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Universal scaling across biochemical networks on Earth
Hyunju Kim1,2*, Harrison B. Smith2*, Cole Mathis1,3, Jason Raymond2, Sara I. Walker1,2,4,5†

The application of network science to biology has advanced our understanding of the metabolism of individual 
organisms and the organization of ecosystems but has scarcely been applied to life at a planetary scale. To char-
acterize planetary-scale biochemistry, we constructed biochemical networks using a global database of 28,146 
annotated genomes and metagenomes and 8658 cataloged biochemical reactions. We uncover scaling laws govern-
ing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, 
to the biosphere as a whole. Comparing real biochemical reaction networks to random reaction networks reveals 
that the observed biological scaling is not a product of chemistry alone but instead emerges due to the particular 
structure of selected reactions commonly participating in living processes. We show that the topology of bio-
chemical networks for the three domains of life is quantitatively distinguishable, with >80% accuracy in predict-
ing evolutionary domain based on biochemical network size and average topology. Together, our results point to 
a deeper level of organization in biochemical networks than what has been understood so far.

INTRODUCTION
There is increasing interest in whether biology is governed by gen
eral principles, not tied to its specific chemical instantiation or con
tingent upon its evolutionary history (1–3). Such principles would 
be strong candidates for being universal to all life (4, 5). Universal 
biology—if it exists—would have important implications for our 
search for life beyond Earth (6–9), for engineering synthetic life in 
the laboratory (10, 11), and for solving the origin of life (12, 13). 
Systems biology provides promising quantitative tools for uncover
ing such general principles (14–16). So far, systems approaches have 
primarily focused on specific levels of organization within biological 
hierarchies, such as individual organisms (17, 18) or ecological commu
nities (19, 20), and have rarely been applied to the biosphere as a whole. 
However, biology exhibits some of its most notable regularities mov
ing up in levels of organization from individuals to ecosystems, and 
these regularities may only truly manifest at the level of ecosystems 
and, ultimately, the biosphere (21, 22). For example, while individual 
organismal lineages fluctuate through time and space, the functional 
and metabolic composition of ecological communities is stable (23, 24). 
To understand the general principles governing biology, we must 
understand how living systems organize across levels, not just within 
a given level (25–27).

To explore regularities within and between levels of organization, 
we adopt a network view of biochemistry (17, 28–30) by constructing 
biochemical reaction networks from genomic and metagenomic data. 
We show that biochemical networks share universal organizational 
properties across levels, characterized by scaling laws determining 
how topology and biochemical diversity change with network size. 
These scaling relations exist independent of evolutionary domain 
or level of organization, applying across the nested hierarchy of in
dividuals, ecosystems, and the biosphere. The biochemical diversity 
and network properties driving this scaling behavior are predictive 
of evolutionary domain, indicating that the biochemical network 

structure for each domain is distinct even though all three conform 
to the same scaling behavior. Our results provide a first quantitative 
demonstration that the application of network theory at a planetary 
scale can uncover properties existing across different levels of orga
nization within the biosphere and can be predictive of major divisions 
within a given level (such as evolutionary domains). On the whole, our 
results provide new paths forward for identifying universal properties 
of life.

Our analysis begins with a global database of genomes and meta
genomes, sampled from across life on Earth. We leverage available 
existing annotated genomic data representing the three domains of 
life, including genomes of 21,637 bacterial taxa and 845 archaeal 
taxa from the Pathosystems Resource Integration Center (PATRIC) 
(31), and 77 eukaryotic taxa from the Joint Genome Institute (JGI) 
(32). Our metagenomic data include 5587 metagenomes from JGI, 
cataloging ecosystemlevel biochemical diversity across the planet 
(see Fig. 1).

From these data, we constructed biochemical networks for each 
individual organism (genome) and ecosystem (metagenome) using re
action data cataloged in the Kyoto Encyclopedia of Genes and Ge
nomes (KEGG) (33). Building on prior work studying biospherelevel 
models of metabolism (34–36), we use the database of all 8658 en
zymatically catalyzed reactions cataloged in KEGG (at the time of data 
retrieval) as a proxy for the biochemistry of the biosphere as a whole, 
modeled as a “soup of enzymes” by disregarding the boundaries of 
individual species (19). Network representations of ecosystemlevel 
and biospherelevel biochemistry are “compartment free” in that no 
knowledge of individual species is included. Previous topological anal
yses of biochemical networks have primarily focused on the subset 
of biochemical reactions associated with metabolism (29, 30). Since 
we are interested in properties universal across life, and not just 
subsets of living processes, we instead construct networks inclusive 
of every known catalyzed reaction (regardless of pathway) coded 
by the respective genome or metagenome, provided the reaction is 
cataloged in KEGG.

Adopting a network representation allows systematic quantifi
cation of topological properties using graph theory and statistical 
mechanics (16, 17, 37–42). Using two different graph projections, we 
compare biochemical networks across levels to test whether they are 
similar or different and compare to biologically motivated, randomly 
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sampled networks (see Materials and Methods for details on net
work construction). Our use of the term “random” herein refers to the 
random sampling procedures we implement to generate ensembles 
sharing some—but not all—properties with the ensemble of real 
biochemical networks (described below and in the Materials and 
Methods). These are specifically used to isolate those properties of 
the real biochemical networks driving the reported scaling behavior 
and should be distinguished from more generic random networks, 
such as ErdösRényi random graphs typically contrasted to chemical 
or biochemical networks (see, e.g., (28, 43, 44)). A widely implemented 
framework for assessing commonality across different systems is to 
look at their scaling behavior (45–50). If scaleinvariant properties 
are found, then it can be suggestive of deeper, underlying organizing 
principles (3, 51, 52), such as when distinctive scaling laws emerge in 
critical systems (53). We therefore sought to determine whether bio
chemical networks display scaling laws governing their topology and 
chemical diversity, which are similar across levels, indicative of the 
existence of selforganizing principles universal across biological levels.

There are three alternative scenarios to be tested relating network 
structure across individuals, ecosystems, and the entire biosphere; each 
is shown in Fig. 2. In the first, biochemistry does not have shared net
work structure across levels, and different scaling behaviors emerge 
at different levels. In the second scenario, biochemistry has shared 
network structure across levels, but this shared structure can be fully 
explained by the structure of random chemical networks (generated 
from random collections of biochemical reactions used by biology). 
In this case, real biochemical reaction networks would be statistically 
indistinguishable from random reaction networks, implying that the 
selforganizing principles are solely chemical and not biological in 
origin. In a third scenario, biochemistry has shared structure across 
levels, which is different from that of random reaction networks. We 
find the third scenario to be consistent with our analysis, suggesting 
the presence of universal organizing principles unique to biology that 

recur across biological levels of organization. We show that these can 
be explained as an emergent property of the topological structure of 
the most common reactions participating in living processes.

Before proceeding to the details of our results, it is worth noting 
the wellknown challenges associated with the introduction of statis
tical artifacts when coarse graining realworld systems to generate 
graphical representations (54, 55). For example, bipartite network 
representations of biochemistry (treating reactions and substrates as 
two disjoint sets of nodes) have information that cannot be recov
ered from unipartite representations (which treat only substrates as 
nodes). The challenge of choosing a projection arises because bio
chemical networks are themselves a multilayer system consisting of 
enzymes and their catalyzed reactions; enzymes (often abstracted 
away in network representations) control the biological organization 
we aim to characterize. To ensure that the regularities we report are 
reflective of the true underlying organization of biochemistry and 
are not statistical artifacts introduced by a specific choice of coarse 
graining, we therefore consider both a unipartite and bipartite pro
jection in our analysis (54). We also compare catalytic diversity—
quantified in terms of the number of enzymes and reactions—across 
levels, which is independent of network representation. As we will 
show, common scaling laws describing biochemical networks across 
levels of organization are consistently observed in each of these dif
ferent views of biochemistry, confirming our results are independent 
of the type of network representation.

One remaining consideration once a network representation is 
adopted is how to analyze it. So far, the majority of network analyses 
applied to biochemistry have focused on the “scalefree” structure 
of metabolic networks (28, 56, 57). For example, in a seminal paper 
by Jeong et al. (28), it was shown (using a unipartite representation) 
that metabolic networks from all three domains of life exhibit the 
characteristic powerlaw degree distribution of a scalefree network, 
with similar scaling exponents for bacteria, archaea, and eukaryotes. 

Fig. 1. Enzyme diversity of ecosystems across Earth. Shown is the geographical distribution of the 5587 ecosystems in our study, colored by the number of different 
enzyme functional classes [enzyme commission (EC) numbers] encoded in sampled metagenomes (data from JGI). Despite large variances in the enzyme diversity and 
what enzymes are present in each ecosystem, all ecosystems sampled are found to conform to the same scaling behavior for biochemical diversity and topology as a 
function of biochemical network size (see Fig. 3).
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This and other previous work have focused primarily on properties 
within single instances of a network (e.g., an individual organism’s 
metabolism), with similar structure to biology (such as the scalefree 
property) reported in chemical networks more generally (43, 44, 58, 59). 
However, as we stated earlier, our interest is in looking at properties 
across networks (e.g., describing ensemble properties of biochemical 
networks at the individual and ecosystem levels). We therefore focus 
on topological measures such as average shortest path length, aver
age clustering coefficient, and assortativity (degree correlation co
efficient), which are directly comparable across different networks, 
allowing us to make statements about regularities existing across 
biochemistry sampled from different levels of organization in a man

ner that has not been possible in previous work focusing only on a 
given level.

RESULTS
Scaling laws describe biochemical networks and catalytic 
diversity across levels
Organisms can vary widely in their number of genetically encoded 
reactions, and ecosystems generally include more encoded reactions 
than individuals do. We therefore compared topological properties 
relative to the size of biochemical networks as a relevant scaling pa
rameter for our analysis. We defined network size as the number of 
molecules connected through catalyzed reactions within the largest 
connected component (LCC) for a given biochemical network. We 
focused analyses on the LCC since some measures are not defined on 
disconnected networks. The LCC included >90% of compounds for 
all but the smallest networks in our study, and >97% of compounds 
for the largest (see section S2, fig. S1, and table S1). The fact that 
the LCC is not 100% of the network could be attributable to missing 
data in the annotation of genomes and metagenomes. We therefore 
verified that our results are not sensitive to a similar magnitude of 
missing data by confirming the scaling trends reported here are not 
affected when 10% of nodes are randomly removed (see fig. S2). 
Furthermore, our results reported below suggest larger proportions 
of missing data (as often occurs for genomes or metagenomes miss
ing many annotated genes) would not significantly affect our re
sults, as we find the reported scaling behavior is primarily driven by 
the topological structure of the most common reactions found across 
all of biology. We also verified that our results hold when analyzing a 
more balanced subset of our data, avoiding disproportionately large 
contributions by genetically similar taxa (see figs. S8 and S9).

We calculated several frequently implemented topological measures 
for the LCC for each network (see section S2). We classified properties 
(e.g., topological or diversity measures) as universal when they scale in 
the same way across levels. We identified these cases by properties that 
scale according to the same fit across levels (e.g., network average clus
tering coefficient scales linearly with network size for both individ
uals and ecosystems, and we thus identified this scaling as universal 
across levels). Shared fit functions across levels suggest mechanisms 
driving the structure of biochemical networks may be independent 
of level of organization; in such a case, individuals and ecosystems 
could both be subject to the same general principles acting to architect 
them. That is, we did not require the scaling coefficients to be exactly 
the same (indicating the tuning of mechanisms generating structure 
in individuals and ecosystems), but we did require the same fit to be 
shared across our data (indicating the possibility of shared generative 
mechanisms) to qualify as universal.

To test whether biology exhibits universal scaling behavior across 
levels, we first determined how topological properties and biochem
ical diversity vary with size for all individuals and ecosystems in our 
dataset. Measured values for the unipartite representation and cata
lytic diversity (enzymes and reactions) are shown in Fig. 3 as a func
tion of network size (see fig. S4 for data on bipartite representation, 
which exhibits similar consistency across levels). We found individuals 
and ecosystems scale according to the same functional form for each 
network and diversity measure, with similar scaling coefficients (for 
fits and confidence intervals, see data file S1). Scaling for individuals 
and ecosystems is therefore universal. For some measures (assortativ
ity and betweenness), the biosphere fell within the 95% confidence 

Fig. 2. Three alternative scenarios for how biochemical network structure 
might be similar or dissimilar across levels of organization. For each scenario, 
illustrative plots show examples of scaling behavior of some network property as 
function of network size, where each data point corresponds to the measure for a 
single instance of a network. In the first (A), biochemistry does not exhibit common 
network structure across levels, and different properties emerge at different levels. 
In the second (B), biochemistry has a common network structure across all levels, 
but this structure is also shared by random chemical networks. In the final scenario 
(C), biochemistry has shared structure across all levels, which is different from that of 
random chemical networks. Our results are consistent with this third scenario, indica-
tive of universal organizing principles recurring across biological levels, which are 
unique to biology (not shared by random chemistry), which we show arises due to the 
network structure of common reactions shared across life on Earth.
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interval observed for fits of ecosystem level scaling. An exception is 
clustering coefficient, where the biosphere significantly departed from 
the observed ecosystem scaling: This could be attributable to missing 
data on global enzymatic diversity (which falls slightly below what our 
scaling laws would predict). Topological measures that scaled fol
lowing powerlaw fits (y = y0 x, where  = ind for individuals and 
 = eco for ecosystems) included the following: average betweenness 

(ind = −1.1581, eco = 1.136), average shortest path length (ind = −0.117, 
eco = −0.084), and number of edges (ind = 1.219, eco = 1.243). Both 
biochemical diversity measures also scaled according to powerlaw fits: 
number of enzyme classes (a proxy for enzymatic diversity) (ind = 1.294, 
eco = 1.838) and number of reactions (ind = 1.229, eco = 1.319). 
Average clustering coefficient scaled with a linear fit (y = mx + y0, 
m = mind for individuals and m = meco for ecosystems) for individuals 

Fig. 3. Common scaling laws describe biochemical networks across levels of organization. Scaling of biochemical measures for individuals (left column) and ecosys-
tems (right column) shared the same functional form for biochemical diversity (enzyme and reaction diversity) and for topological measures. Shown from top to bottom 
are the following: (A) number of reactions (NR) and number of enzyme classes (NEC). (B) Average shortest path (<l>) and average clustering coefficient (<C>). All measures 
are as a function of the size of the LCC (NCompounds). Ecosystems include metagenomes (red) and the biosphere-level network (Earth icon). Fits for each dataset (solid lines) are 
shown with 95% confidence intervals (dashed lines). For reference, shown in light gray are data for all biochemical networks (individuals, ecosystems, and biosphere). 
Additional measures are shown in fig. S3, and scaling for bipartite networks is shown in fig. S4.
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and ecosystems (mind = 3.77 × 10−5, meco = 3.32 × 10−5). These results 
rule out the possibility that scaling laws are level specific (Fig. 2A). 
The observed scaling laws confirm biochemical networks exhibit 
shared structure across levels of organization, where network prop
erties and biochemical diversity are largely determined by size as 
the relevant scaling parameter.

Real networks exhibit different scaling behavior than 
random chemical networks
The observed universal scaling across individuals and ecosystems 
could be unique to biology, or it could arise due to selforganizing 
principles of chemistry. If the latter is true, then we should expect 
randomly sampled chemical networks to exhibit the same fit func
tions across networks as real biochemical networks do. Testing this 
possibility requires comparison to randomly sampled chemical net
works, which must be generated with an appropriate biologically 
relevant control to be informative (60). Since we are interested in the 
global organization of biochemistry, we constructed control random 
chemical reaction networks (henceforth called random reaction net
works) by merging randomly sampled reactions from the KEGG 
database following a flat distribution, where all reactions are equally 
likely to be sampled (see Materials and Methods for details on net
work construction). This random sampling produces ensembles of 
random reaction networks that globally (over the ensemble) share 
the same chemical reactions as our biosphere.

We performed the same analyses on the ensemble of random 
reaction networks as real biochemical networks. We observed that 
random reaction networks do not scale according to the same func
tional form as biochemical networks for some network topology 
measures (Fig. 4, first column). The fits for average clustering co
efficient of random reaction networks favored a powerlaw function 
(y = y0 x, with ran = 0.6401), compared with the linear function 
favored by the biochemical networks. Fits for assortativity favored a 
linear function for random reaction networks (y = mx + y0, mran =  
−4.5255), whereas for biochemical networks, it was found to not 
scale with size (data file S1). That is, there are certain aspects of the 
topology of random reaction networks that scale with network size 
in a manner that is entirely distinct from that of real biochemistry. 
The qualitative differences in scaling behavior indicate the real and 
random biochemical networks represent different universality classes. 
In addition to these qualitative differences in scaling behavior, we 
also observed statistically significant quantitative differences in the ran
dom chemical networks: Scaling relationships for randomly sampled 
biochemical networks did not overlap with real biological individuals 
in many cases. Topological measures in random reaction networks 
that scaled according to powerlaw fits (y = y0 x,  = ran for random 
reaction networks) included the following: average betweenness (ran =  
−1.0595), average shortest path length (ran = −0.0543), and num
ber of edges (ran = 1.2459). Both biochemical diversity measures 
also scaled according to powerlaw fits: number of enzyme classes 
(ran = 1.10156) and number of reactions (ran = 1.3590). We con
clude that the organizational properties of random chemical networks 
cannot alone explain the scaling laws observed for real biochemical 
networks.

Scaling laws represent shared constraints reemerging  
across levels
Our results establish that Earth’s biochemistry exhibits universal 
scaling behavior across levels of organization not explainable by the 

organizational patterns of randomly sampled chemistry alone. A 
natural next question is whether ecosystems inherit their properties 
from individuals, or whether they instead exhibit similar structure 
due to similar constraints reemerging at different levels. Addressing 
this requires determining whether scaling behavior for individuals 
is statistically distinguishable from ecosystems. We assumed as a 
null hypothesis that scaling relationships are consistent across levels 
of organization, and we performed a permutation test (61) using the 
scaling coefficient as the test statistic (see “Fitting network measure 
scaling and permutation tests” section in Materials and Methods). 
We found that scaling relationships are not distinguishable for indi
viduals and ecosystems when analyzing average node betweenness 
and average shortest path length (table S2). However, scaling coeffi
cients were distinguishable for a number of reactions, number of edges, 
number of enzyme classes, and mean clustering coefficient, with P < 
10−5 in most cases. Confidence intervals on scaling coefficients for 
ecosystem topology were narrower than for individuals, indicating that 
ecosystem scaling is more tightly constrained. Although biochemical 
networks for individuals and ecosystems shared a similar scaling be
havior, they were not drawn from the same distributions, allowing the 
possibility that shared constraints operate at each level separately.

We next sought to identify sufficient constraints for recovering 
the observed scaling across levels. To do so, we constructed a differ
ent ensemble of random reaction networks by merging randomly 
sampled reactions from the KEGG database, but this time weight
ing the sampling frequency of biochemical reactions by the number 
of individual genomes where the reactions are found (henceforth 
called frequencysampled random reaction networks; see Materials 
and Methods for details of their construction). This random sampling 
produced ensembles of random chemical networks that, as before, 
globally (over the ensemble) share the same reactions as our bio
sphere, but also had the additional property of sharing the same fre
quency distribution of reactions over “individuals” as our biological 
dataset. This random ensemble therefore more closely reproduced 
properties of real biological networks than those introduced in the 
previous section. Since most highly connected nodes (participating 
in many reactions) are common to all three domains, e.g., adenosine 
5′triphosphate (ATP) and H2O (28, 62), this sampling procedure 
yielded random control networks that tended to include the most com
mon compounds used by life. We found the scaling behavior of this en
semble of random networks much more closely matched the observed 
scaling trends in real biology (Fig. 4, second column). Whereas we 
observed qualitative differences for scaling of clustering in the previous 
case, here the fit function was the same as for the clustering coefficient 
for both the real biochemical networks and the frequencysampled 
random reaction networks. All fit functions were the same as those 
for real biochemical networks, with the exception of assortativity. In 
addition, for measures sharing the same fit functions, fewer measures 
distinguished biological networks from frequencysampled random 
reaction networks than from random reaction networks without this 
constraint. We can therefore conclude that the network structure of 
the most frequently occurring reactions across life on Earth is an im
portant driver of the observed scaling behavior for the real networks.

To further confirm that scaling emerges due to these shared prop
erties across all life, we next generated simulated ecosystemlevel net
works by merging randomly sampled genome networks from each 
domain individually and from all three domains together (see Supple
mentary Materials and Methods for details on network construction). 
This allows us to determine how scaling behavior could be the same or 
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different for an archaeasphere (archaea alone), bacteriasphere (bac
teria alone), eukaryasphere (eukarya alone), or artificial ecosystems 
(all three domains) (Fig. 4, third column). We found that the function
al forms of scaling relationships were the same for real ecosystems and 

these randomly merged organismal networks (hereafter called random 
genome networks). This result was somewhat unexpected given it is not 
in general true that randomly selected subnetworks of a network have the 
same structure as the original network (e.g., individuals as subnetworks 

Fig. 4. Scaling laws distinguish biochemical networks from random networks across levels of organization. Shown are random reaction networks created by sampling 
biochemical reactions from a flat distribution (left column), frequency-sampled random reaction networks created by sampling reactions based on the frequency distribution 
observed across all organisms (center column), and random genome networks (right column). Merged networks composed of individuals include bacteria only (light blue), 
archaea only (dark blue), eukarya only (blue-green), and all domains combined (purple). (A) Scaling of biochemical diversity. Diversity measures and fit are as described in 
Fig. 3. For reference, all real biochemical network data from Fig. 3 are shown in light gray. Additional measures are shown in fig. S5. (B) Scaling of network structure. Measure 
and fit descriptions match those described in Fig. 3. For reference, all real biological networks from Fig. 3 are shown in light gray. Additional measures are shown in fig. S5, and 
scaling for bipartite networks is shown in fig. S6. We found that random reaction networks do not recover the same fit functions as real biological networks for assortativity and 
clustering, whereas frequency-sampled random reaction networks and random genome networks only differed for assortativity, but nonetheless were statistically distinguish-
able from real biochemical networks for some measures.
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of ecosystems do not necessarily have to share the same structure) 
(63). However, we also checked whether scaling exponents and co
efficients are statistically distinguishable for real ecosystems and ran
dom genome networks, using the same permutation tests as before, 
and found that they were for most measures (see table S2). Random 
genome networks and real ecosystems exhibited exponents distinguish
ing their scaling coefficients for most topological measures and for 
a number of enzymes, with P < 10−5. Scaling of betweenness was indis
tinguishable between the two datasets. These results indicate that 
random genome networks differ from real ecosystems in many of the 
same ways individuals do. However, just as scaling of assortativity 
qualitatively distinguished individual biochemical networks from the 
frequencysampled random reaction networks, scaling of assortativ
ity also distinguished random genome networks from real ecosystems, 
whereas it did not distinguish real individuals from real ecosystems 
(Fig. 5). Taken as a whole, these results suggest that scaling behavior 
for real ecosystems arises due to organizing principles operative at the 
level of ecosystems and is not solely an emergent property due to 
merging individuallevel networks.

Combining these results for frequencysampled random reac
tion networks with that of random genome networks indicates that 
the existence of individuals sharing a common set of biochemical 
reactions is a sufficient condition for networks of all sizes (from small 
individuals to large ecosystems) to exhibit the scaling behavior ob
served in real living systems. Together with the results of the previ
ous section, we can conclude that the particular form of the scaling 
relations observed across life on Earth emerges due to the structure 
of interactions among compounds common across all life, which 
is not in general characteristic of nonbiological chemical reaction 
networks.

Network structure predicts evolutionary domain
Any general organizing principles in biology must be consistent 
with the variation responsible for the diversity of life we are already 
familiar with. Since the three domains of life represent the most sig
nificant evolutionary division in the history of life (64), we therefore 
also tested whether network structure can distinguish individuals 
sampled from the three domains (see “Predicting evolutionary do
main from topology” section in Materials Methods). To approach 
this question, we first investigated compounds shared across all do
mains to determine which compounds are distinct to each domain 
and which are universal to all three. We identified the contributions 
of each domain to the biosphere as a whole by comparing compounds 
at the biosphere level to those across the networks of individuals, 
identified by evolutionary domain. We did so by identifying which 
compounds were unique to each domain and which were shared across 
all three domains, determined from annotated data in the 22,559 ge
nomes in our dataset. At the biosphere level, 0.44% of compounds were 
unique to archaea, 3.14% were unique to bacteria, and 17.08% were unique 
to eukarya, reaffirming that each domain represents significantly dif
ferent metabolic strategies and genetic architectures, as is well estab
lished by earlier work (64). However, it is also well established that all 
life on Earth shares a common set of core biochemistry (65): A higher 
percentage of compounds, constituting 37.23% of the biospherelevel 
network, were shared across all three domains in our dataset (Fig. 6, 
A to D), including hubs such as ATP and H2O, as mentioned previ
ously. Since many more chemical compounds were shared across 
all three domains than are unique to each, one might a priori expect 
the organization of these compounds into biochemical networks to 
not be predictive of domain.

We found the opposite to be true: Despite a large fraction of 
shared biochemical compounds, the organization of those com
pounds into networks was distinct for each domain. We found in 
most cases, that average topology normalized to size could reliably 
predict evolutionary domain (Fig. 6E). In many cases, the predic
tion accuracy was >80%, when only a single topological measure 
was used. By contrast, topology or size alone provided significantly 
less accurate predictions. This demonstrates that biochemical net
work structure can be predictive of the taxonomic diversity of indi
viduals. Combined with our other results, this suggests the same 
biochemical network properties (topology and catalytic diversity) 
driving regularity across levels of organization can also be predic
tive of major evolutionary divisions within a given level, providing 
evidence the regularities identified herein are consistent with a sig
nature of global organizing principles for biochemistry.

DISCUSSION
Our analyses reveal that biochemical networks display common scal
ing laws governing their topology and biochemical diversity that  
are independent of the level of organization they are sampled from. 
These scaling laws cannot be fully explained by the structure of ran
dom reaction networks that do not account for the structure of the 
subset of reactions shared across life on Earth. We were also able to 
confirm that the same topological regularities occurring across levels 
of organization within the biosphere can be predictive of evolutionarily 
divisions within a level, using the three domains as an exemplar. 
Collectively, our results indicate a deeper level of organization in 
biochemical networks than what is understood so far, providing a 
new framework for understanding the planetaryscale organization 

Fig. 5.  Scaling laws for individuals and ecosystems are statistically distinguish-
able for some network and catalytic diversity measures. Shown are the results 
of a permutation test to determine whether properties of biochemical networks 
constructed from individual genomes scale differently than those constructed 
from metagenomes (ecosystems). For each network measure, the test statistic is 
shown as a vertical dashed line, while the null distribution is shown as a solid line 
(see “Fitting network measure scaling and permutation tests” section in Materials 
and Methods on for more details). Blue squares indicate that the scaling behavior 
is indistinguishable between levels of organization, while green squares show 
measures that can distinguish scaling of individuals from that of ecosystems.
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of biochemistry and how nested hierarchical levels are structured 
within it.

A key implication of our analysis is the importance of individ
uals sharing a common set of biochemical reactions in shaping the 
universal scaling laws observed across hierarchical levels. Scaling laws 
often emerge in systems, where universal mechanisms operate across 
different scales, yielding the same effective behavior independent of 
the specific details of the system. It is in this sense that scaling laws 
can uncover universal properties, motivating their widespread use 
in physics and increasing application to biology (45, 49, 51, 66–69). 
Here, we have shown the relevant scaling parameter for biochemical 
organization is the number of biochemical compounds (in a network 
representation this is the size of the network). Individuals, ecosystems, 
and the biosphere obey much the same scaling behavior for biochem
ical network structure, indicating that the same universal mechanisms 
could operate across all three levels of organization. In physics, this 
kind of universality usually implies there is no preferred scale or 
basic unit. However, in the biological example uncovered here, the 

presence of specific scaling relations observed in real biochemical 
networks can be explained by biological individuals (lowerlevel net
works) sharing a common set of reactions as basic “units.”

Future work should explore the connections between the scaling 
relationships reported here and other work characterizing scaling 
behavior across living processes. For example, our results indicate 
that ecosystems are more tightly constrained than individuals, better 
displaying the regularities of biochemical network architecture. How
ever, projecting ecosystemlevel scaling to the biosphere as a whole 
does not recover the observed network properties for the biosphere 
level network. Recently, scaling laws describing microbial diversity 
were used to predict Earth’s global microbial diversity and in partic
ular to highlight how much diversity remains undiscovered (47). It 
could be an analogous case here, where the uncovered scaling rela
tions could be used to predict missing enzymatic diversity in the bio
sphere. Furthermore, one area of intensive investigation is allometric 
scaling relations (47, 66, 69), including how shifts in metabolic scaling 
could be indicative of major transitions in evolutionary hierarchies 

Fig. 6. The biosphere-level chemical reaction network. The biosphere-level network was constructed from the union of all 22,559 genomic networks in our study. Each 
panel shows the same biosphere-level network, with nodes (representing compounds) in white and edges (representing their connections) in gray. Node size indicates 
degree within the network. Colors indicate biochemical compounds used in (A) all three domains of life (yellow), (B) in archaea only (pink), (C) in eukarya only (green), and 
(D) in bacteria only (blue). Although many more chemical compounds are shared across all three domains than are unique to each, the organization of these compounds 
into biochemical networks was distinct for each domain based on statistical testing, which shows (E) that catalytic diversity and biochemical network topology can predict 
evolutionary domain. Shown is the estimated prediction accuracy (y axes) for each measure and each domain. The colors of each bar indicate prediction accuracy of a 
given measure for a particular domain: Red is comparable to random guessing (y ≤ 33% accuracy); yellow is better than random but not completely predictive 
(33% < y ≤ 67%); green is predictive of domain (67% < y). The horizontal line indicates 80% prediction accuracy.
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(45). Allometric scaling laws are derived by viewing living systems as 
localized physical objects with energy and power constraints. Here, 
scaling emerges due to an orthogonal view of living systems as dis
tributed processes transforming matter within the space of chemical 
reactions. The connections between these different aspects of scaling 
in a living organization remain to be elucidated.

A final implication of our work is the consequences for our un
derstanding of the origin of life, before the emergence of species. The 
existence of common network structure across all scales and levels 
of biochemical organization suggests a logic to the planetaryscale 
organization of biochemistry (70), which—if truly universal—would 
have been operative at the origin of life. While our analysis has un
covered universal scaling behavior for extant life, arising due to the 
structure of connectivity and diversity among the most common 
biochemical compounds and reactions, it remains to be determined 
whether the particular scaling reported is a byproduct of shared 
biochemistry across all life or whether fundamental constraints on 
biochemical network structure, operative across scales from indi
viduals to planets, drives lowerlevel individuals to necessarily share 
common reactions. If the latter is true, then it would have important 
implications for understanding the processes operative at the time 
of the last universal common ancestor. If the same global network 
structure, characterized by the same scaling laws, described Earth’s 
biosphere throughout its evolutionary history, then the emergence 
of individuals (as selectable units) with a shared biochemistry would 
have played an important role in mediating a transition in the orga
nization of Earth’s chemical reaction networks. Even if we could as
sume the same planetaryscale chemistry for a lifeless world, we should 
expect to see dramatically different scaling for a hierarchically orga
nized biosphere of nested evolutionary units, where units are defined 
by a shared subset of biochemical architecture across all life (71, 72). 
An important question for future work is identifying the planetary 
drivers of Earth’s biospherelevel biochemical network structure and 
how this has structured living systems across nested levels over geo
logical time scales. This will require characterizing the organization 
of planetaryscale biochemistry, as developed here, within the broader 
context of studying a planet’s geologic and atmospheric evolution. 
It remains an open question as to what will ultimately explain the 
universal structure of Earth’s biochemical networks, or whether we 
should expect all life to exhibit a similar scaling behavior, even on 
other worlds.

MATERIALS AND METHODS
Obtaining genomic and metagenomic information
Genomes (PATRIC)
Archaea and bacteria genomic datasets were obtained from PATRIC 
(31). EC numbers were obtained from the “ec_number” column in 
the pathway data of each taxon. Eukarya genomic datasets were ob
tained from the JGI integrated microbial genomes and microbiomes 
comparative analysis system (IMG/M) (32). All eukarya data used in 
this study were sequenced at JGI. All EC numbers used to construct 
eukarya biochemical networks were obtained from the list of total 
enzymes associated with each eukaryote. EC numbers were used 
in conjunction with KEGG enzyme and reaction data to build bio
chemical networks for each taxon.
Metagenomes (JGI)
Metagenomic data were obtained from JGI IMG/M (32). All meta
genomic data used in this study were sequenced at JGI. All EC numbers 

used to construct metagenomic biochemical networks were obtained 
from the list of total enzymes associated with each metagenome. These 
EC numbers were used in conjunction with KEGG enzyme and re
action data to build biochemical networks for each metagenome.

Our metagenomic data came from a wide variety of ecosystems 
associated with the natural environment, host organisms, and human 
made environments from across the globe (see Fig. 1). The metagenomes 
were sampled from a variety of locations, inclusive of 51 different 
bodies of water, countries, or Antarctica. The largest categories of sam
pled ecosystems include aquatic, terrestrial, plant, wastewater, fungi, 
insect, mammal, and air, among many others. They come from, for 
example, soil, marine and freshwater environments, thermal springs, di
gestive systems, sediments, sludges, and the deep subsurface. Meta 
genomes were collected over a variety of altitudes, from sea level to 
a few thousand meters above sea level. Terrestrial and aquatic meta
genomes include surface samples as well as those from depths of 
centimeters to thousands of meters below the surface. Samples also 
range in pH from nearly 0 to over 9, and in temperature from just 
above 0° to 90°C. At present, it is impossible to say how represent
ative the diversity of life sampled so far is of the total biodiversity of 
life on Earth (which is presently unknown and not well constrained), 
and it is likely that our metagenomic dataset is not inclusive of all 
of that biodiversity, particularly given current limitations arising to 
incomplete characterization of metagenomic samples. Nonetheless, 
the breadth of environments in our sample suggests that our dataset 
includes a reasonable representation of known biodiversity. Addi
tional environmental and omic information is publicly available on 
JGI’s IMG website (https://img.jgi.doe.gov/cgibin/m/main.cgi).
Biosphere
To create the biosphere network, we included all (at the time our data 
were retrieved) 8658 enzymatically catalyzed reactions in KEGG.

Network construction
In this study, all biochemical reaction networks consisted of chemical 
compounds that were involved in biochemical reactions: Two chemi
cal compounds were connected to each other when one was a reactant 
and the other was a product of the same biochemical reaction (see 
section S1 for more details). The different types of biochemical reac
tion networks came from how we select a set of reactions to be includ
ed in each network, which is described below. Note that all edges in the 
networks in this paper were represented as undirected and unweight
ed since our interests lied on the presence or absence of particular re
actions in given networks, and, in principle, all biochemical reactions 
could happen in both directions depending on the environment.
Biological networks
For each biological network, we included all catalyzed biochemical re
actions annotated in each genome or metagenome. More specifically, 
we considered three different levels of organization: individual orga
nisms, ecosystems, and the biosphere. For the construction of individ
ual networks, we used the genome data of 21,637 bacterial taxa and 
845 archaeal taxa from the PATRIC (31) and 77 eukaryotic taxa from 
the JGI (32). From these data, we obtained the set of classes of enzymes 
for each genome. All reactions catalyzed by this set of enzymes and 
present in the KEGG (33) database were included in the network rep
resentation of the corresponding genome. Similarly, for the network 
representation of each of the 5587 ecosystems from JGI, we included 
all reactions catalyzed by the ecosystem’s coded enzymes, provided they 
were cataloged in the KEGG dataset. Lastly, for the biosphere network, 
we included all 8658 enzymatically catalyzed reactions in KEGG.

https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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Parsed biological networks
We also analyzed a parsed subset of biological data to reduce the rel
ative size differences between each of our domain datasets. This 
allowed us to test whether our results are consistent with a more ba
lanced representation of biodiversity from each domain. Starting 
with all bacteria genomes, we selected one representative genome 
containing the largest number of annotated ECs from each genus. 
Unique genera (genera only represented by a single genome) were 
also included in our parsed data. Uncultured/candidate organisms 
without genera level nomenclature are also included in the parsed 
dataset. The parsed archaea dataset was created in the same way. Be
cause we have much less extensive data from eukarya, the parsed re
sults included all eukarya (there is no “parsed” eukarya).
Random genome networks
To construct a random genome network, we sampled individual net
works uniformly at random from the set of all individual organisms 
in our dataset and merged them into one random genome network. 
When a set of multiple individual networks were merged, every node 
and edge present in any individual network are added to the result
ing network with equal weight regardless of how many individual 
networks included them. We built four types of random genome net
works with individual networks sampled from only archaea, only 
bacteria, only eukarya, and from integration of all the three domains. 
The number of individual networks merged to form each random 
genome networks was defined as the sample size. The sample size 
ranges from 1 to 200 for 845 archaea genomes, from 1 to 200 for 
21,637 bacteria genomes, from 1 to 77 for 77 eukarya genomes, 
and from 1 to 477 for all genomes in the three domains. We selected 
10 sets of individual networks for every sample size and merged 
them to generate 2000 random genome networks from individual 
archaea networks, 2000 from individual bacteria networks, 770 from 
individual eukarya networks, and 4770 from all individual networks 
across the three domains.
Random reaction networks
In this paper, random reaction networks were generated by merging 
randomly sampled reactions from all biochemical reactions from the 
KEGG data regardless of whether a known enzyme was cataloged for 
the reaction. We note 31.46% of chemical compounds in the bio
sphere network were not included in the genomic data in our study, 
therefore for our construction uniformly sampling the entire KEGG 
database; the random reaction networks could include enzymatically 
catalyzed reactions not included in our genomic data. Nonetheless, 
our sampling procedure was biased to generate networks with similar 
biochemistry to that of the genomic networks [since compounds com
mon to all three domains tended to be highly connected (participate in 
many reactions), this uniform sampling procedure yielded random 
networks biased to include the most common compounds used by 
life]. Most biological networks for real individual organisms and 
ecosystems contained 200 to 5000 reactions. To build the random re
action networks with size similar to real individual organisms and 
ecosystems, we selected a random number between 200 and 5000, 
sampled that number of reactions from KEGG data uniformly at 
random, and merged these into a random reaction network. Repeat
ing this, we constructed 5000 random reaction networks in total.
Frequency-sampled random reaction networks
With the goal of creating an ensemble of random networks more 
similar to real biological networks, we also generated random reac
tion networks by sampling reactions with probability proportional 
to their frequency across the set of all individual biological networks. 

We computed the frequency of every reaction as the number of 
genomes that includes enzymes catalyzing that reaction to generate 
a frequency distribution for the occurrence of reactions across our 
genomelevel networks. We then selected a random number between 
200 and 5000 and sampled that same number of reactions according 
to this frequency distribution. By repeating this procedure, we gen
erated 5000 frequencysampled random networks. As a check to 
confirm that our results are independent of the relative sizes of our 
domain datasets, we also generated 5000 random reaction networks 
with the same size as members of the ensemble of frequencysampled 
random reaction networks, but instead sampled reactions according 
to the sum of domain frequencies, computed within each domain and 
normalized by size of the domain (see fig. S9).

Fitting network measure scaling and permutation tests
For each network measure, a scaling relationship was fit as a function 
of the size of the LCC of the network. For each measure, three differ
ent models were tested: a power law of the form y = y0 x, a linear 
relationship of the form y = x + y0, and a quadratic function of the 
form y = 1x + 2x2 + y0. For both the assortativity measures, the 
preferred fit was also compared with a constant y = . The preferred 
model was chosen as the one that minimized crossvalidation errors, 
according to 10fold cross validation, across the entire dataset.

Once a model was chosen, a simulated permutation test was per
formed to determine whether the scaling relationship for a given 
attribute was the same for ecosystems and individuals or whether it 
was distinct (61). We took as the null hypothesis that the scaling 
relationship across different levels of organization is constant and 
used the fitted scaling parameters (for individuals and ecosystems) 
as the test statistic. We used fitted 1,000,000 resamples of the com
plete dataset to estimate the likelihood of the fit for individuals (or 
ecosystems) to have been drawn randomly from the complete dataset. 
We performed this test for both the ecosystem and individuals; if 
there was a difference in the estimated likelihoods, we took the greater 
of the two. These likelihoods are the (twosided) P values reported in 
table S2. The same procedure was followed to determine the distin
guishability of ecosystem networks with the randomized controls 
(random genome networks and random reaction networks). Random 
reaction networks were distinguishable from ecosystems networks 
for all measures, with P = 10−6.

To estimate the true scaling parameters and 95% confidence in
tervals, a bootstrap sample of 100,000 was used for each network 
attribute (61). If the permutation test allowed us to reject the hypoth
esis of a constant scaling relationship across individuals and ecosys
tems to a confidence greater than 0.01, then the scaling parameters 
were estimated separately for the individuals and ecosystems, other
wise the complete dataset was fit. The scaling parameters (and con
fidence intervals) for distinct domains were also estimated using a 
bootstrap of 100,000 samples. For scaling fits and confidence intervals, 
see data file S1.

Predicting evolutionary domain from topology
To demonstrate that topological features of genomes from different 
domains are distinct, multinomial regression was used. Specifically, 
we implemented models where the domain of the network was the 
response class, and a single topological feature, normalized by the size 
of the LCC of the network, was the dependent variable. We found 
topological features of networks alone were often not predictive of 
the domain, but the ratio of the topological properties to the size of 
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the network provided a more accurate prediction. Prior to the regres
sion, these normalized topological measures were scaled and centered 
(61). The regression was implemented in base R using the glm(..), 
function. To control for overfitting, the training data were composed 
of an equal number of samples from each domain. In particular, only 
35 networks of each domain were sampled, and the model was tested 
on the remaining data. This process was repeated 100 times, and the 
average model error is reported in the text (Fig. 6E).
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