
Article
Machine learning and netw
ork medicine approaches
for drug repositioning for COVID-19
Graphical abstract
Highlights
d A matrix decomposition model for repurposing broad-

spectrum antivirals

d A graph kernel approach to model perturbations induced by

drugs on the interactome

d Graph kernels can integrate transcriptomics data to improve

drug repurposing

d CoREx: a free online tool to formulate hypothesis for drug

repurposing for COVID-19
Santos et al., 2022, Patterns 3, 100396
January 14, 2022 ª 2021 The Authors.
https://doi.org/10.1016/j.patter.2021.100396
Authors

Suzana de Siqueira Santos,

Mateo Torres, Diego Galeano,

Marı́a del Mar Sánchez, Luca Cernuzzi,

Alberto Paccanaro

Correspondence
alberto.paccanaro@rhul.ac.uk

In brief

We present two complementary machine

learning approaches for drug

repositioning against COVID-19 that

target SARS-CoV-2 and its cellular

processes in the host, respectively. Our

matrix decomposition approach exploits

drug developmental information to

predict broad-spectrum antivirals; our

graph kernel-based approach, rooted in

ideas from network medicine, predicts

which FDA-approved drugs are more

likely to perturb the human subnetwork

that is crucial for SARS-CoV-2 infection/

replication. We also introduce CoREx, a

freely available online tool to reason and

formulate hypothesis about drug

repurposing in the context of biological

networks and pharmacological

information.
ll

mailto:alberto.paccanaro@rhul.ac.�uk
https://doi.org/10.1016/j.patter.2021.100396
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100396&domain=pdf


OPEN ACCESS

ll
Article

Machine learning and network medicine
approaches for drug repositioning for COVID-19
Suzana de Siqueira Santos,1,5,6 Mateo Torres,1,5,6 Diego Galeano,1,3,5,6 Marı́a del Mar Sánchez,4 Luca Cernuzzi,4

and Alberto Paccanaro1,2,5,6,7,*
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THEBIGGERPICTURE Thedevelopment timeline for treatmentsagainstemergentviraldiseasescanbesignif-
icantly reduced by re-using drugs already available on the market—a concept known as drug repositioning.
We present two complementary machine learning approaches for drug repositioning that target SARS- CoV-
2 and host factors, respectively. Our matrix decomposition approach exploits drug developmental informa-
tion to predict the effectiveness of broad-spectrum antiviral drugs. Our graph kernel-based approach, rooted
in ideas from network medicine, predicts which FDA-approved drugs are more likely to perturb the human
subnetwork that is crucial for SARS-CoV-2 infection/replication. We also introduce CoREx, a freely available
online tool that enables scientists to reason and formulate hypotheses about drug repurposing in the context
of biological networks and pharmacological information.
While we have developed these methodologies for COVID-19, our approaches can be applied to any viral
disease.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
We present two machine learning approaches for drug repurposing. While we have developed them for
COVID-19, they are disease-agnostic. The two methodologies are complementary, targeting SARS-CoV-2
and host factors, respectively. Our first approach consists of a matrix factorization algorithm to rank
broad-spectrum antivirals. Our second approach, based on network medicine, uses graph kernels to rank
drugs according to the perturbation they induce on a subnetwork of the human interactome that is crucial
for SARS-CoV-2 infection/replication. Our experiments show that our top predicted broad-spectrum antivi-
rals include drugs indicated for compassionate use in COVID-19 patients; and that the ranking obtained by
our kernel-based approach aligns with experimental data. Finally, we present the COVID-19 repositioning
explorer (CoREx), an interactive online tool to explore the interplay between drugs and SARS-CoV-2 host pro-
teins in the context of biological networks, protein function, drug clinical use, andConnectivityMap. CoREx is
freely available at: https://paccanarolab.org/corex/.
INTRODUCTION

Drug discovery and development present several challenges,

including high attrition rates, long development times, and sub-
This is an open access article und
stantial costs.1 Drug repositioning involves the use of de-risked

compounds in humans, which translates into lower costs and

shorter development times.2 Computational methods can assist

drug repurposing research projects by providing rankings of
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drugs based on predicted therapeutic efficacy, aswell as tools to

help scientists reason about drug effectiveness by integrating

diverse available biomedical knowledge.

Coronaviruses are notoriously difficult to manage, as there is

no specific antiviral treatment that has been proven effective

against the infections they induce.3 Identifying commercially

available drugs with therapeutic effects for COVID-19 could pro-

vide early treatment options until effective therapies become

widely available. A growing corpus of literature identifies several

categories of treatment that revolves around the use of drugs

with a mode of action that targets the molecular structure of

the virus (virally targeted agents), or its cellular processes in the

host (host-targeted agents), or those based on combinatorial

therapies.4–7

In this paper, we present two different machine learning ap-

proaches, and a webtool, for drug repurposing for COVID-19.

Our first machine learning approach focuses on virally targeted

agents and aims at ranking broad-spectrum antiviral (BSA)

drugs. Given a small number of drugs associated with a virus,

and their stage in the drug development process, our matrix

decomposition algorithm assigns scores to a larger group of

drugs with previously unknown associations with the virus. Our

method predicts BSAs against SARS-CoV-2 by exploiting infor-

mation about stages of drug development that are interpreted as

probabilities of drug approval. To our knowledge, our matrix

decomposition model is the first that integrates develop-

mental-stage information to predict the efficacy of drugs against

viral diseases, and we show that this is crucial to obtain better

predictions.

Our second machine learning approach focuses on host-tar-

geted agents, and prioritizes FDA-approved drugs based on

ideas from network medicine.8 In particular, it exploits the

concept of a disease module, which has been instrumental in

the prediction of disease genes for hereditary diseases.9–12 For

a virus, a disease module can be defined as the set of human

proteins (hereafter, host proteins) that interact with viral proteins,

allowing the infection and replication processes. Recently, Gysi

et al.13 have shown that, for SARS-CoV-2, most of the experi-

mentally identified human host proteins14 form a distinct

COVID-19 diseasemodule in the interactome. Our networkmed-

icine-based approach is based on the idea that the binding of

drugs to their protein targets causes a perturbation that propa-

gates through the interactome. By quantifying this perturbation,

it is possible to calculate the extent of the effect that a drug in-

duces on the COVID-19 disease module. Our method ranks

FDA-approved drugs based on this effect, which is estimated

using graph kernels. An important aspect of our method is that

it offers a natural way to model the relative importance of host

proteins for the disease, and we show that our network medicine

approach benefits from this prioritization of host proteins.

Finally, we present the COVID-19 repositioning explorer

(CoREx), an online tool that enables scientists to analyze and

reason about drug repurposing in a functional context on the in-

teractome and thus allows the exploration of our results as well

as the formulation of novel repurposing hypotheses. CoREx inte-

grates several sources of information, connecting functional pro-

tein modules with drug targets and host proteins. CoREx also

provides additional evidence for a drug of interest, such as

whether the drug is on clinical trials for COVID-19, or whether
2 Patterns 3, 100396, January 14, 2022
the drug could reverse the gene expression signature of

SARS-CoV-2 infection based on the Connectivity Map

(CMAP).15,16

RESULTS

A matrix decomposition model for antiviral discovery
Recently, Andersen et al.17 published a dataset containing 850

associations between 126 BSA drugs and 80 viruses for which

they have been approved or are under development. Impor-

tantly, each drug-virus association was manually curated and

is annotated with its stage in the drug development process.

Figure 1 shows the number of drug-virus associations that cor-

responds to each developmental stage, as well as histograms of

the associations grouped per drug and per virus. We notice that

the associations are not uniformly distributed for viruses or drugs

(Figure 1, left and right panels). This type of long-tailed distribu-

tion of entries has been previously observed in datasets that

appear in the recommender system literature, such as Netflix

or Movielens,18 and we have recently exploited this property to

build a recommender system based on matrix factorization for

predicting drug side effect frequencies.19

Various types of recommender systems have recently been

developed for different settings of the drug repositioning prob-

lem. A few methods are based on variations of the non-negative

matrix factorization (NMF) algorithm,20,21 such as the NMF with

L2 regularization by Bakal et al.,22 the TriFactor NMF by Ceddia

et al.,23 and the indicator-regularized non-negativematrix factor-

ization (IRNMF) method by Tang et al.,24 whichwas developed to

repurpose drugs for COVID-19. Our aim is also to build a recom-

mender system that recommends BSA drugs to viruses and the

novelty of our approach lies in the realization that the stages of

drug development for drug-virus associations can be related to

the probability of reaching the final stage of drug development

(hereafter, probability of success). This observation is motivated

by the empirical evidence (e.g., Dowden and Munro25) that

the probability of success of a candidate drug increases as the

candidate drug moves to the next developmental stage in the

drug development process. This led us to develop a novel

objective function that models the probabilities of success

of drug-virus associations using their stage in the drug develop-

ment process. In this paper, we show how the integration of this

type of information greatly improves prediction performance.

In recommender systems based onmatrix decomposition, the

fundamental assumption is that users and movies can be repre-

sented as latent feature vectors in a low-dimensional space, and

that a rating value for a specific user-movie pair is obtained by

the dot product of the corresponding feature vectors. In our

context, each drug and each virus can be represented as low-

dimensional feature vectors in a latent space such that the dot

product between the vectors model effective drug-virus associ-

ations. Having collected all the associations in a binary matrix Y,

where each entry yij = 1 if and only if drug i is associated to virus j

in the Andersen et al.17 dataset (yij = 0 otherwise), for each drug i

we learn a low-dimensional feature vector pi˛Rk (the drug signa-

ture) and for each virus j a low-dimensional feature vector qj˛Rk

(the virus signature), such that yijzpT
i qj. Therefore, our algorithm

amounts to decomposing the n3m matrix Y into the product of

two matrices P˛Rn3k in which each row is a drug signature pT
i ,



Figure 1. Drug-virus dataset statistics

We used the dataset manually curated by Andersen et al.17 (Left) Number of drug-virus associations grouped by their known developmental status. The

development of broad-spectrum antivirals (BSA) starts with in vitro experiments (e.g., cell culture), moves to animal models, and then to clinical trials in humans

(phases I–IV). It terminates with the approval of the drug for commercial use (in red). (Middle) Number of drugs (BSAs) associated to each virus in the dataset. Inset:

the word cloud shows the 14 viruses with most associations. The size of the word is proportional to its number of associations and the five most popular viruses

among drugs are colored blue. (Right) Number of viruses associated to each drug in the dataset. Inset: the word cloud shows the 18 drugs with most associations

and the five most popular drugs among viruses are colored blue.
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and Q˛Rk3m in which each column is a virus signature qj, and

k � minðn; mÞ. Indicating their product with bY , we have Yz
PQ = bY . Matrices P and Q are learned by minimizing the

following cost function:
8>>>>><
>>>>>:

min
P;Q

LðP;QÞ= 1

2

����MA+ðY � PQÞ����2
F|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

approved; phase IV

+
1

2

X
s˛fB;C;D;Eg

askMs+ðY � PQÞk2F
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

In vitro; animal model; clinical trials

+
az

2
jjMz+ðPQÞjj2F|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

zero�driven regularisation

subject to non� negative constraints P;QR0; (Equation 1)
where k :kF is the Frobenius norm of a matrix, + is the element-

wise (Hadamard) product, and the letters A;B;C;D;E indicate

disjoint subsets of entries in Y that are defined according to

the known developmental stages of drug-virus associations, as

explained below. Let us now analyze Equation 1 to understand

how the information about drug developmental stages is inte-

grated into our system to model probabilities of success of

drug-virus associations.

During learning, the drug-virus associations are divided into

groups according to their stage of development. The first term

in Equation 1 is the fitting constraint on the approved and phase

IV drug-virus associations (set A). MatrixMA is used to apply the

summation only to entries in Y belonging to the set of approved

associations A, being defined as: MA
ij = 1 if drug i was approved
or is in phase IV for virus j, or 0 otherwise. Thus, the first term

of Equation 1 is attempting to find a decomposition PQ to recon-

struct the associations in set A exactly. The second term in

Equation 1 has an equivalent role for the remaining known asso-
ciations in Y, corresponding to earlier stages in the drug develop-

ment process—sets B, C, and D contain entries in clinical trials

phases I, II, and III, respectively, while set E contains associa-

tions in in vitro and animal model stages. Here the corresponding

Ms matrices are used to apply the summations only to entries

belonging to the corresponding sets (Ms
ij = 1 if the entry yi;j be-

longs to set s). However, for these sets, their contributions to

the loss are weighted differently using the parameters

as˛½0;1�. These parameters have the key role of downweighting

these terms in the minimization, in a way that reflects their higher

uncertainty of success due to their earlier stage of drug develop-

ment, thus effectively coding probabilities of success for each

subset. Similarly, the third term in Equation 1 is used to down-

weight the importance of the zero entries of Y while also serving
Patterns 3, 100396, January 14, 2022 3



Figure 2. Overview of our matrix decomposition model for predicting effective drug-virus associations

Totals of 850 associations for n= 126 different BSAs andm= 80 distinct viruses were collected from the Andersen et al.17 database. The observed associations

were arranged into an n3m matrix Y by setting yij = 1. Unobserved associations were encoded with zeros. Our algorithm decomposes the matrix Y into the

product of twomatrices,P (of size n3 k) andQ (of size k3m). Bymultiplying thematricesP andQ, we obtain bY , whichmodels Y, where all the entries are replaced

with real numbers—these correspond to our predicted scores. Rows of P are the BSA feature vectors (or BSA signature); columns of Q are the virus feature

vectors (virus signature). The lower illustration depicts how our model discovers a low-dimensional signature vector for the antiviral drug zanamivir, and a low-

dimensional signature vector for SARS-CoV-2. The dot product of these two signatures is the predicted efficacy of zanamivir against SARS-CoV-2.
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as a regularization term.19 Finally, we impose non-negative con-

straints on P and Q to favor the interpretability of the learned

representations.19,20

Thus, our model is closely related to NMF.20 Bothmodels seek

to decompose a data matrix Y into the product of two non-nega-

tivematrices P andQ. However, the NMFmodel considers all the

entries in Y equally during the learning—this works well when en-

tries have the same meaning, e.g., pixels in an image.20 Instead,

in our approach, we assign different levels of importance to sub-

sets of entries to reflect the drug stages of development, thus

coding the probability of drug success, which is what we are

trying to predict. This gives rise to a loss function in Equation 1

that is different from NMF. Finally, notice that, in our model, if

we set the values of all the a parameters to 1—which amounts

to discarding the role of probabilities of success—we obtain

the original NMF model.

An overview of our matrix decomposition model is illustrated

in Figure 2. Our starting point is the matrix Y containing binary

drug-virus associations. We learn the matrices P and Q, which

minimize the loss function in Equation 1, by employing an itera-

tive algorithm that uses a simple multiplicative update rule (see

the Experimental procedures). Our algorithm, inspired by the

diagonally rescaled principle of NMF,20 is fast, it does not require

setting a learning rate or applying a projection function and it sat-

isfies the Karush-Kuhn-Tucker (KKT) complementary conditions

of convergence (see the Experimental procedures). Having

learned P and Q such that YzPQ, we calculate the matrix bY =

PQ. Note that, while Y contains binary entries, bY contains real

positive numbers that are our predicted scores.

Predicting effective BSA drugs against viruses

To perform an in silico evaluation of the performance of our

model, we formulated a matrix completion task under a leave-

one-out cross-validation (LOOCV) procedure using the 49 BSA
4 Patterns 3, 100396, January 14, 2022
drugs that have been approved for use, and the 22 that reached

phase IV of clinical trials for 28 viruses. To prevent overfitting and

biases during hyperparameter tuning, we performed a different

LOOCV by using clinical trials associations from phases I, II,

and III to set the model parameters. Our final model parameters

were: k = 5; aB = 0:16; aC = 0:27; aD = 0:71; aE = 0:01, and

az = 2 (see the Experimental procedures).

We compared the performance of our algorithm with the other

drug-repurposing approaches that wementioned earlier, namely

the NMFwith L2 regularization,22 the TriFactor NMF,23,26 and the

IRNMF,24 which was also developed for COVID-19. Moreover,

we also included standard NMF and truncated singular value

decomposition (tSVD)18 as baselines. The relation between pre-

vious NMF-based drug repositioning methods and our model is

explained in Note S1.

Following other works that used LOOCV evaluations,9,27,28 we

evaluated the performance at predicting one drug at a time,

measuring how often that drug was found within the first 1, 5,

10, 15, 20, 25, and 30 drugs predicted by the different algo-

rithms. Here, it is important to remind ourselves that our model

takes as input an incomplete sparse drug-virus matrix, with

only 8.43% non-zero entries, and outputs predicted scores for

all the entries in the matrix. In the evaluation presented here,

we focus on validating predictions corresponding to the inter-

esting case where drug-virus associations are not yet under

development (see Note S2 for the case of predicting drugs

already under development, but not approved, for specific vi-

ruses). Therefore, in our LOOCVprocedure, one drug-virus asso-

ciation (approved or phase IV) was removed at a time from the

drug-virus matrix Y (by setting the corresponding entry to

zero). We then trained the model, and scores were predicted

for all drugs. Finally, we ranked drugs that had no known associ-

ation with that virus and checked the percentage of cases in



Figure 3. Performance at predicting

approved/phase IV BSAs for 28 viruses

Percentage of approved or phase IV BSA drugs

found for a specific virus in the top K predictions

retrieved. The performance of our method is

compared with different matrix decomposition

algorithms in a leave-one-out fashion. NMF, non-

negative matrix factorization; tSVD, truncated

singular value decomposition. A baseline based on

random scores sampled from a uniform distribu-

tion is also included.
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which the correct (effective) drug for the virus was found among

the top K predictions.

Figure 3 shows the performance of the methods at predicting

effective (approved/phase IV) BSA drugs against specific vi-

ruses. Our model outperforms the competitors for each number

of predictions retrieved: by 9.8%–22.5% in the top 1, by 16.9%–

42.2% in the top 5, by 22.5%–42.2% in the top 10, and by

25.3%–38% in the top 20. Overall, our method could recover

70% of the phase IV/approved BSA drugs for 28 distinct viruses

in the top 20 predictions. We also observed that, in some cases,

tSVD and TriFactor NMF perform slightly better than NMF. The

comparison of our method’s performance with IRNMF was per-

formed in a smaller subset of the matrix Y (see Figure S1 in

Note S1).

The good prediction performance of our model prompted us

to ask how much of the prediction power could be attributed

to the integration of developmental stages information in our

cost function (see Equation 1). Our model significantly improves

performance over two control baselines that: (1) randomize

developmental stage information in the training set and (2) re-

move developmental stage information from our cost function

(see a detailed discussion in Note S3).

The analysis of our predictions for SARS-CoV-2 is presented in

detail in the ‘‘Evaluation’’ section, together with the results of our

network medicine approach.

Repositioning FDA-approved drugs with network
medicine
The majority of BSAs considered previously target viral proteins.

In our work, we also explored approaches that consider drugs

targeting human proteins. Human proteins interact with each

other, forming a protein-protein interaction (PPI) network. This

and other biological networks have been explored in relation to
disease—this area of research has often

been called network medicine. It has

been shown that proteins associated with

specific hereditary diseases tend to cluster

in neighborhoods of the interactome (the

disease module),8,29,30 and successful ap-

plications of molecular network analysis

have been reported for the identification

of disease genes,9 drug development,10

and drug efficacy prediction.29

The use of network medicine for assist-

ing drug repositioning was originally

applied to genetic diseases.29 A drug in-
duces its effects on a human PPI subnetwork by binding to its

target proteins,31,32 and this causes a perturbation in the interac-

tome that is then propagated. Thus, drug efficacy for a genetic

disease can be associated to how likely the drug is to affect its

disease module through the perturbations propagated in the

humanPPI network.29 To implement this idea, Guney et al.29 pro-

posed a distance (hereafter, the Guney distance) based on the

shortest path length between the disease module and the drug

targets.

Recent studies suggest that an analogous approach can be

useful for infectious diseases such as COVID-19.13,33 Viruses

hijack host proteins to facilitate their replication, and hence the

inhibition or knockdown of such host proteins can block viral

replication.34 Gysi et al.13 have shown that, for SARS-CoV-2,

most of the experimentally identified host proteins14 group

together in a large connected component, forming a COVID-19

disease module, as illustrated in Figure 4A with red nodes

(host protein subnetwork). Therefore, the idea here is to find

drugs that, by binding to their targets (blue nodes in Figure 4A),

are likely to perturb this module.

We can think of the perturbation caused by a drug as a pro-

cess in which the effect of the drug diffuses on the PPI network

starting from its targets. Thus, our drug repurposing problem

translates into the problem of the diffusion between drug targets

and the set of host proteins. Gysi et al.13 implemented this idea

for COVID-19 by using the diffusion state distance (DSD).35

Kernels on graphs are appealing for modeling a diffusion pro-

cess on a network. They are theoretically well founded in statis-

tical learning theory,36,37 and have shown good empirical results

in many applications.35,38,39 Graph kernels can be interpreted as

measures of similarity between nodes in a network. There are

different types of kernels. The p-step random walk kernel, for

example, is directly associated to the number of times a random
Patterns 3, 100396, January 14, 2022 5
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Figure 4. Overview of our network medicine

approach

(A) The human interactome containing both host

proteins (red) and drug targets (blue).

(B) The totals of 14,941 drug target associations

between N = 2,197 FDA-approved drugs and nV =

18,505 proteins are represented by a binarymatrix T

(blue matrix). Multiple graph kernels are calculated

on the interactome, resulting in nV3nV matrices

(green matrices). The host proteins are represented

by a vector h of size nV (red vector) indicating their

weights (based on gene expression data).

(C) Our kernel score is calculated using a matrix

multiplication to obtain a prediction score for each

drug.

(D) The obtained ranking is evaluated using different

types of evidence: in vitro efficacy against SARS-

CoV-2, Connectivity Map, and clinical trials.
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walker starting from a node i visits a node j after p steps.36

Another example is the diffusion kernel (or heat kernel), which

can be thought of as a random walk with an infinite number of

infinitesimally small steps. An alternative interpretation is that

this kernel corresponds to the amount of heat that reaches a

node j after diffusing an initial heat from node i.36

Importantly, kernels on graphs can be applied in a natural way

to nodeswith weights. This property can be particularly useful for

our problem: we can assignweights to the host proteins tomodel

the different roles that they have for the infection/replication of

the virus. For example, it has been shown that the ACE2 protein

receptor is the viral entry factor of SARS-CoV-2.40 Another study

based on gene expression experiments on infected SARS-

CoV-2 cell lines suggests that certain protein-coding genes

play a key role during the infection process.41 Then, the amount

of change in gene expression after SARS-CoV-2 infection may

be associated with the level of importance of the protein for

the infection. In addition, perturbing host proteins whose expres-

sion levels change the most may be important for reverting the

effect that the infection causes in gene expression. Predicting

drugs that might revert this effect has been shown to be a
6 Patterns 3, 100396, January 14, 2022
good strategy for assisting in the discovery

of effective small molecules for different

diseases.15,42

To assist the repositioning of drugs for

COVID-19, we used five different kernels

on graphs and weighted the host proteins

with differential gene expression data

(absolute value of the log fold change

between the gene expression levels of

COVID-19 patients, and controls—see

experimental procedures for details on

the RNA-seq data). We used the interac-

tome assembled by Gysi et al.,13 and a

set of 336 human proteins that were iden-

tified as hosts of SARS-CoV-2 (see exper-

imental procedures). Every FDA-approved

drugwith known targets in this interactome

was ranked by each of the kernels in our

approach (see experimental procedures).
The selected kernels are defined in terms of the graph Laplacian

(see experimental procedures), as shown in Table 1. For each

drug, we obtain the graph kernel-based similarities between

each of its targets and each of the host proteins. The final score

of a drug is the sum of these similarities weighted by the amount

of change in the host protein expression levels after infection.

Drug scores are then ordered, obtaining a drug ranking which

is evaluated. We also calculated an aggregated ranking, which

we called avgRank, where the ordinal position of each drug

was obtained by simply averaging the ranking position that the

drug had obtained in each of the kernels.

The mathematical formulation of this approach turns out to be

quite simple. Let nV the number of proteins in the PPI network, N

the number of FDA-approved drugs, and T an N3nV matrix of

drug target associations, where Tij = 1 if j is a target of drug i,

and 0 otherwise (see drug targets box in Figure 4B). Let K be a

square matrix of dimensions nV3nV representing kernel-based

similarities between proteins on the PPI network (see PPI kernels

box in Figure 4B). Let h be an nV -dimensional column vector con-

taining weights related to the differential expression data of

the host proteins and zeros for the remaining proteins (see



Table 1. Graph kernels

Kernel Formula

p-step random walk K = ðaI� ~LÞp
Diffusion process K = expð� s2 =2~LÞ
Regularized Laplacian K = ðI+ s2 ~LÞ�1

Commute time kernel K = L+

Inverse cosine cos~Lp=4

Definition of graph kernels based on the normalized Laplacian (~L), and

pseudoinverse of the Laplacian (L+ ), where a, p, and s are given

parameters.
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host proteins box in Figure 4B). We obtain prediction scores

simultaneously for all drugs with the following matrix multiplica-

tion Sd =TKh (also illustrated in Figure 4C), resulting in a vector of

drug scores, Sd.

Evaluation
To evaluate the performance of our methods, we used three

different sources of evidence from ongoing research: in vitro

experiments, clinical trials, and CMAP scores. These sources

are independent of each other; hence they can be used to pro-

vide an independent evaluation of the efficacy of repurposing

methods. Note that none of these three sources of evidence

can be considered a gold standard, as none of them can ensure

therapeutic effects for COVID-19 patients. Yet, they represent a

proxy of effectiveness of drugs for COVID-19.

In vitro experiments involving drugs with antiviral efficacy indi-

cate their potential to be effective at reducing viral infection and

replication in the host cell. Evaluating our models with this kind of

evidence allows us to assess whether they prioritize drugs with

molecular antiviral efficacy versus other drugs.

Clinical trial studies are used to assess pharmacokinetics,

dosage, therapeutic efficacy, and safety of drugs.43 Each phase

in clinical trials involves an increasing number of patients, thus

achieving higher statistical significance while minimizing the

number of patients that risk developing side effects.44 Indicating

a drug in a clinical trial requires satisfying several conditions set

by biologists and medics, and arguments of why it might be

effective. This suggests the investigators believe that the drug

is safe and a potential candidate to treat the disease. Evaluating

our models with clinical trial evidence allows us to determine if

they prioritize drugs that would be included in such trials.

We use the CMAP15,16 to contrast changes in gene expression

levels caused by a drug (drug expression profile) with changes

induced by SARS-CoV-2 infection (disease expression profile).

The hypothesis is that, if a drug expression profile is opposite

to a disease expression profile, then it could potentially ‘‘revert’’

the disease signature and have therapeutic effects—this idea

has already been used before15,42 to predict new therapeutic in-

dications for drugs and has also been applied to COVID-19.45,46

Therefore, evaluating our models with this source of evidence

allows us to assess whether they prioritize drugs with potentially

therapeutic effects.

For the matrix decomposition approach, the evaluation was

carried out using the 126 BSAs in the drug-virus dataset.17 For

the network medicine approach, the evaluation was done on

an interactome of 18,505 proteins with 327,924 interactions.13
With this approach we ranked 2,197 approved drugs from

DrugBank.47

We used the types of evidence described above to create

three datasets where drugs were classified as either effective

or non-effective for COVID-19 (see experimental procedures).

This allowed us to assess the performance of a prediction

method by formulating a binary classification problem, where

the task is to discriminate the two sets of drugs, and then calcu-

lating binary classification metrics based on the analysis of the

confusion matrix.

However, we note that the lack of a set of drugs with proven

therapeutic effect against COVID-19 (i.e., a gold standard),

poses a challenge for this type of evaluation—this problem has

also been described before, e.g., in Zhou et al.48 and Gysi

et al.13 We hypothesized that drugs with evidence against

COVID-19 should behave differently from the remaining drugs.

This hypothesis has an actionable consequence: a method can

be evaluated by assessing whether it can discriminate between

the two groups of drugs (effective and non-effective)—if it can,

this is an indication that we can possibly trust the predictions it

makes. Therefore, together with traditional metrics for binary

classification, we also assessed whether prediction methods

provided scores that were statistically different for the two clas-

ses of drugs. Our results (Figures 5A, 5B, and 5F–5H) show that

the differences between the scores are significant for our matrix

decomposition approach as well as our kernel methods across

several evaluation settings. We observe that other network-

based methods do not pass this test with such consistency

(see Notes S5–S7). In the following, we present the results for

each type of evidence, separately.

In vitro evaluation

Of the 126 BSAs in the drug-virus dataset, 10 have shown in vitro

efficacy against SARS-CoV-2.13,49 In our evaluation, these drugs

were removed one at a time from the drug-virus matrix Y (by

setting the corresponding entry to zero). We then trained our ma-

trix decomposition model, and scores were predicted for all the

drugs. We used the Wilcoxon-Mann-Whitney p value to assess

the difference between the scores obtained for those 10 drugs

and the rest of the drugs. Figure 5A shows that ourmatrix decom-

position method significantly assigns higher scores to BSAs with

in vitro efficacy (Wilcoxon-Mann-Whitney p value = 4.923 10�7).

Precision and recall are shown in Figure S2 (Note S1).

Scores predicted by the kernel-based methods are shown in

Figure 5F. Of the 2,197 FDA-approved drugs considered by

our network medicine approach, 81 have shown in vitro efficacy

against SARS-CoV-2.13,49 We observed that the scores of drugs

with in vitro efficacy against SARS-CoV-2 are significantly higher

than those of the remaining drugs for all kernels and the average

ranking (avgRank).

In Figure 5C, we show that the kernel-based methods per-

formed better than the competitors for the in vitro evaluation.

The recall@150 of the average ranking is 49.71% higher than

DSD, and 110.57% higher than the Guney distance. The preci-

sion@150 of the average ranking is 50.54% higher than DSD,

and 108.96% higher than the Guney distance.

Clinical trial evaluation

Of the 126 BSAs in the drug-virus dataset, 28 are in clinical trials

(see experimental procedures). Figure 5C shows that prediction

scores by our matrix decomposition method are significantly
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Figure 5. Analysis of the predictions for COVID-19

We used three different sources of evidence: in vitro (A, C, and F), clinical trials (B, D, and G), and CMAP (E and H).We compared scores for drugswith evidence of

efficacy against SARS-CoV2 versus scores for the remaining drugs. Our matrix factorization model (A and B) and kernel-based methods (F, G, and H) provide

scores that are significantly different between the two groups of drugs in every case (Wilcoxon-Mann-Whitney p < 0.05). We formulated a binary classification

problem to discriminate between drugswith evidence of efficacy against SARS-CoV2 and the remaining drugs. (C, D, and F) Comparison of precision and recall at

top 150 for our kernel-based methods (commute time, diffusion, p-step, regularized Laplacian, and inverse cosine kernels, and avgRank), DSD, and Guney’s

distance. The highest values are colored.
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higher for drugs in clinical trials (Wilcoxon-Mann-Whitney

p value = 1.5 3 10�3). Our method can recover 50% of the cor-

rect BSAs in the top-20 predictions retrieved (see Figure S2 in

Note S1).

Scores predicted by the kernel-based methods are shown in

Figure 5G. Of the 2,197 FDA-approved drugs considered by

our network medicine approach, 170 are in clinical trials. We

observed that the scores of drugs in clinical trials for COVID-19

are significantly higher than those of the remaining drugs for all

kernels and the average ranking (avgRank).
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In Figure 5D, we show that the kernel-based methods per-

formed better than the competitors for the clinical trials evalua-

tion. The recall@150 of the average ranking is 17.02% higher

than DSD, and 117.11% higher than the Guney distance. The

precision@150 of the average ranking is 16.88% higher than

DSD, and 114.94% higher than the Guney distance.

CMAP evaluation

We queried CMAP15,16 obtaining a list of 23 FDA-approved

drugs that present an expression profile opposite to the one ex-

pressed by SARS-CoV-2 infected cells with a t score between
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�90 and �100 (see experimental procedures). Figure 5H shows

that the scores of FDA-approved drugs with strongly negative

CMAP correlation are significantly higher than those of the re-

maining drugs for all kernels and the average ranking (avgRank).

In Figure 5E, we compared the performance of the kernel-

based methods and competitors for the CMAP evaluation. Our

average ranking has the same performance as DSD and better

performance than Guney’s distance (recall@150 is 50.72%

higher, and precision@150 is 47.43% higher). The regularized

Laplacian kernel had the best performance, with recall@150

16.48% higher than DSD, and 60.7% higher than Guney’s dis-

tance, and precision@150 17.5% higher than DSD, and

57.14% higher than Guney’s distance.

On the importance of integrating transcriptomics data. An inter-

esting question is whether weighting host proteins by differ-

ential expression improves our network medicine approach. To

answer this, we compared results based on weighted host

proteins and unweighted/binary host proteins. For in vitro and

clinical trials evidence, we observed that the Wilcoxon-Mann-

Whitney p values are smaller (more significant) when using

weighted host proteins when compared with considering all

host proteins equally. The recall@150 and precision@150 are

consistently higher when we use weights for the three types of

evidence. These results are presented in Note S8.

Our results hold for different PPI networks and evaluation set-

tings. An important question is whether results are consistent

across different interactomes and how sensitive they are to

different choices of the PPI network. We re-computed the

kernel-based scores using the recently released HuRI PPI50 as

well as the interactome compiled by Cheng et al.30 Results are

presented in Note S7. For most of the kernels, FDA-approved

drugs with in vitro, and clinical trials evidence have a significantly

higher prediction score than the remaining drugs. For the three

sources of evidence, the kernel-based methods have the higher

recall@150 and precision@150 when compared with competi-

tors. This indicates that our results have a high consistency

across different interactomes.

Comparison with the approaches by Gysi et al.. We also exten-

sively compared our kernel methods with the methods recently

proposed by Gysi et al.,13 although the comparison could only

be carried on the Gysi et al. dataset—this consists of 918 drugs

including approved, investigational, experimental, nutraceutical,

and withdrawn drugs. Overall, our kernel methods perform bet-

ter with respect to in vitro and CMAP evidence—note that, in

several cases, the scores obtained by the Gysi et al. methods

for sets of effective and ineffective drugs are not significantly

different. GNN methods perform better than kernel methods

only with respect to clinical trial evidence. A summary of the

different datasets used can be found in Note S4. A detailed

description of all the experiments comparing our approaches

with those from Gysi et al. is presented in Note S6.

CoREx
As a further way to evaluate drug repurposing against SARS-

CoV-2, we developed CoREx, a web-based tool that enables

scientists to study drug repurposing in a functional context on

the interactome. Given a set of drug targets, CoREx offers the

users a panoramic point of view that puts together several bio-

logically relevant contexts (i.e., functional relationships, PPIs,
clinical trial status, CMAP scores, and drug’s anatomical thera-

peutic chemical [ATC] categories). Our goal is to assist re-

searchers to reason about drug alternatives, drug combinations,

and mechanisms of actions by analyzing the interplay between

drug targets and host proteins in these different contexts.

Centered around ideas from network medicine, CoREx pro-

vides two different tools: the functional analysis tool and interac-

tome analysis tool. The functional analysis tool allows the user

to study the relationships between drug targets and host proteins.

A functional interactome is built by integrating protein networks

available in the STRING database51 in a way that maximizes the

probability that two interacting proteins share functional charac-

teristics (see Note S10 for details on the network combination).

Then, we use the ClusterONE algorithm52 to identify functionally

similar groups of proteins, and filter those that contain at least

one SARS-CoV-2 host protein, and at least one drug target. The

functional enrichment of these groups is then analyzed using

Enrichr.53 All the drugs that interact with the module through their

targets are enriched with their ATC categories, CMAP evidence,

and clinical trial status against COVID-19. All of these results

are presented to the user in a user-friendly interactive graphical

interface, as shown in Figure 6.

The interactome analysis tool allows the user to visualize the

perturbation caused by a drug on the SARS-CoV-2 host protein

subnetwork. When a drug is selected, each node (host protein) is

colored based on the strength of the resulting kernel score. This

tool complements CoVex, by Sadegh et al.,54 which analyzes the

interplay within the virus-host-drug triad using paths on the inter-

actome. Instead, CoREx calculates the effects that drugs have

on individual host proteins through the different graph kernels.

We have preloaded our interactome analysis tool with those

FDA-approved drugs that have available drug targets fromDrug-

Bank.47 Users can also submit a list of drug targets, and visualize

the perturbation that a hypothetical drug (or drug combination)

with those targets would have on the host proteins subnetwork.

CoREx is available at https://paccanarolab.org/corex and

supporting datasets are updated every 2 weeks. The project is

also open-source, and the repository is publicly available at

https://github.com/paccanarolab/corex.

DISCUSSION

The development of computational approaches that can assist in

the rational and fast discovery of treatments is critical for emergent

infectious diseases such as COVID-19.1–3,6,48 Drug repositioning,

the re-use of drugs already on the market, can help to speed up

the development of such treatments by prioritizing known safe-

in-human drugs for clinical trials involving COVID-19 patients. In

this paper, we proposed two machine learning approaches that

can assist in the prioritization of drugs, together with a human-in-

the-loop website tool, CoREx, to assist current research efforts

for finding drugs with therapeutic efficacy against SARS-CoV-2.

Li and De Clercq4 indicated that finding potential repositioning

candidates for COVID-19 should be focused on two main strate-

gies: virally targeted agents and host-targeted agents. Our

matrix decomposition approach is aimed at the first reposition-

ing strategy, whereas our network medicine approach, together

with CoREx, is aimed at the second one. Our first approach ranks

126 BSAs by their predicted efficacy against SARS-CoV-2, and
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Figure 6. Screenshot of CoREx displaying a functional module for Sulfasalazine (highlighted in green in the ‘‘Drug’’ list)

The module is depicted as a network on the top left where nodes represent proteins, edges represent shared functional characteristics, and the thickness of the

edges represents the strength of such functional similarity. Host proteins are depicted as diamonds, drug targets are colored. The list of drugs with at least one

target in this functional module is presented in the center, alongside CMAP scores for five cell lines (on the left), and an indicator of whether the drug is currently in

clinical trials (on the right). The bar plots on the right part correspond to the functional enrichment scores for each GO domain. The bar plot on the bottom left

section of the image summarizes the ATC categories of the drugs targeting this functional module.
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our second approach ranks 2,197 therapeutically diverse FDA-

approved drugs by their predicted ability to perturb the

COVID-19 disease module.

The objective function of our matrix decomposition approach

in Equation 1 is inspired by our recent work to predict the fre-

quencies of drug side effects.55 The main feature of this new

model is that it can account for varying levels of uncertainties

in the data. We realized that different levels of drug develop-

mental evidence can be thought of as indicating different levels

of confidence in drug-virus associations and can be interpreted

as probabilities. Our new model exploits the richness of this in-

formation and its outputs can be interpreted as probabilities of

drug approval. Experiments in which we randomized or removed

information about drug developmental stages show that such in-

formation is key to achieve a good performance (see Note S3).

The implementation of our algorithm is freely available: https://

github.com/paccanarolab/DrugRepoCOVID.

Our network medicine approach aims at prioritizing FDA-

approved candidates based on their network-modulated ef-

fects on the COVID-19 disease protein module. In contrast to
10 Patterns 3, 100396, January 14, 2022
our first approach, our network medicine approach does not

explicitly model the clinical efficacy of drugs, but rather their

mechanistic effects on the protein interaction network. This

means that a high score points to a high probability for the

drug to perturb the disease module. Note, however, that our

kernel methods, like most network-based approaches,13 can

quantify the perturbation on the interactome, but cannot predict

in which way the host will ultimately be affected by such pertur-

bations (see Note S11.2).

An important advantage of our kernel approaches is that they

offer a natural way to integrate gene expression data and thus

allow us to focus the models on particular proteins that play a

key role in the infection. Our experiments show that the integra-

tion of transcriptomics data improves the results (see Note S8).

Furthermore, we have shown that our kernels have similar per-

formance across multiple interactomes (see Note S7).

We have shown that our predictions from both approaches

are aligned to ongoing in vitro experiments and clinical trial

studies. An interesting question is whether there is additional bio-

logical evidence of efficacy for the best scoring drugs from our

https://github.com/paccanarolab/DrugRepoCOVID
https://github.com/paccanarolab/DrugRepoCOVID
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approaches.Wemanually curated the top 20 predicted drugs ob-

tained from each approach. Our analysis reveals that many of

these drugs are linked to ongoing efforts against COVID-19:

several top-ranked BSAs from our matrix decomposition model

are part of ongoing clinical trials for COVID-19, or are even already

approved for compassionate use in COVID-19 patients56–59;

several top-ranked drugs from our network medicine approach

have also shown efficacy either as therapeutic alternatives or as

instruments for reducing risk of infection and transmission.60–63

An in-depth analysis of the top 20 predictions, including an anal-

ysis of their ATC classification and references to the literature, is

presented in Note S11. A comparison with the set of drugs pre-

dicted byGordon et al.14 is also provided in Note S9. Finally, while

the datasets that we used in our two approaches are different, a

few drugs could be predicted by both methodologies—these

are analyzed in Note S12.

Our computational approaches leverage available data to

produce the predictions. As more reliable data becomes avail-

able, we expect the performance of our models to increase

accordingly. Recently, COVID-19 atlases have been published,

including single-cell transcriptomics data64,65 that could be ex-

ploited with our approaches.

We also point out that, while we have developed and tested our

two approaches forCOVID-19, both of themarediseaseagnostic.

The general principles underlying our matrix decomposition and

network medicine approaches will remain valid for any other viral

disease, and therefore our methods could be applied for drug re-

purposing in these scenarios, as long as the data are available.

Finally, the integration of heterogeneous sources of omics in-

formation with multiple layers of interconnection is a challenge in

itself. Prime examples of such complex data are the molecular

datasets involved in drug repositioning. We built CoREx

(https://paccanarolab.org/corex ) with the goal of providing the

research community with a tool for the analysis and the formula-

tion of hypothesis about drugs that can be repurposed for

COVID-19. CoREx combines transcriptomics, proteomics, and

functional information about the human genome together with

knowledge about drugs and their protein targets, and we make

it available for the scientific community.
Limitations of the study
Our matrix decomposition approach is applicable to any drug for

which the developmental stage associating it to a viral disease is

known. The drug may or may not be virally targeted, and the

model itself will not impose such a restriction. Themain limitation

of the method is that it relies on drug-virus associations anno-

tated with their stage of development, and publicly available

data of this type is currently scarce—we only found this type of

information in the manually curated dataset by Andersen

et al.17 that we used in our study. The main limitation of our

network medicine approach is that it can only be applied to

drugs with known protein targets on the host interactome.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Alberto Paccanaro (alberto.paccanaro@rhul.

ac.uk).
Materials availability

This study did not generate new unique reagents.

Data and code availability

Original data have been deposited to Mendeley Data: https://doi.org/10.

17632/p7y5wmschg.1. The implementation of our matrix factorization

model can be found at https://github.com/paccanarolab/DrugRepo

COVID. CoREx is available at https://paccanarolab.org/corex, and the

source code is publicly available at https://github.com/paccanarolab/

corex.

Datasets

d The drug-virus dataset.We used the dataset curated by Andersen et al.17

(downloaded April 6, 2020). Drugs were mapped to DrugBank IDs, when

available. Each drug-virus association was annotated with their develop-

mental status/stage.Thereareeight stagesofdevelopment in thedataset,

namely: cell culture/co-culture, primary cells/organoids, animal model,

clinical trials phase I, phase II, phase III, phase IV, and approved. In total,

our dataset contains 850 associations between 126BSAs and 80 viruses.

d Protein interaction network. The PPI network was obtained from Gysi

et al.,13 which contains 18,505 human proteins, and 327,924 interactions.

d FDA-approved drugs and drug targets. FDA-approved drugs and their

drug targets were retrieved from DrugBank47 and Gysi et al.13 Our set

of drugs consisted of 2,197 FDA-approved drugs consisted. Our set of

drug target associations consisted of 14,941 pairs of drug and targets.

d Host proteins.Our COVID-19 diseasemodule consisted of 336 host pro-

teins. It includes 332 host proteins reported by Gordon et al.,14 the entry

receptor ACE2,66 and three SARS-CoV-2 entry-associated proteases

TMPRSS2,67 CTSB, and CTSL.68

d Gene expression data. To weight the host proteins in our kernel-based

methods, we used gene expression data from 430 COVID-19 patients,

and 54 controls, collected from nasopharyngeal swabs.69 The RNA-

seq raw counts are available in the Gene Expression Omnibus

(GEO),70,71 with accession number GSE152075. We processed the

data using the edgeR package,72 and obtained the absolute value

of the log fold change comparing the expression levels between

COVID-19 patients and controls. For 47 host proteins with missing

mRNA levels, we assigned the minimum absolute value of the log fold

change. The final weights of the host proteins are available from

Mendeley Data (see Table S7).

d In vitro data.We built a binary dataset, assigning positive labels to drugs

that were reported to show efficacy against SARS-CoV-2 infection

in vitro, and negative labels to all other drugs. Data for drug efficacy

in vitro was built as the union of experiments reported by Riva et al.49

and Gysi et al.13 Eighty-one FDA-approved drugs show in vitro effects

(see Table S7).

d Clinical trials data. We built a binary dataset and assigned positive

labels to drugs that are involved in clinical trial studies, and negative

labels to all other drugs. Information for clinical trials studies was

downloaded from ClinicalTrials.gov on December 1, 2020.73 Drugs

were mapped to the DrugBank database47 by matching their names

(see Table S7).

d CMAP data. For the CMAP query, we used a COVID-19 signature by

Ghandikota et al.74 This gave us a list of 106 genes upregulated and

41 genes downregulated in three different models of SARS-CoV-2 infec-

tion from transcriptomics data. Two are models in vitro (Calu-3 and Vero

E6 cells), and one model is in vivo (Ad5-hACE2-sensitized mice). The

query with these data resulted in 30 drugs with significant negative t

score (t < �90) that were mapped to DrugBank. Twenty-three of these

30 drugs are FDA approved and have targets in the Gysi et al. interac-

tome. The list of 30 drugs with CMAP evidence is available fromMende-

ley Data (see Table S7). All supplementary files available fromMendeley

data and external data sources are listed in Table S7 (Note S13).
The multiplicative learning algorithm for the matrix

decomposition model

To minimize Equation 1 subject to non-negative constraints, we developed an

efficient multiplicative learning algorithm inspired by the diagonally rescaled
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principle of NMF.21 The algorithm consists of iteratively applying the following

multiplicative update rules:
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(Equation 2)

Following the guidelines to implement NMF,75 a small number ε= 10�8

was added to the denominators in Equation 2 to prevent division by

zero, and we initialized P and Q as random dense matrices uniformly

distributed in the range ½0; 0:1�. Furthermore, to avoid the well-known de-

generacy20 associated with the invariance PQ under the transformation

P/PL and Q/L�1Q, for a diagonal matrix L, we normalized P at each

iteration as follows:

Qaj)
Qaj

qa

; (Equation 3)

where qa denotes the ath row vector of Q.

The stopping criteria of our algorithm was based on the maximum tolerance

of the relative change in the elements of P and Q. The default value was tolX<

10�3, which occurred typically in about 1,000 iterations for k = 5.

Using a similar procedure to Galeano and Paccanaro,55 it can be easily

shown that our algorithm in Equation 2 satisfies the KKT conditions of

convergence.

Cross-validation procedure and model selection for the matrix

decomposition approach

We used a LOOCV procedure to evaluate the performance of our matrix

decomposition model. To set the model hyperparameters: k, aE and aZ ,

we performed LOOCV on the drug-virus associations with clinical

trials developmental stages (validation set). We performed a grid-search

and selected the hyperparameters that maximize the mean recall across

the top 1, 5, 10, 15, 20, 25, and 30 predictions retrieved. We found that

k = 5, aE = 0:01, and aZ = 2 provided a good performance. The other hy-

perparameters of our model were set based on the probabilities of success

reported by Dowden and Munro25 for anti-infective drugs on distinct

phases of clinical trials, i.e., aB = 0:16 (phase I), aC = 0:27 (phase II), and

aD = 0:71 (phase III). Having set all these hyperparameters, we performed

an LOOCV on the test set corresponding to drug-virus associations that

have been approved or are in phase IV of clinical trials. The model selection

for the competitors was performed on the same validation sets (see details

in Note S1).

The trained model that we used in the ‘‘Evaluation’’ section was obtained by

training the model 1,000 times using all the available data with optimal hyper-

parameters. We then selected the solution that gave the lowest value in the

loss function.

Graph kernels

A PPI network is represented by a graph G = ðV ;EÞ, in which V = f1; 2;.;nVg
is the set of nodes (proteins), and E the a set of links connecting the nodes (pro-

tein interactions). If the graph is weighted, then for each edge e˛ E we asso-

ciate a non-negative real value wðeÞ. LetH˛V denote the set of host proteins.

Our goal is then to perturb the subnetwork induced byH, i.e., the host protein

subnetwork.

Here, we rely on different graph kernels described in the literature.35,36,76 In

the following, graph kernels and their properties are defined as in Kondor and

Vert.77 A graph kernel k : V3V1R provides a similarity metric on the set of

nodes V based on the graph structure. It is positive definite, that is, for any

i; j˛V and any ci ; cj˛R we have that
PnV

i =1

PnV
j =1cicjkði; jÞR0.

We can use it to define distances or similarities on a latent feature space.

More specifically, there exists the feature mapping 4 : V1F such that
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kði; jÞ= C4ðiÞ;4ðjÞD for all i; j˛V . A graph kernel can be represented by an

nV3nV matrix K whose elements correspond to Ki;j = kði; jÞ for every i; j˛V . It
is usually defined in terms of the normalized Laplacian, which we

explain below.

Let W be an nV3nV matrix denoting the weighted adjacency matrix of G.

That is, Wi;j =wðeÞ if there is an edge e connecting i and j, and Wi;j = 0, other-

wise. If G is unweighted, we assume that wðeÞ= 1 for every edge e˛E. Let D
denote an nV3nV diagonal matrix in which each diagonal element corresponds

to the node degree, that is, Di;i =
PnV

j =1Wi;j for every i˛V. The Laplacian is

defined as D� A, and its pseudoinverse (Moore-Penrose inverse) is denoted

by L+ . The normalized Laplacian is defined as ~L : = I� D�1
2WD�1

2, where I de-

notes the identity matrix.

There are different ways to define K and we focus on five graph ker-

nels35,36,76: regularized Laplacian, diffusion process, and p-step random

walk in terms of the normalized Laplacian36 (see Table 1).

In the p-step random walk, pR1 and aR2 are given parameters.36 The

element Ki;j measures how likely it is to go from node i to node j after p steps

in a random walk. If we generalize it to a continuous time (infinitesimally small

steps) and take an infinite number of steps, we have the diffusion process K =

expð� s2 =2~LÞ, where s is a parameter controlling the diffusion. Finally, the

regularized Laplacian kernel can be thought of as the convergence of an iter-

ative process in which nodes spread information to their neighbors at

each step.

We used different kernels from Smola and Kondor,36 Cao et al.,35 and Zhou

et al.,76 which are implemented in the R package diffuStats78 for the commute

time, diffusion, p-step, regularized Laplacian, and inverse cosine kernels. We

set the parameter p to 2 for the p-step kernel. For the remaining kernels, we

used the default parameters in diffuStats.

CMAP evaluation details

We consider that a drug has CMAP evidence against COVID-19 if the changes

that it causes to gene expression are opposite to the ones caused by the dis-

ease.15 To build the CMAP evaluation set, we used the CMAP pipeline15,16 to

measure how similar or opposite the drug and COVID-19 expression profiles

are. We used version 1.0 of the CMAP L1000 dataset16 available on clue.io

website (https://clue.io/).

We began by obtaining a list of up-/downregulated genes in COVID-19

(genes that have higher/lower expression levels in SARS-CoV-2 infected cells

compared with non-infected cells). Then, we queried the COVID-19 signature

in CMAP. For each drug, CMAP has a list of genes ordered from the most ex-

pressed to the least expressed after treatment (in comparison with the expres-

sion levels with no treatment). If the upregulated genes in COVID-19 are

located on the bottom of the list (that is, if they have low expression levels in

cells treated with the drug), and the downregulated genes are located on the

top (that is, they have high expression levels in cells treated with the drug),

we say that the drug and disease signatures have a strong negative correla-

tion. If we observe the opposite (upregulated genes on top, and downregu-

lated genes on bottom), we say that they have a strong positive correlation.

For each drug, CMAP outputs an enrichment score that is positive when the

correlation between the drug and disease signatures is positive (the drug

mimics the disease), and negative when the correlation is negative (the drug

reverses the disease). The final values (denoted by t) are compared with a

reference database and normalized between �100 and 100.
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