the case for the projected feed supply network
analyzed in the present study. Here, about 85% of the farms were isolated. Due to the high number of
isolated farms, all calculations concerning the general network and centrality parameters were performed
for the projected feed supply network with and without isolated farms.

After the projection, both projected network representations can be analyzed with the whole
methodological framework existing for monopartite networks. Furthermore, the projection allows
a comparison of the indirect transmission routes with the direct trade contacts between the farms.

2.2.3. Static Aggregation

All different network representations illustrate static aggregated networks. A static aggregated
network was constructed out of all daily records. This means for the animal movement network that
repeated trade contacts between the same farms during the observation period were aggregated to a single
one. For the other network types, the same procedure was carried out accordingly.

2.2.4. General Network Parameters and Centrality Parameters

Network analysis provides a huge toolbox for the analysis of the whole group structure on a
network level, as well as of the position of each node in the network on a node level. Network level
parameters are called general network parameters and node level parameters are centrality parameters.
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All parameters were calculated using the Python module NetworkX [26]. Table 1 gives a short description
of the general network and centrality parameters used in the present study.

Table 1. Description of the general network parameters and centrality parameters used in the present study.

Parameter Definition

General network parameters
Density The proportion of present edges in comparison to the number of all possible edges [16].

Component Two nodes are part of the same network component if they are connected by at least one path
through the network [27]. A path is thereby defined as a sequence of nodes connected by edges [16].

Fragmentation The proportion of the number of connected components to the number of nodes in the network [28].

Community Subset of nodes in which there are significantly more edges as expected by chance (group of
preferentially linked nodes) [16,29].

Modularity Community detection is characterized by the modularity function Q which is maximized (Qmax) in
order to detect the most suitable partition of the network [30].

Centrality parameters
Degree Measure of the number of edges directly connected to a node [16].

Betweenness Extent to which a node lies on the shortest paths between other nodes in the network [10].
Closeness Mean reciprocal distance from one node to all other reachable nodes in the network [10].

2.3. Hypothetical Simulation of the Spreading Processes within a Pig Trade Network

In the present study, disease transmission was modeled using a simple SIR (susceptible–infected–recovered)
model which was implemented in Python 3.4.2 [31]. No specific disease was simulated but the effect of
the different network structures on the epidemic size. Thus, the present simulation model represents a
hypothetical approach to evaluate the impact of the network structure and the included transmission route
on disease spread. Each farm represented a single epidemiological unit, which was connected according to
the three different network representations: animal movement network, projected transportation network,
and projected feed supply network. In order to allow a further disease spread for the projected transportation
network over the transportation companies, the edge directions were removed for the simulation.

Independent of the chosen network representation, each farm could be in three basic states: susceptible,
infected or recovered (removed). Removed does not necessarily mean depopulation of the whole farm,
but can also mean trade restrictions of the farms or immunity. In all cases, the farms are removed from
the trade network and thus cannot spread the disease to other farms. At the beginning of the simulation,
all farms were in the susceptible state. The epidemic started with a single infected farm chosen uniformly at
random from the whole number of farms in the network. The successors for the directed animal movements
network and the direct neighbors for the projected transportation network and the feed supply network
became themselves infected by different transmission probabilities (T = 0.1, 0.2, ..., 0.9, 0.95). For each
of the newly infected farms, their successors or neighbors, respectively, were determined and became
again infected within the above-described procedure. A farm immediately became recovered, respectively,
removed, after its successors or neighbors, respectively, had been determined. Removed farms played no
further part in the course of the epidemic. No uncertainty or variability in the detection was implemented.
Thus, the detection of an infected farm was assumed instantaneous. The epidemic ended when there were
no more successors remaining in the network with the state susceptible. Furthermore, also no temporal
aspects were included in the model. Due to the fact that only the farms were considered as epidemiological
models no further statements about the removal of transport companies or feed producers can be made.

For each network representation and transmission probability the simulation model was run
for 10,000 iterations, resulting in 300,000 iterations in total (3 network representations (AM—animal
movements network, TRprojected—projected transportation network, FSprojected—projected feed supply
network), 10 transmission probabilities (T = 0.1, 0.2, ..., 0.9, 0.95)). For each iteration, the number of
susceptible, infected, and recovered farms were recorded.
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Generalized linear models were calculated using the GLIMMIX procedure in SAS (Statistical Analysis
System) in order to evaluate the effect of the network representation (AM, TRprojected, and FSprojected) and
the transmission probability (T = 0.1, 0.2, . . . , 0.95) on the number of infected farms. Thus, the effect of the
kind of contact (e.g., direct or indirect), as well as the probability for infection was tested on the size of
the epidemic (e.g., number of infected farms) [32]. Only iterations resulting in more than one infected
farm were kept in the data set for further analyses. In general, the fixed effects named above were added
stepwise to the models, as well as the interaction between the two fixed effects were tested. The Akaike’s
information criteria corrected (AICC) [33] and the Bayesian information criteria (BIC) [34] were used to
compare the different models. The model with the smallest AICC and BIC values was chosen. The best
model fit was obtained with an exponential distribution and a log-link function. All fixed effects (network
representation and transmission probability), as well as the interaction between network representation
and transmission probability remained in the final model. Significant differences in the least square means
(LSMeans) were calculated and adjusted by the Bonferroni–Holm correction [35].

3. Results

3.1. Characterization of the Different Network Representations

3.1.1. Monopartite Animal Movements Network (AM)

The monopartite animal movements network analyzed in the present study consists of a total of
866 farms, which are connected by 1884 static aggregated directed trade contacts between the farms,
which means that repeated trade contacts between the same farms during the observation period were
aggregated to a single one. The 866 farms can be categorized into 18 breeding farms, 265 farrowing farms,
281 finishing farms, 229 farrow-to-finishing farms, 25 abattoirs, and 48 farms with unknown farm type
(due to missing information). Figure 2 illustrates the monopartite and directed animal movements network.
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3.1.2. Bipartite Transportation Network (TR) and Its Projection on Farm Level (TRprojected)

The bipartite transportation network (TR) analyzed in the present study consists of a total of 1250 nodes
that can be separated into 866 farms, which are identical with the animal movements network and 384 nodes
which are responsible for the transportation of the animals. These 384 nodes can be categorized by 21 actual
transport companies and 363 farms, which are also transporting animals. In total, there are 2973 edges of
which 64% were performed by the actual transport companies. A Wilcoxon signed rank test indicated that
the median number of shipments per transport company with 78 (range: 2–430) was significantly higher
compared to the median number of shipments per farm which organized the transport by their own with
2 (range: 2–18). In this network, there are only edges between nodes of different sets, implying that the
supplier is not directly connected to its purchaser but connected to the node that manages the transport of
the animals (Figure 1).

The projected transportation network (TRprojected) consists of the same 866 farms similar to the animal
movements network that were connected by 29,062 undirected edges. Figure 3 gives an illustration of the
projected transportation network.
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3.1.3. Bipartite Feed Supply Network (FS) and Its Projection on Farm Level (FSprojected).

The bipartite feed supply network analyzed in the present study consists of a total of 873 nodes.
Here, the same 866 farms of the monopartite animal movements network constitute the first node
set and seven feed producers constitute the second node set. Due to the fact that for this network
representation no clear direction of the edges can be determined, the network is considered undirected
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with 178 edges connecting farms and their feed producers. One specification of this type of network is that
for only 130 farms information about their feed producers was available, which resulted in 736 isolated
farms. The non-isolated farms are of the following farm types: 8 farrowing farms, 83 finishing farms,
and 39 farrow-to-finishing farms.

The projected feed supply network has the same configuration of number of farms, farm types,
and isolated farms compared to the bipartite feed supply network. The 866 farms were connected by
3284 edges. Figure 4 illustrates the projected feed supply network. The figure was drawn without isolated
nodes to enhance the clarity of the graphical illustration.Animals 2020, 10, x 9 of 17 
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3.2. General Network Parameters and Centrality Parameters

In the following, the two projected network representations (TRprojected and FSprojected) were compared
to the monopartite animal movement network (AM) in order to evaluate the effect of different transmission
routes on the general network and centrality parameters. Due to the high number of isolated farms in
the projected feed supply network, the calculations were performed with and without isolates for this
network representation.

3.2.1. General Network Parameters

Table 2 illustrates the general network parameters for the monopartite animal movements network
(AM) and the two projected network representations (TRprojected and FSprojected). All three network
representations were very sparsely connected with densities ranging from 0.003 to 0.075. Only the
projected feed supply network had a higher density of 0.39 when the isolated farms were not considered
for the calculation of the general network parameters. Although the networks were sparsely connected,
the number of network components was very low, with only five network components for the animal
movements and the projected transportation network and one for the projected feed supply network
neglecting the isolated nodes. Furthermore, for these network representations, almost all nodes were
part of the largest network component. These results can further be confirmed by the low values for
the fragmentation. Only the projected feed supply network has a fragmentation close to one if the
isolated nodes are included in the calculation of the general network parameters. The animal movements
network had the largest number of detected communities with 18, followed by the projected transportation
network with eleven communities, and in the projected feed supply network without isolated nodes five
communities could be detected. Especially for the feed supply network, the five communities can clearly
be identified in Figure 4. The maximum modularity Qmax varied between 0.24 and 0.52.
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Table 2. General network parameters of the animal movements network (AM), the projected transportation
network (TRprojected) and the projected feed supply network (FSprojected). For the projected feed
supply network, the italic numbers in parentheses illustrate the values calculated without isolated farms.

AM TRprojected FSprojected

Number of nodes 866 866 866 (130)
Number of edges 1884 29,062 3284 (3284)

Isolated nodes 0 0 736 (0)
Density 0.003 0.075 0.009 (0.392)

Fragmentation 0.02 0.02 0.98 (0)
Number of components 5 5 737 (1)

Size of largest component 856 (98.8%) 856 (98.8%) 130 (15.0%) (130 (100%))
Number of communities 18 11 741 (5)

Size of largest community 237 (27.4%) 424 (49.0%) 37 (4.3%) (37 (28.5%))
Maximum modularity 0.52 0.30 0.24 (0.24)

3.2.2. Centrality Parameters

Table 3 illustrates the median centrality parameters for the three network representations animal
movement network (AM), projected transportation network (TRprojected), and projected feed supply
network (FSprojected). Comparable with the general network parameters, for the projected feed supply
network, the centrality parameters were calculated with and without isolates.

Table 3. Median (range) centrality parameters of the animal movements network (AM), the projected
transportation network (TRprojected), and the projected feed supply network (FSprojected). For the projected
feed supply network, the italic numbers in parentheses illustrate the values calculated without isolated farms.

AM TRprojected FSprojected

Degree 2 (1 to 204) 35 (1 to 532) 0 (0 to 114)
(63 (6 to 114))

Betweenness 0 (0 to 0.25) 1.45 × 10−5 (0 to 0.20) 0 (0 to 3.28 × 10−3)
(0 (0 to 0.15))

Closeness 0.29 (0.29 to 0.42) 0.44 (0 to 0.68) 0 (0 to 0.13)
(0.65 (0.35 to 0.90))

A Kruskal–Wallis test indicated that all three network representations had a significantly different
median degree and median closeness values (p ≤ 0.05). With the lowest values for the animal
movements network, followed by the projected transportation network and the highest values for
the projected feed supply network without isolated nodes. For the betweenness, although the values were
very low for all three network representations, the highest median betweenness values were obtained
for the projected transportation network which were significantly different from the animal movements
network and the projected feed supply network without isolated nodes.

3.3. Spearman Rank Correlation between the Centrality Parameters of the Different Network Representations

Table 4 illustrates the Spearman rank correlation coefficients between the centrality parameters of
the animal movements network and both projected network representations for the undirected centrality
parameters (degree, betweenness, and closeness). The projected transportation network demonstrated for
all centrality parameters moderate correlation coefficients ranging from 0.55 to 0.68. For the projected
feed supply network, the correlation coefficients were moderate for degree and closeness ranging from
0.41 to 0.45 and low for betweenness. If the isolated farms were removed from the network prior to the



Animals 2020, 10, 1071 11 of 18

calculation of the correlation coefficients, no significant correlations with the animal movements network
were detected.

Table 4. Spearman rank correlation coefficients between the centrality parameters of the animal movement
network (AM) and the projected transportation network (TRprojected) as well as the projected feed supply
network (FSprojected). Values marked with an asterisk (*) are significant (p ≤ 0.05). For the projected feed
supply network, the italic numbers in parentheses illustrate the values for the network calculated without
isolated farms.

AM-TRprojected AM-FSprojected

N 866 866 (130)
Degree 0.61 * 0.41 * (0.09)

Betweenness 0.68 * 0.19 * (0.07)
Closeness 0.55 * 0.45 * (0.13)

3.4. Hypothetical Simulation of the Spreading Processes within a Pig Trade Network

The results of the statistical model showed that all fixed effects, as well as the interaction
between network representation and transmission probability, were significant (p ≤ 0.05). Figure 5
illustrates the LSMeans ± standard error of the number of infected farms for the interaction between
network representation and transmission probability. It could clearly be seen that within each
transmission probability, the differences between each network representation were significant (p ≤ 0.05).
The projected transportation network revealed the highest number of infected farms ranging from 607
to 839, followed by the projected feed supply network with LSMeans ranging from 109 to 130 infected farms.
The lowest LSMeans were detected for the animal movements network with values ranging from three to
eight infected farms.
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Furthermore, the projected transportation network showed an increasing number of infected farms
with increasing transmission probability, whereas for the other two network representations this holds
only true for low transmission probabilities until T = 0.3.

4. Discussion

The aim of the present study was to evaluate the impact of the inclusion of additional transmission
routes on the outcome of network analysis and epidemiological models. Indirect transmission routes
between the farms’ information about transportation and feed supply, respectively, was included in the
analysis as bipartite networks. These bipartite networks were then projected to monopartite networks on
farm level and compared to the direct animal movements network.

The results from the bipartite projected networks could clearly demonstrate that the number of
edges increased immensely compared to the monopartite animal movements network. This was also
the case for the projected feed supply network, although only for 130 farms, which represents 15% of
the farms in the network, information about the feed supply was available and thus, most of the farms
were isolated in this network representation. This massive increase of edges in the projected network
representations can be explained by the fact that contrary to the pyramidal structure of the animal
movements network with all movements going downwards in the production chain, the transportation as
well as the feed supply network allowed for cyclic movements which enable a re-entry of the movements
at the beginning of the production chain via the trucks which transported the animals or the feed between
the farms. Also, other studies confirmed the higher number of connections via indirect links compared to
the direct animal movements. Bernini et al. [11] stated that although indirect contacts are known to be
less infectious than direct contacts [12,36], there are more indirect contacts than direct ones [13–15]. Thus,
indirect transmission routes can play a potential role in disease transmission [11].

Although the number of edges increased immensely for the two projected network representations
in comparison to the animal movements network, the number of network components, the size of the
largest connected component, as well as the fragmentation were identical for the animal movements
network and the projected transportation network. Here, for the animal movements network and the
projected feed supply network without isolates, similar values were obtained. Also, the number of
communities was similar. This implies that the network structures were comparable between the three
network representations. These resemblances could probably be explained by the spatial distribution
of the single nodes. According to Rossi et al. [15], the effect of direct and indirect contacts can occur on
different spatial scales. Indirect contacts were responsible for disease transmission on a more local scale,
whereas direct contacts could spread pathogens over a longer distance. Also, Salines et al. [19] stated that
the swine trade network in France demonstrated geographically clustered communities. They proposed
that a geographical compartmentalization could be used to limit the introduction of a disease transmitted
via indirect contacts.

Besides all these similarities in the general network parameters, the median centrality parameters
revealed clear differences between the three network representations. Moreover, the Spearman rank
correlation coefficients between the centrality parameters of the animal movements network and the
projected transportation network showed only moderate correlation coefficients and no significant
correlation coefficients could be obtained for the projected feed supply network without isolates.
This indicates that the ranking of the farms according to the centrality parameters changed between the
three network representations. According to Frössling et al. [37] and Dubé et al. [38], for the implementation
of targeted control and prevention measurements for disease surveillance programs which are associated
with animal movements, node level centrality parameters can help to enhance the informative value
and sensitivity of such programs. Thus, knowledge about the network structure can guide the targeted
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selection of farms in order to limit the disease spread within animal trade networks [39]. However,
the centrality parameters can only be used reliably for disease control measures if the impact of different
influencing factors, such as the kind of transmission route, the inclusion of additional information as
so-called edge weights, or the choice of the observation period is known. Only if the ranking of the farms
according to their centrality parameters remained relatively stable, they can be used for the prediction of
disease transmission or the implementation of new prevention and control measures.

Regarding the impact of the interaction between network representation and transmission probability
on the number of infected farms, the projected transportation network resulted in the largest epidemic size
for which 70% to 97% of the farms became infected. For the projected feed supply network considering the
network containing isolated farms, the percentage of infected farms was significantly lower with 13% to 15%.
Without isolates, the percentage of infected farms ranged between 84% to 100%. For the animal movements
network the lowest number of infected farms were detected with a maximum of 1%. These large differences
between the animal movements network and the two projected networks can be explained by the directed
nature of the animal movements network with all trade contacts directed downwards the pork supply
chain and ending at the abattoirs [3–5,17,19]. When these dead-ends are reached, a further disease spread
is interrupted. This is the reason that for most studies dealing with the analysis of animal trade networks,
abattoirs are excluded from the network due to their dead-end characteristic [4–6,17,40–42]. In contrast to
this, the two projected network representations are undirected allowing also cyclic movements. For the
projected transportation network this implies that due to contaminated livestock trucks the disease can be
entered again in the production chain. Moreover, Thakur et al. [18] stated that the inclusion of livestock
trucks increased the connectivity of farms in the Canadian swine movement network which simultaneously
decreased the number of links required to traverse the network from one farm to another. Through indirect
contacts via transport companies or feed producers, farms can be connected which are not directly trading
animals with each other. In Figure 1, farm A and farm F are not directly trading animals with each other in
the animal movements network. However, these two farms are connected with each other in the projected
transportation network as they used the same transport company for the transportation of their animals.
Furthermore, the study of Salines et al. [19] stated that the potential epidemic size would be larger for an
indirectly transmitted disease than for a directly transmitted one. This fact facilitates the spread of diseases
within the network, which is confirmed by the results obtained in the present study.

Trucks used for the transportation of animals or feed can be considered as epidemiological units
when they are contaminated [17,18]. Unless trucks are not properly cleaned and disinfected, they can
potentially spread diseases between farms. Thus, according to Dee et al. [43] appropriate cleaning
and disinfection protocols for trucks, as well as biosecurity measures at the farm gate, are essential for
limiting the transmission of diseases via indirect connections. However, Lambert et al. [20] stated that
in Canadian swine trade networks less than one-third of livestock trucks were cleaned and disinfected
between successive transports which facilitates the spread of diseases via indirect connections. Therefore,
transport vehicles have to be considered in the analyses, as the potential lack of appropriate cleaning and
disinfection facilitates disease transmission, although this inclusion might represent an overestimation of
the potential disease transmission and thus a worst-case scenario.

The obtained differences in the epidemiological model based on the three network representations
demonstrate clearly the importance of the integration of different transmission routes into epidemiological
models as the number of infected farms varied widely between the three network representations.
Furthermore, an integration of more than one possible transmission route into the epidemiological models
and the network analysis would be beneficial for further analysis. This was not considered in the present
study as the focus was laid on the comparison between the three different network representations.
As diseases can spread over different transmission routes, the findings of the present study represent a
simplification of the spreading process, but allowed a comparison between the results of the network analysis
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and the simulation model. Moreover, it has to be considered that for all network representations the same
epidemiological model was used in order to enhance the comparability of the results. This model assumed
the same transmission probability for the different edges, which probably overestimated the true epidemic
size for the two projected networks in direct comparison to the animal movements network as already
mentioned above. Previous studies showed that for direct animal contacts the transmission probability
was highest, followed by the contact with contaminated vehicles and the contact with vehicles transporting
products such as feed [8,44–46]. According to Dewulf et al. [47], who analyzed the indirect transmission of
classical swine fever, livestock trucks contaminated with excretions and secretions of infected animals that
are insufficiently cleaned and disinfected, may be an important disease transmission route. Horst et al. [48]
stated that based on the classical swine fever epidemic in The Netherlands from 1997 to 1998, contaminated
empty livestock trucks were the second most important factor for disease transmission. Although indirect
transmission routes usually have a lower transmission probability compared to direct contacts, the huge
number of these indirect connections clarify their importance for disease transmission as already discussed
above. However, for each disease under investigation, the specific transmission probabilities for the direct,
as well as the indirect transmission, have to be chosen appropriately in order to obtain reliable results
from the epidemiological models. Although the transmission probability for the projected transportation,
as well as the projected feed supply network, is clearly lower compared to the direct animal movements
network which was disregarded in the present study, the high number of infected farms is a clear indicator
that these transmission routes should be considered for further epidemiological models.

The present study demonstrated that the inclusion of indirect transmission routes increased immensely
the number of infected farms in comparison to the direct animal movements network. As different indirect
contacts contribute to a varying content to the extent of epidemics depending on the disease under
investigation, further studies should also focus on other indirect transmission routes, such as person
contact by e.g., the veterinarian, or shared equipment between the farms. Moreover, it would be beneficial to
analyze the different transmission routes as multipartite networks to evaluate the mutual interference and to
answer the question of which type of contact is needed or which type of contacts adds significant value to the
results of the network analysis as well as the epidemiological models. Furthermore, indirect transmission
routes may result in geographically clustered network structures, which could be used for geographical
compartmentalization in order to limit disease spread via indirect contacts [19].

The present study represents a case study of a pork supply chain of a producer community in
Northern Germany. Thus, the results of this study may only be representative of this analyzed animal
trade network. However, due to the fact that other pig trade networks focusing on direct animal movements
showed similar characteristics (e.g., pyramidal acyclic and directed structure, right-skewed distribution
of centrality parameters, heterogeneous contact patterns) [4,5,17,49–51], the present results contribute
to a great extent to a further understanding of the spreading processes within animal trade networks.
Particularly the integration of other transmission routes as performed in the present study into simulation
models of the spreading processes within the network based on contact structures is to the authors’
knowledge performed in only a low number of studies for animal trade networks [5,11,13,18–25]. However,
the crude assumptions made for the epidemiological model may lead to an underestimation of the final
epidemic size.

Another important aspect, which has to be taken into account, is the fact that only information
on aggregated trade contacts was analyzed. No information about the temporal development or other
transmission routes was included in the model. Also, the frequency of the contacts was not considered
in the present study. This illustrates an abstraction of the real trading activities and actual transmission
routes in the animal trade network, but it provides an initial insight into the possible disease transmission
over different transmission routes. Natale et al. [1] stated that the inclusion of temporal patterns enables
taking the chronological order of the trade contacts into account. A disease can only be transmitted
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from one farm to another if the movements of animals are consequent in time. This can also be applied
to the actual rounds of livestock transportation per day so that the livestock trucks visit the farms in a
distinctive order [11,19]. If temporal information or information about the actual truck and the rounds
which is taken by this truck is known, this information should be included in further analysis as they can
picture the actual temporal order of trade contacts in more detail [52]. According to Masuda et al. [53] and
Lentz et al. [54], this approach can potentially lead to a more efficient way of analyzing, forecasting, and
preventing epidemics.

5. Conclusions

Besides the analysis of the direct animal movements between the farms, the aim of the present study was
to integrate further transmission routes via indirect contacts over transport companies and feed producers
and to evaluate their impact on the outcome of network analysis and epidemiological models. Although
the number of edges increased immensely from the monopartite animal movements network to both
projected network representations, the general network parameters showed similar results. In contrast,
the centrality parameters revealed significant differences between the three network representations.
Moderate correlation coefficients were only obtained between the animal movements network and the
projected transportation network. For the results of the epidemiological networks, the number of infected
farms was significantly higher for the projected network representations. Whereas in the projected network
representations 70% to 100% of the farms became infected in dependence of the underlying transmission
probability, in the animal movements network a maximum of 1% of the farms became infected. The results
of the present study indicate that the inclusion of indirect transmission routes had an immense impact on
the outcome of centrality parameters, as well as on the results of the epidemiological models. Only detailed
knowledge of the potential transmission routes can provide a deeper understanding of disease spread
via direct and indirect contacts. This knowledge is needed in order to establish control and prevention
measurements which are able to inhibit or to interrupt disease spread within animal trade networks.
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