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Abstract: Several studies have demonstrated that metformin (MTF) acts with variable efficiency as
an anticancer agent. The pleiotropic anticancer effects of MTF on cancer cells have not been fully
explored yet. By interrogating the Gene Expression Omnibus (GEO) for microarray expression
data, we identified eight eligible submissions, representing five different studies, that employed
various conditions including different cell lines, MTF concentrations, treatment durations, and cellular
components. A compilation of the data sets of 13 different conditions contained 443 repeatedly
up- and 387 repeatedly down-regulated genes; the majority of these 830 differentially expressed
genes (DEGs) were associated with higher MTF concentrations and longer MTF treatment. The most
frequently upregulated genes include DNA damage inducible transcript 4 (DDIT4), chromodomain
helicase DNA binding protein 2 (CHD2), endoplasmic reticulum to nucleus signaling 1 (ERN1),
and growth differentiation factor 15 (GDF15). The most commonly downregulated genes include
arrestin domain containing 4 (ARRDC4), and thioredoxin interacting protein (TXNIP). The most
significantly (p-value < 0.05, Fisher’s exact test) overrepresented protein class was entitled, nucleic
acid binding. Cholesterol biosynthesis and other metabolic pathways were specifically affected by
downregulated pathway molecules. In addition, cell cycle pathways were significantly related to the
data set. Generated networks were significantly related to, e.g., carbohydrate and lipid metabolism,
cancer, cell cycle, and DNA replication, recombination, and repair. A second compilation comprised
genes that were at least under one condition up- and in at least another condition down-regulated.
Herein, the most frequently deregulated genes include nuclear paraspeckle assembly transcript
1 (NEAT1) and insulin induced gene 1 (INSIG1). The most significantly overrepresented protein
classes in this compilation were entitled, nucleic acid binding, ubiquitin-protein ligase, and mRNA
processing factor. In conclusion, this study provides a comprehensive list of deregulated genes and
biofunctions related to in vitro MTF application and individual responses to different conditions.
Biofunctions affected by MTF include, e.g., cholesterol synthesis and other metabolic pathways, cell
cycle, and DNA replication, recombination, and repair. These findings can assist in defining the
conditions in which MTF exerts additive or synergistic effects in cancer treatment.

Keywords: metformin; meta-analysis; microarray expression studies; cancer cell lines; pleiotropic
effects; pathway and network analysis

1. Introduction

Metformin (MTF) is derived from the legume Galega officinalis, and is approved by the FDA for
the treatment of Type 2 diabetes (T2D) [1,2]. One of the main effects of MTF in diabetic patients is to
lower glucose levels by reducing hepatic glucose release, resulting in a secondary reduction of insulin
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levels [3,4]. Initial observations that MTF exerts anticancer properties in diabetic cancer patients were
supported by an animal cancer model [5]. Several in vitro and in vivo studies followed, demonstrating,
for the most part and to a varying degree, the anticancer effects of MTF [5]. The beneficial effect of MTF in
cancer depends in part on the affected tumor site [6]. Meta-analyses indicate that MTF exerts anticancer
activities notably in, e.g., pancreas, gastrointestinal and colorectal cancer [2]. In addition, MTF is
apparently associated with reduced overall mortality of cancer patients, which is likely supported by
beneficial effects of MTF as hyperglycemia reduction, weight loss and vascular protection [7,8]. As side
effects of MTF are rare, the drug has gained considerations for broader clinical implications, especially
for combinatorial drug applications in cancer treatment [9].

MTF exerts its primary main effects on the molecular level as an oxidative phosphorylation
(OXPHOS) inhibitor by reversibly inhibiting NADH dehydrogenase (mitochondrial complex I) activity
of the respiratory chain resulting in suppression of ATP production. This affects key energy and
metabolic processes such as the tricarboxylic acid cycle, fatty acid β-oxidation, gluconeogenesis, and
glycolysis [10]. The AMP-activated protein kinase (AMPK) is a cellular key energy sensor that is
activated by increased AMP/ATP and/or ADP/ATP ratios [11]. MTF exerts its pleiotropic effects through
AMPK-dependent and independent molecular mechanisms. A central AMPK-dependent mechanism
is the inhibition of proliferation-promoting mTOR signaling. Affected cellular fate processes, which are
implicated in directing MTF anticancer effects include cell cycle, cell growth, epithelial-to-mesenchymal
transition (EMT), autophagy, and apoptosis [10,12]. However, MTF anticancer effects are variable,
context specific and not fully explored yet, and a better molecular characterization of MTF effects is
necessary to support its application in clinical practice.

The objective of this meta-analysis was to provide a comprehensive view of the genes and
biological functions that are deregulated in response to MTF treatment. This should enlarge our
knowledge of the molecular events associated with MTF treatment and shed light into the known
pleiotropic MTF effects. As microarray expression data on in vivo MTF applications are virtually absent,
we focused in our study on complementary in vitro experiments. Based on our initial observation that
a considerable number of genes are expressed under different conditions in opposite directions when
compared to the respective untreated conditions, we analyzed these genes separately. In addition, we
compared shorter with longer MTF treatment conditions to provide a brief overview on the consecutive
sequences of molecular events.

2. Results

2.1. Meta-Analysis on Microarray Expression Data Sets

The meta-analysis on microarray expression studies included data sets where MTF-treated cancer
cells were compared to MTF-untreated ones. The following cancer cell lines were employed, SK-4
esophageal cancer cells (Gene Expression Omnibus (GEO) submission GSE16816), MCF-7 breast cancer
cells (GSE36847, GSE69845), LoVo colon carcinoma cells (GSE67342), HepaRG liver carcinoma cells
(GSE69844), Ishikawa endometrial adenocarcinoma cells (GSE69849), HepG2 liver carcinoma cells
(GSE69850), and HL60, KG1a, MOLM14, and U937 acute myeloid lymphoid (AML) cells (GSE97346)
(Table 1) [13–17]. The investigated studies were processed using HumanRef-6 v2.0 expression BeadChips
(GSE16816), HG-U133 Plus 2.0 microarrays (GSE36847 and GSE67342), HG-U219 microarrays (GSE69844,
GSE69845, GSE69849, and GSE69850), and HuGene-2.0 ST microarrays (GSE97346).

2.2. Genes Either Up- or Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions

Using the data set of 13 different conditions (Table 1) a set of 830 significantly DEGs was compiled,
comprising 443 up- and 387 down-regulated genes that were identified in MTF-treated compared to
MTF-untreated cells in at least two different conditions (Table S1). The most frequently upregulated
genes include chromodomain helicase DNA binding protein 2 (CHD2), DNA damage inducible transcript
4 (DDIT4), endoplasmic reticulum to nucleus signaling 1 (ERN1), growth differentiation factor 15



Int. J. Mol. Sci. 2019, 20, 3173 3 of 15

(GDF15), kelch like family member 24 (KLHL24), solute carrier family 7 member 11 (SLC7A11), tripartite
motif containing 2 (TRIM2), and tuftelin 1 (TUFT1) (Figure 1A). The most frequently downregulated
genes comprise arrestin domain containing 4 (ARRDC4), thioredoxin interacting protein (TXNIP), E2F
transcription factor 8 (E2F8), and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1).

Table 1. Microarray studies on MTF in vitro application included in the meta-analysis.

GEO 1

Data Set
Cell Lines Treatment

[h]
MTF
[mM] No. of DEGs Array Platform Date Study

GSE16816 SK-4 12 5 101–500 HumanRef-6 v2.0
expression BeadChips 2011 [13]

GSE36847 MCF-7, cytoplasmic 12 10 501–1000 HG-U133 Plus 2.0 2012 [14]

GSE36847 MCF-7,
polysome-associated 12 10 1001–3000 HG-U133 Plus 2.0 2012 [14]

GSE67342 LoVo 8 10 100–500 HG-U133 Plus 2.0 2015 [15]
GSE67342 LoVo 24 10 1001–3000 HG-U133 Plus 2.0 2015 [15]
GSE69844 HepaRG 6 0.01 <100 HG-U219 2016 [16]
GSE69845 MCF-7 6 0.01 <100 HG-U219 2016 [16]
GSE69849 Ishikawa 6 0.01 101–500 HG-U219 2016 [16]
GSE69850 HepG2 6 0.01 101–500 HG-U219 2016 [16]
GSE97346 HL60 24 10 1001–3000 HuGene-2.0 ST 2017 [17]
GSE97346 KG1a 24 10 101–500 HuGene-2.0 ST 2017 [17]
GSE97346 MOLM14 24 10 101–500 HuGene-2.0 ST 2017 [17]
GSE97346 U937 24 10 501–1000 HuGene-2.0 ST 2017 [17]

1 Gene Expression Omnibus.
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Figure 1. Genes most frequently differentially expressed under MTF treatment. The number of up- 
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different conditions. 
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Interrogating the protein interaction database Biogrid with the set of 830 DEGs, 14 molecules, 
i.e., BAIAP2L1, CYCS, G3BP1, MARS, MCL1, MDM4, NOTCH1, PARP1, PPARGC1A, PPM1A, 
PRKAB1, SRPK2, TXNIP, and VCP were listed as AMPK interactors. 

Individual biofunctional analysis of the 13 different conditions (Table 1) revealed that metabolic 
and cancer-related pathways were commonly listed among the top five pathways. Especially, 
different cholesterol biosynthesis pathways, the role of tissue factor in cancer, and unfolded protein 
response (URP) were listed each in three different conditions. 

Taking the entire set of 830 DEGs, the protein class overrepresentation test indicated a 1.50-fold 
enrichment (FE) of nucleic acid binding proteins (p-value = 5.36 × 10−4), which were represented by 
33 up- and 45 down-regulated factors. Canonical pathways significantly related to the upregulated 
factors include tRNA charging, whereas pathways related to the downregulated factors include cell 
cycle and DNA damage response mechanisms. 

Top canonical pathways, associated with the entire 830 DEG set, comprised cholesterol 
biosynthesis and other metabolic pathways, as well as estrogen-mediated S phase entry (Table 2). 
Based on the expected vs. observed direction of pathway molecule expression, four of the five top 
pathways were all in a significant inhibition state. For example, the cholesterol pathway molecules 

Figure 1. Genes most frequently differentially expressed under MTF treatment. The number of up-
and/or down-regulated conditions is indicated at the frequency bars of each gene. (A) Genes either
up- or down-regulated under different conditions. (B) Genes both up- and down-regulated under
different conditions.

2.3. Biofunctional Analysis on Genes Either Up- or Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions

Interrogating the protein interaction database Biogrid with the set of 830 DEGs, 14 molecules,
i.e., BAIAP2L1, CYCS, G3BP1, MARS, MCL1, MDM4, NOTCH1, PARP1, PPARGC1A, PPM1A, PRKAB1,
SRPK2, TXNIP, and VCP were listed as AMPK interactors.
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Individual biofunctional analysis of the 13 different conditions (Table 1) revealed that metabolic
and cancer-related pathways were commonly listed among the top five pathways. Especially, different
cholesterol biosynthesis pathways, the role of tissue factor in cancer, and unfolded protein response
(URP) were listed each in three different conditions.

Taking the entire set of 830 DEGs, the protein class overrepresentation test indicated a 1.50-fold
enrichment (FE) of nucleic acid binding proteins (p-value = 5.36 × 10−4), which were represented by
33 up- and 45 down-regulated factors. Canonical pathways significantly related to the upregulated
factors include tRNA charging, whereas pathways related to the downregulated factors include cell
cycle and DNA damage response mechanisms.

Top canonical pathways, associated with the entire 830 DEG set, comprised cholesterol biosynthesis
and other metabolic pathways, as well as estrogen-mediated S phase entry (Table 2). Based on the
expected vs. observed direction of pathway molecule expression, four of the five top pathways were
all in a significant inhibition state. For example, the cholesterol pathway molecules in the data set
included ACAT2, CYP51A1, DHCR7, DHCR24, HMGCS1, IDI1, LSS, MVD, MVK, and SQLE, which
were all downregulated. Similarly, except the cell cycle inhibitor CDKN1A, all other molecules of the
estrogen-mediated S phase entry pathway, which were present in the data set, i.e., CCNE1, CCNE2,
E2F2, E2F3, E2F7, and E2F8 were downregulated.

Table 2. Top pathways and networks in MTF-treated vs. MTF-untreated conditions.

Category Genes Either Up- or Down-Regulated Genes Both Up- and Down-Regulated

p-Value Overlap [%] z-Score/Score p-Value Overlap [%] Score

Top canonical pathways

Superpathway of cholesterol biosynthesis 7.29 × 10−9 35.7 −3.16
Estrogen-mediated S phase entry 1.19 × 10−5 26.9 −2.65
Oleate biosynthesis II (animals) 3.23 × 10−5 38.5 −1.34
Cholesterol biosynthesis I 3.23 × 10−5 38.5 −2.24
Mevalonate pathway I 3.23 × 10−5 38.5 −2.24
Prolactin signaling 5.55 × 10−9 14.3
IL-8 signaling 1.78 × 10−8 8.8
HGF signaling 2.32 × 10−8 11.6
PDGF signaling 1.25 × 10−7 12.2
ERBB signaling 2.99 × 10−7 11.3

Top networks related to diseases and
functions

Carbohydrate metabolism, small molecule
biochemistry, cancer 58

Cell cycle, cellular assembly and organization,
DNA replication, recombination, and repair 44

Cell cycle, lipid metabolism, molecular transport 44
RNA post-transcriptional modification, cell
cycle, DNA replication, recombination,
and repair

42

Hereditary disorder, neurological disease,
organismal injury and abnormalities 42

RNA post-transcriptional modification, DNA
replication, recombination, and repair,
cell-to-cell signaling and interaction

55

Cancer, gastrointestinal disease, organismal
injury and abnormalities 47

Cellular growth and proliferation, post-
translational modification, carbohydrate
metabolism

44

RNA post-transcriptional modification,
glomerular injury, organismal injury and
abnormalities

40

Cancer, cell cycle, organismal injury and
abnormalities 33

A merged network generated from the three top networks that were most significantly related to
the DEG set displays significant relations with, e.g., carbohydrate and lipid metabolism, cancer, cell
cycle, and DNA replication, recombination, and repair (Table 2, Figure 2).
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Figure 2. The merged network is based on the top three networks that were most significantly related
to the microarray expression profiles of the 830 DEG set, which were either significantly up- or
down-regulated in at least two different conditions. Network molecules are related to carbohydrate and
lipid metabolism, small molecule biochemistry, cancer, cell cycle, cellular assembly and organization,
DNA replication, recombination and repair, and molecular transport (Table 2). Upregulated molecules
derived from the 830 DEG set include ACACB, AKAP9, ANAPC5, ANKRD1, ARIH1, ASPH, CDKN1A,
CEP120, CNOT6L, CSGALNACT2, CUL4A, GADD45A, GADD45B, GARS, HBP1, HLCS, HNRNPA1,
ITPRID2, LCOR, MALSU1, MCM5, ME1, METRNL, NACA, NHSL1, NR1D2, PDCD4, PDK4, PHF21A,
PKM, PPARGC1A, PTEN, SERTAD2, SNTB2, SPICE1, SUN1, TANC2, TPST2, TTBK2, TULP4, WEE1,
and ZFYVE16. Downregulated molecules include ANGEL2, BRCA2, BRMS1, CENPN, CENPU, COX7B,
CUL5, DDX51, DGCR8, EPC1, FBXO28, FTSJ3, G3BP1, H2AFX, HIST1H2AK, HIST1H2BM, HIST1H4D,
KIF20A, LLPH, MAT2A, MAX, MRTO4, NCOA5, NRIP1, OPA3, PATZ1, PAXBP1, PISD, POGLUT1,
POP1, PRKAB1, PRMT6, RBM4B, RDH13, RIOK2, RPL27A, RPS20, SDF2L1, SENP8, SLC29A1, SNHG20,
THNSL1, TOE1, TUBB4B, TULP3, TWNK, UTP23, UTP25, VMA21, ZC3H7A, ZC3HAV1, ZNF689,
and ZSCAN25. The network was overlaid with the molecule activity predictor to calculate further
molecular effects, as outlined in the prediction legend. Interconnecting factors added from the Ingenuity
Knowledge Base include carnitine palmitoyltransferase 1A (CPT1), C-terminal-binding protein 1 (Ctbp),
eukaryotic translation initiation factor 4A1 (EIF4A), eukaryotic translation initiation factor 4 gamma
1 (Eif4g), HISTONE, heparan sulfate proteoglycan (Hspg), Pka, ribosomal 45S RNA clusters (Rnr),
retinoid receptor (Rxr), and Tat-interactive protein-60KDa (TIP60).

The upstream regulators, which were most significantly related to the DEG set, were tosedostat
(benzeneacetic acid), ATF4, TP53, GPER1, and SCAP (Figure S1). The first four upstream regulators
were predicted to be in an activated state, whereas the last one was predicted to be in an inhibited state.

A regulator effects network was generated that interconnects regulator molecules significantly
related to the DEG set with specific functions (Figure 3). Two of the three functions were predominately



Int. J. Mol. Sci. 2019, 20, 3173 6 of 15

in an activated state and entitled, cytostasis of tumor cell lines, and senescence of fibroblast cell lines,
whereas one function entitled, S phase of fibroblast cell lines, was predominately in an inhibited state.Int. J. Mol. Sci. 2019, 20, x 7 of 16 
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and post-translational modification, DNA replication, recombination, and repair, and carbohydrate 

Figure 3. The regulator effects network had a consistency score of 7.3 and was significantly related
to the microarray expression profiles of the 830 DEG set. Regulators include activating transcription
factor 4 (ATF4), cyclin dependent kinase inhibitor 2A (CDKN2A), cAMP responsive element binding
protein 1 (CREB1), E1A binding protein p400 (EP400), coagulation factor II, thrombin (F2), forkhead
box O3 (FOXO3), G protein-coupled estrogen receptor 1 (GPER1), interferon gamma (IFNG), low
density lipoprotein (LDL), notch receptor (Notch), and T-box 2 (TBX2). Molecules from the 830 DEG set
involved in the network include CCNE1, CDC6, CDKN1A, CEBPB, CTH, CYR61, DMTF1, DUSP1,
E2F2, E2F3, ETS1, FOXO1, GADD45A, IFIH1, IL1A, JAG1, KLF6, MAPK14, ME1, MXD1, NOTCH1,
NQO1, PER1, PPP1R15A, PTEN, SLC19A1, and STAT3. The network was overlaid with the molecule
activity predictor to calculate further molecular effects, as outlined in the prediction legend. The two
functions, cytostasis of tumor cell lines and senescence of fibroblast cell lines, were predominantly
activated whereas the function, S phase of fibroblast cell lines, was predominantly inhibited.

2.4. Genes Both Up- and Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions

To assess individual expression profiles in response to applied conditions, a second compilation
was conducted containing a set of 411 DEGs that were at least under one condition up- and under at
least one other condition down-regulated (Table S2). The most deregulated genes in this compilation
include nuclear paraspeckle assembly transcript 1 (NEAT1), which was upregulated in seven conditions
and downregulated in one, and insulin induced gene 1 (INSIG1), which was upregulated in two and
downregulated in six conditions (Figure 1B). Other frequently deregulated genes include early growth
response 1 (EGR1), phosphoserine aminotransferase 1 (PSAT1), and SOS Ras/Rho guanine nucleotide
exchange factor 2 (SOS2).

2.5. Biofunctional Analysis of Genes Both Up- and Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions

In the 411 DEG set, ubiquitin-protein ligases (p-value = 1.63 × 10−4; FE, 4.89), nucleic acid binding
factors (p-value = 1.74 × 10−4; FE, 1.73), and mRNA processing factors (p-value = 2.04 × 10−4; FE, 3.91)
represented the most significantly overrepresented protein classes. Top canonical pathways were
significantly related to various signaling pathways including those involving prolactin, IL-8, HGF,
PDGF, and ERBB signaling (Table 2).
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A merged network based on the 411 DEG set and generated from the top three networks
displays significant relations to diverse network functions, including cancer, post-transcriptional
and post-translational modification, DNA replication, recombination, and repair, and carbohydrate
metabolism (Table 2, Figure 4). Interrogating the Biogrid database with the DEG set, FOS and HNRNPL
were listed as AMPK interactors.
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Figure 4. The merged network is based on the top three networks that were most significantly related
to the microarray expression profiles of the set of 411 DEGs, which were both up- and down-regulated
in at least two different conditions. Network molecules were related to, e.g., post-transcriptional and
post-translational modification, DNA replication, recombination, and repair, cell-to-cell communication,
cancer and other abnormalities, cellular growth, and carbohydrate metabolism (Table 2). Molecules
derived from the 411 DEG set include AHCTF1, AHSA2P, ANKRD22, AREG, ATXN7, BASP1, BRD4,
CBX5, CENPC, CEP350, CITED2, CPEB2, DAAM1, DIP2C, DST, DYNC1H1, EED, EHBP1, EIF3A,
EIF4A2, EXOSC4, FGD4, FNBP1, FNBP1L, FRMD6, GART, GATA6, HELZ, HIST1H2BG, HNRNPL,
HNRNPU, IER5, IGFBP3, ING1, IVNS1ABP, JMJD1C, JMY, KDM5A, KLC1, KLF4, KNL1, KPNA5,
KRCC1, LGR4, LRCH1, MAP1B, MED18, MED31, MIB1, MKI67, MKLN1, MLH3, MYC, MYO9A,
N4BP2L2, NCAPH2, NEAT1, NIPBL, NUCB1, PCNA, PFKFB3, POLI, PRICKLE1, RBMS2, RICTOR,
RIN2, RNMT, RPL35A, RREB1, SBNO1, SECISBP2L, SLC16A14, SLC16A9, SNHG12, SPAG9, SRSF1,
STRBP, TNKS, TNKS2, TRA2A, TRIO, TTLL11, UHRF1BP1, WDR33, ZBED8, and ZNF440. The network
was overlaid with the molecule activity predictor to calculate further molecular effects, as outlined
in the prediction legend. Interconnecting factors added from the Ingenuity Knowledge Base include
14-3-3 protein, cyclin dependent kinases (Cdk), cyclin A, cyclin E, dishevelled, DNA-methyltransferase,
eukaryotic translation initiation factor 2 subunit alpha (Eif2), lysine acetyltransferase 2B (KAT2B; alias,
Gcn5l), gonadotropin releasing hormone 1 (GNRH), HISTONE, histone deacetylase, histone h3, IL-1R,
importin alpha, Jnk, mediator multiprotein complex, P-TEFb complex subunits, RNA polymerase II,
and ribosomal 45S RNA clusters (Rnr).
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2.6. DEGs in 6 h and 8 h vs. 24 h MTF Treatment

In a subset analysis, we compared the expression profiles in 6 h and 8 h vs. 24 h MTF treatment
conditions. Only three DEGs were repeatedly observed in the shorter but not in the longer MTF
treatment group. These three genes, which were coiled-coil domain containing 91 (CCDC91), growth
differentiation factor 15 (GDF15), and pyruvate kinase M1/2 (PKM), were all upregulated. In contrast,
more than 200 genes were differentially expressed in at least two 24 h MTF treatment conditions but in
none of the 6 h and 8 h treatment conditions.

In the 24 h MTF treatment group, the most commonly deregulated genes include ASH1L antisense
RNA 1 (ASNS), uncharacterized loci LOC101927372, phosphoserine aminotransferase 1 pseudogene
3 (PSAT1P3), RNA, U6 small nuclear 945, pseudogene (RNU6-945P), and UL16 binding protein 1
(ULBP1). The most significantly (p = 7.37 × 10−5; FE, 12.4) overrepresented protein class in this group
of repeatedly deregulated molecules were histones, that were represented by five downregulated
members, i.e., histone cluster 1 H4 family member d (HIST1H4D), histone cluster 1 H2B family member
m (HIST1H2BM), H2A histone family member X (H2AFX), histone cluster 1 H2A family member b
(HIST1H2AB), and histone cluster 1 H2A family member k (HIST1H2AK).

3. Discussion

Although several in vitro studies have performed expression analysis on selected genes under
MTF-treated compared to MTF-untreated conditions, only a small subset of studies has applied
mRNA expression profiling using whole transcriptome microarray technology. For example, one
of the microarray expression studies, which is included in the present meta-analysis, demonstrated,
by comparing the polysome-associated with the cytoplasmic RNA fraction, that the antiproliferative
effect of MTF is mainly a result of translational suppression of mRNAs of cell cycle regulators and tumor
promoters, including cyclin E2 (CCNE2) and ornithine decarboxylase 1 (ODC1), that are regulated via
the mTORC1/eukaryotic translation initiation factor 4E-binding (4EBP) protein pathway [14]. In fact,
CCNE2 was significantly downregulated in our survey in four conditions. mTORC1 is known to
enhance cell proliferation by inhibitory phosphorylation of 4EBP-1 and -2. In another microarray
expression profiling study, the two hepatoma cell lines HepG2 and HepaRG were assessed for their
capability of chemical hazard identification [18]. The results revealed remarkable differences of the
two cell lines in response and discriminator capacity to carcinogen exposure, which might explain to
some extent the differences in response to MTF treatment observed in our meta-analysis.

A part of the observed heterogeneous responses and pleiotropic effects related to MTF treatment
may be attributed to the different applied in vitro methodologies and conditions [19]. For example,
one of the assessed microarray expression studies applied 0.01 mM MTF for 6 h to four cell lines for
the purpose to demonstrate expression signatures that most likely reflect direct molecular responses
and mechanisms [16]. In our panel, all of these four cell lines displayed comparably lower numbers
of DEGs.

3.1. Genes Upregulated under Different Conditions

DDIT4 (alias, REDD1) is known as a negative regulator of mTOR [20]. In MTF-treated LNCaP
cells, DDIT4 inhibited mTOR, independently of AMPK, resulting in cell cycle arrest. ERN1 is
a transmembrane and ER-stress regulated protein that is involved in the UPR and initial stage of
autophagy [21]. A molecular genetic study in mouse embryonic stem cells demonstrated that functional
Chd2 is necessary to mediate a chromatin structure that is associated with appropriate expression
of developmentally regulated genes [22]. GDF15 has been described as a suitable serum biomarker
for MTF usage in dysglycemic patients [23]. The ubiquitin ligase substrate receptor KLHL24 has
been identified as one of several overexpressed genes in a chemically induced hypoxia cell culture
model [24]. The amino acid transporter SLC7A11 in expressed in various cancers, and supports
cancer cells in detoxifying reactive oxygen species (ROS) [25]. Depending on its role in glucose and
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glutamine metabolism of cancer cells, the transporter can emerge as a target for anticancer treatment.
In osteosarcoma, the E3-ubiquitin ligase TRIM2 is implicated in regulating development and metastasis,
while its downregulation in clear cell renal cell carcinoma promoted cell proliferation, migration, and
invasion and acted as an unfavorable prognostic indicator [26,27]. The acidic protein tuftelin 1 (TUFT1)
is involved in mTORC1 activation by interacting with the RAB GTPase activating protein 1 (RABGAP1)
and therefore may constitute a biomarker or a candidate for targeted therapy in mTOR activated,
progressive cancers [28].

3.2. Genes Downregulated under Different Conditions

Both ARRDC4 and TXNIP are alpha-arrestin proteins known to regulate metabolic processes
and are specifically involved in glucose uptake [29]. TXNIP is frequently downregulated in cancer by
genetic and epigenetic mechanisms [30]. MTF can inhibit TXNIP expression, partly through AMPK [31].
Different members of the E2F transcription factors including E2F8, were repeatedly downregulated in
the data sets of our survey. MTF treatment of lung cancer cells, in a similar manner as knockdown
of E2F8, led to suppression of G1-S phase progression [32]. Microarray expression assays in rat
FaO hepatoma cells demonstrated that MTF downregulates various metabolic genes and pathways
including Hmgcs1 and the cholesterol pathway by inhibiting nuclear receptor coactivator 2 (Ncoa2;
alias, SRC-2) [33].

3.3. Genes Both Up- and Down-Regulated under Different Conditions

The noncoding RNA Neat1 is a constituent of paraspeckles and induced by p53 in response
to diverse stress signals, which support p53-mediated tumor suppression [34]. INSIG1 encodes an
endoplasmic reticulum (ER) membrane protein known to be involved in diverse metabolic processes.
A microarray expression and qRT-PCR study has revealed that the gene is significantly downregulated
under MTF treatment in triple-negative breast cancer cells and the glucose concentration may play
a role in this process [35]. Zinc finger transcription factor EGR1 is known to be implicated in
inflammatory processes, and is downregulated by AMPKα under hyperglycemic conditions [36].
EGR1 acts under certain conditions as a putative tumor suppressor [37]. PSAT1 encodes a putative
oncogene protein noted to be overexpressed and associated with unfavorable prognosis in a number
of tumor types including breast and lung cancer [38,39]. SOS2 is a crucial factor for maintaining
mitochondrial homeostasis [40]. Results of cell culture models assessing the transformation capacity of
different RAS-mutant tumor cells indicated that SOS2 inhibition may emerge as a therapeutic option in
KRAS-mutant cancers [41].

3.4. DEGs in 6 h and 8 h vs. 24 h MTF Treatment

CCDC91 is known as a clathrin adaptor accessory protein p56 that is involved in promoting
membrane traffic through the trans-Golgi network; however, its function in cancer remains elusive [42].
As outlined earlier (Section 3.1), GDF15 is a suitable biomarker for MTF usage in glycemic patients. The
molecule is a secreted ligand of the TGF-β superfamily. It exerts pleiotropic effects in various diseases
and is rapidly induced as a stress response factor upon cellular injury and growth factor activity and
is implicated in inflammatory and apoptotic pathways [43]. In T2D patients, increased circulating
levels of GDF15 are associated with higher cancer incidence [44]. PKM expresses the two isoforms
PKM1 and PKM2. PKM1 is constitutively active and promotes glucose catabolism, whereas PKM2 is
activated only in response to increased levels of one or more allosteric activators [45]. The observed
downregulation of five histone genes can be regarded as an epigenetic mechanism to modify gene
expression pattern. Diverse epigenetic mechanisms including histone acetylation and methylation
have been described as a result of MTF treatment [46].
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3.5. Biofunctional Assessment

MTF is considered as a bioenergetic disruptor [47] and this meta-analysis is consistent with studies
reporting that MTF targets several metabolic pathways; for example, a recent study reported that
cholesterol biosynthesis pathway is affected by MTF treatment [33].

Biofunctional upstream analysis indicated that MTF and tosedostat exert overlapping metabolic
effects. Tosedostat is known to inhibit a number of M1 aminopeptidase enzymes resulting in the
depletion of amino acid pools, preferentially in cancer cells, which in consequence impairs cancer cell
survival or proliferation.

Under glucose limitation in solid tumors, MTF inhibits the UPR, which is cytotoxic to cancer
cells [48]. In fact, in our survey, a number of UPR-associated genes including ERN1 and DNA damage
inducible transcript 3 (DDIT3) were upregulated, or in case of INSIG1, up- and down-regulated under
different conditions, although specific induction of the UPR by glucose deprivation was not an aim of
the investigated microarray studies. Consistent with this and on basis of the 830 DEG set, the UPR
pathway (p = 3.55 × 10−4) had neither a positive nor negative z-score.

Downregulation of the estrogen-mediated S phase entry in the 830 DEG set and deregulation of
other, less significantly related, cell cycle pathways, including upregulation of the pathway entitled,
cell cycle: G1/S checkpoint regulation (p = 2.45 × 10−4), is consistent with the observations that MTF
affects cell cycle regulators in cancer cells [14,49].

3.6. Implications for MTF Treatment

One of the limitations of the meta-analysis concerns the analysis of only in vitro model systems
that do not resemble entirely molecular mechanisms nor sequential events which are effective in
complex biological environments such as cancer tissue. In particular, it has been criticized that
suprapharmacological MTF concentrations, frequently used in cell culture experiments, exceed those
observed in the in vivo environment, and therefore translation into clinical applications is limited [50].
Nonetheless, this meta-analysis provides an overview of the pleiotropic effects of MTF on the molecular
level that in principle should also be operational in vivo. Based on the overrepresentation of nucleic
acid binding factors in both major data sets, it can be contemplated that condition-specific pathways
and networks are preferentially utilized on the level of gene regulation to route pleiotropic MTF effects.

Although many observational studies, especially in T2D patients and, to a lesser extent, clinical
trials have reported that MTF is associated with reduced cancer risk, the major benefits of MTF emerge
from its additive or synergetic effects in combinatorial anticancer therapies [19,51]. For example,
application of MTF in MCF-7 cells with the hypoglycemia-mimicking compound 2-deoxy-D-glucose
(2DG), which acts as a chemical UPR inducer, demonstrated that the drug increases the cytotoxic effects
of 2DG in the breast cancer cells [52]. In this regard, a number of clinical cancer trials is assessing MTF
in combination regimens [9]. To evaluate heterogenous responses to therapy, it can be envisaged to
establish patient-derived cell culture models that may detect and explore molecular mechanisms or
genomic biomarkers indicative for individual responses to clinical MTF applications [47,53].

4. Materials and Methods

4.1. Selection of Microarray Data Sets

Using the search string, metformin AND expression AND cancer AND human, in GEO [54] in
November 2018, we retrieved eight submissions where MTF and control samples were employed as
biological triplicates or higher number of replicates. Using the same search string in ArrayExpress [55]
retrieved no additional data set.

Besides GEO submission GSE16816, all other submissions investigated more than one condition
and each condition was analyzed separately, except in case of one study that used different MTF
concentrations in its four submissions (GSE69844, GSE69845, GSE69849, and GSE69850). In these cases,
we used the highest (0.01 mM) MTF condition for our meta-analysis. Conditions of other submissions
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comprised different exposure times to MTF, i.e., 8 h and 24 h (GSE67342), different cellular components,
i.e., cytoplasmic and polysome-associated components (GSE36847), and different cell lines, i.e., HL60,
KG1a, MOLM14, and U937 (GSE97346). In sum, 13 different conditions from eight GEO submission,
representing five studies, were pooled and analyzed (Table 1). In a subset analysis, we compared DEGs
of five conditions that used either 6 h or 8 h exposure time to MTF (GSE69844, GSE69845, GSE69849,
GSE69850, and GSE67342) with five conditions that used 24 h exposure time to MTF (GSE67342 and
GSE97346). In general, the meta-analysis adhered to recommendations outlined in a practical guideline
for meta-analysis of gene expression microarray data sets [56].

4.2. Calculation of DEGs

For one submission (GSE16816), the fold change (FC) of DEGs was calculated between MTF-treated
and MTF-untreated samples using the provided normalized intensity data. For all other submissions,
the binary CEL files containing the intensity calculations based on the pixel values were imported into
the Transcriptome Analysis Console (TAC) version 4.0.1 (Thermo Fisher Scientific, Waltham, MA, USA)
that includes the LIMMA (linear modeling for microarrays) package from Bioconductor [57]. Based on
the chosen parameters, the binary CEL files were normalized in TAC and lists of differentially expressed
probe sets generated. A FC ≥ 1.5 and a p-value < 0.05 served as a threshold for statistical significance
of expression data. A FC of ≥ 1.5 has been employed as a robust threshold for assessing MTF effects in
in vitro model systems [58]. Where necessary, the BioMart community portal, Ensembl release 95, and
the DAVID bioinformatics resources 6.8 were employed to convert microarray probe set IDs or alias
symbols to official gene symbols [59–61]. Genes with both significantly up- and down-regulated probe
sets in the same condition were excluded from further analysis.

4.3. Functional Gene Analysis

Pathway and network analyses were accomplished by using the Ingenuity Pathway Analysis
(IPA) software (Qiagen, Hilden, Germany). IPA employs the curated Ingenuity Knowledge Base as a
reference data set. The analysis settings included direct and indirect molecular relationships. Fisher’s
exact test p-values indicated significant correlations between the analyzed data set molecules and
functional frameworks prebuilt or generated de novo by IPA. Expression effects/coherence of expression
effects of a molecule on other pathway or network molecules were predicted by using the molecule
activity predictor. The canonical pathway workflow was utilized to determine those uploaded data set
molecules that are co-expressed in a directional pathway. A z-score ≥ 2 predicts a significant activation
state and ≤ −2 a significant inhibition state between expected and observed functional relationships.
The number of data set molecules in relation to the entire set of pathway molecules is expressed as
an overlap percentage. Network analysis was employed to explore significance of fit, expressed as
a score value, between uploaded data set molecules and networks related to specific functions or
diseases. Upstream analysis was utilized to interpret, by using z-scores, how differences in target
gene expression are affected by upstream regulators. Regulator effects analysis was employed to
interpret which regulators target uploaded data set molecules and which kind of downstream effects,
i.e., diseases and/or functions, are associated. The extent to which a generated network is consistent
with the Ingenuity Knowledge Base, i.e., either activated or inactivated, is expressed by a consistency
score. The gene ontology (GO) online program PANTHER v. 11, which combines GO annotations
and a phylogenetic tree model for inferring gene functions, was utilized to identify overrepresented
protein classes in the data sets using Fisher’s exact test with a p-value < 0.05 for indicating statistical
significance [62]. Biogrid, the database of physical and genetic interactions, was interrogated to identify
AMPK interactors [63].

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/13/
3173/s1.
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AMPK AMP-activated protein kinase
DEG differentially expressed gene
EMT epithelial-to-mesenchymal transition
ER endoplasmic reticulum
FC fold change
FE fold enrichment
GEO Gene Expression Omnibus
GO gene ontology
MTF metformin
OXPHOS oxidative phosphorylation
T2D type 2 diabetes
UPR unfolded protein response

References

1. Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.;
Segal, J.B.; Bolen, S. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for
Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 164, 740–751. [CrossRef]
[PubMed]

2. Garcia-Jimenez, C.; Gutierrez-Salmeron, M.; Chocarro-Calvo, A.; Garcia-Martinez, J.M.; Castano, A.;
De la Vieja, A. From obesity to diabetes and cancer: Epidemiological links and role of therapies. Br. J. Cancer
2016, 114, 716–722. [CrossRef] [PubMed]

3. Sliwinska, A.; Drzewoski, J. Molecular action of metformin in hepatocytes: An updated insight.
Curr. Diabetes Rev. 2015, 11, 175–181. [CrossRef] [PubMed]

4. Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies.
Cell Metab. 2014, 20, 953–966. [CrossRef] [PubMed]

5. Schneider, M.B.; Matsuzaki, H.; Haorah, J.; Ulrich, A.; Standop, J.; Ding, X.Z.; Adrian, T.E.; Pour, P.M.
Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 2001, 120, 1263–1270.
[CrossRef] [PubMed]

6. Czyzyk, A.; Szczepanik, Z. Diabetes mellitus and cancer. Eur. J. Intern. Med. 2000, 11, 245–252. [CrossRef]
7. Tang, G.H.; Satkunam, M.; Pond, G.R.; Steinberg, G.R.; Blandino, G.; Schunemann, H.J.; Muti, P. Association of

Metformin with Breast Cancer Incidence and Mortality in Patients with Type II Diabetes: A GRADE-Assessed
Systematic Review and Meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2018, 27, 627–635. [CrossRef]
[PubMed]

8. Barua, R.; Templeton, A.J.; Seruga, B.; Ocana, A.; Amir, E.; Ethier, J.L. Hyperglycaemia and Survival in Solid
Tumours: A Systematic Review and Meta-analysis. Clin. Oncol. (R Coll Radiol) 2018, 30, 215–224. [CrossRef]

9. Chae, Y.K.; Arya, A.; Malecek, M.K.; Shin, D.S.; Carneiro, B.; Chandra, S.; Kaplan, J.; Kalyan, A.; Altman, J.K.;
Platanias, L.; et al. Repurposing metformin for cancer treatment: Current clinical studies. Oncotarget 2016, 7,
40767–40780. [CrossRef] [PubMed]

10. Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through
inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 2000, 348 Pt 3, 607–614. [CrossRef]

11. Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol.
Cell Biol. 2018, 19, 121–135. [CrossRef] [PubMed]

http://dx.doi.org/10.7326/M15-2650
http://www.ncbi.nlm.nih.gov/pubmed/27088241
http://dx.doi.org/10.1038/bjc.2016.37
http://www.ncbi.nlm.nih.gov/pubmed/26908326
http://dx.doi.org/10.2174/1573399811666150325233108
http://www.ncbi.nlm.nih.gov/pubmed/25808533
http://dx.doi.org/10.1016/j.cmet.2014.09.018
http://www.ncbi.nlm.nih.gov/pubmed/25456737
http://dx.doi.org/10.1053/gast.2001.23258
http://www.ncbi.nlm.nih.gov/pubmed/11266389
http://dx.doi.org/10.1016/S0953-6205(00)00106-0
http://dx.doi.org/10.1158/1055-9965.EPI-17-0936
http://www.ncbi.nlm.nih.gov/pubmed/29618465
http://dx.doi.org/10.1016/j.clon.2018.01.003
http://dx.doi.org/10.18632/oncotarget.8194
http://www.ncbi.nlm.nih.gov/pubmed/27004404
http://dx.doi.org/10.1042/bj3480607
http://dx.doi.org/10.1038/nrm.2017.95
http://www.ncbi.nlm.nih.gov/pubmed/28974774


Int. J. Mol. Sci. 2019, 20, 3173 13 of 15

12. Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al.
Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108, 1167–1174.
[CrossRef] [PubMed]

13. Cheong, J.H.; Park, E.S.; Liang, J.; Dennison, J.B.; Tsavachidou, D.; Nguyen-Charles, C.; Wa Cheng, K.;
Hall, H.; Zhang, D.; Lu, Y.; et al. Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin
is effective against a broad spectrum of preclinical cancer models. Mol. Cancer Ther. 2011, 10, 2350–2362.
[CrossRef] [PubMed]

14. Larsson, O.; Morita, M.; Topisirovic, I.; Alain, T.; Blouin, M.J.; Pollak, M.; Sonenberg, N. Distinct perturbation
of the translatome by the antidiabetic drug metformin. Proc. Natl. Acad. Sci. USA 2012, 109, 8977–8982.
[CrossRef] [PubMed]

15. He, J.; Wang, K.; Zheng, N.; Qiu, Y.; Xie, G.; Su, M.; Jia, W.; Li, H. Metformin suppressed the proliferation of
LoVo cells and induced a time-dependent metabolic and transcriptional alteration. Sci. Rep. 2015, 5, 17423.
[CrossRef]

16. De Abrew, K.N.; Kainkaryam, R.M.; Shan, Y.K.; Overmann, G.J.; Settivari, R.S.; Wang, X.; Xu, J.; Adams, R.L.;
Tiesman, J.P.; Carney, E.W.; et al. Grouping 34 Chemicals Based on Mode of Action Using Connectivity
Mapping. Toxicol Sci. 2016, 151, 447–461. [CrossRef]

17. Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.;
Fraisse, M.; et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for
Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017, 7, 716–735. [CrossRef]

18. Jennen, D.G.; Magkoufopoulou, C.; Ketelslegers, H.B.; van Herwijnen, M.H.; Kleinjans, J.C.; van Delft, J.H.
Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical
hazard identification. Toxicol Sci. 2010, 115, 66–79. [CrossRef]

19. Schulten, H.J. Pleiotropic Effects of Metformin on Cancer. Int. J. Mol. Sci. 2018, 19, 2850. [CrossRef]
20. Ben Sahra, I.; Regazzetti, C.; Robert, G.; Laurent, K.; Le Marchand-Brustel, Y.; Auberger, P.; Tanti, J.F.;

Giorgetti-Peraldi, S.; Bost, F. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle
arrest through REDD1. Cancer Res. 2011, 71, 4366–4372. [CrossRef]

21. Rashid, H.O.; Yadav, R.K.; Kim, H.R.; Chae, H.J. ER stress: Autophagy induction, inhibition and selection.
Autophagy 2015, 11, 1956–1977. [CrossRef] [PubMed]

22. Semba, Y.; Harada, A.; Maehara, K.; Oki, S.; Meno, C.; Ueda, J.; Yamagata, K.; Suzuki, A.; Onimaru, M.;
Nogami, J.; et al. Chd2 regulates chromatin for proper gene expression toward differentiation in mouse
embryonic stem cells. Nucleic Acids Res. 2017, 45, 8758–8772. [CrossRef] [PubMed]

23. Gerstein, H.C.; Pare, G.; Hess, S.; Ford, R.J.; Sjaarda, J.; Raman, K.; McQueen, M.; Lee, S.; Haenel, H.;
Steinberg, G.R. Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care 2017, 40,
280–283. [CrossRef] [PubMed]

24. Calvo-Anguiano, G.; Lugo-Trampe, J.J.; Camacho, A.; Said-Fernandez, S.; Mercado-Hernandez, R.;
Zomosa-Signoret, V.; Rojas-Martinez, A.; Ortiz-Lopez, R. Comparison of specific expression profile in
two in vitro hypoxia models. Exp. Ther. Med. 2018, 15, 4777–4784. [CrossRef] [PubMed]

25. Koppula, P.; Zhang, Y.; Zhuang, L.; Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of
regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 2018, 38, 12.
[CrossRef] [PubMed]

26. Qin, Y.; Ye, J.; Zhao, F.; Hu, S.; Wang, S. TRIM2 regulates the development and metastasis of tumorous cells
of osteosarcoma. Int. J. Oncol. 2018, 53, 1643–1656. [CrossRef] [PubMed]

27. Xiao, W.; Wang, X.; Wang, T.; Xing, J. TRIM2 downregulation in clear cell renal cell carcinoma affects cell
proliferation, migration, and invasion and predicts poor patients’ survival. Cancer Manag Res. 2018, 10,
5951–5964. [CrossRef] [PubMed]

28. Kawasaki, N.; Isogaya, K.; Dan, S.; Yamori, T.; Takano, H.; Yao, R.; Morishita, Y.; Taguchi, L.; Morikawa, M.;
Heldin, C.H.; et al. TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discov. 2018, 4, 1.
[CrossRef]

29. Patwari, P.; Lee, R.T. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab. 2012, 23,
216–222. [CrossRef]

30. Nagaraj, K.; Lapkina-Gendler, L.; Sarfstein, R.; Gurwitz, D.; Pasmanik-Chor, M.; Laron, Z.; Yakar, S.; Werner, H.
Identification of thioredoxin-interacting protein (TXNIP) as a downstream target for IGF1 action. Proc. Natl.
Acad. Sci. USA 2018, 115, 1045–1050. [CrossRef]

http://dx.doi.org/10.1172/JCI13505
http://www.ncbi.nlm.nih.gov/pubmed/11602624
http://dx.doi.org/10.1158/1535-7163.MCT-11-0497
http://www.ncbi.nlm.nih.gov/pubmed/21992792
http://dx.doi.org/10.1073/pnas.1201689109
http://www.ncbi.nlm.nih.gov/pubmed/22611195
http://dx.doi.org/10.1038/srep17423
http://dx.doi.org/10.1093/toxsci/kfw058
http://dx.doi.org/10.1158/2159-8290.CD-16-0441
http://dx.doi.org/10.1093/toxsci/kfq026
http://dx.doi.org/10.3390/ijms19102850
http://dx.doi.org/10.1158/0008-5472.CAN-10-1769
http://dx.doi.org/10.1080/15548627.2015.1091141
http://www.ncbi.nlm.nih.gov/pubmed/26389781
http://dx.doi.org/10.1093/nar/gkx475
http://www.ncbi.nlm.nih.gov/pubmed/28549158
http://dx.doi.org/10.2337/dc16-1682
http://www.ncbi.nlm.nih.gov/pubmed/27974345
http://dx.doi.org/10.3892/etm.2018.6048
http://www.ncbi.nlm.nih.gov/pubmed/29805495
http://dx.doi.org/10.1186/s40880-018-0288-x
http://www.ncbi.nlm.nih.gov/pubmed/29764521
http://dx.doi.org/10.3892/ijo.2018.4494
http://www.ncbi.nlm.nih.gov/pubmed/30066883
http://dx.doi.org/10.2147/CMAR.S185270
http://www.ncbi.nlm.nih.gov/pubmed/30538545
http://dx.doi.org/10.1038/s41421-017-0001-2
http://dx.doi.org/10.1016/j.tem.2012.03.003
http://dx.doi.org/10.1073/pnas.1715930115


Int. J. Mol. Sci. 2019, 20, 3173 14 of 15

31. Chai, T.F.; Hong, S.Y.; He, H.; Zheng, L.; Hagen, T.; Luo, Y.; Yu, F.X. A potential mechanism of
metformin-mediated regulation of glucose homeostasis: Inhibition of Thioredoxin-interacting protein
(Txnip) gene expression. Cell Signal. 2012, 24, 1700–1705. [CrossRef] [PubMed]

32. Jin, D.H.; Kim, Y.; Lee, B.B.; Han, J.; Kim, H.K.; Shim, Y.M.; Kim, D.H. Metformin induces cell cycle arrest at
the G1 phase through E2F8 suppression in lung cancer cells. Oncotarget 2017, 8, 101509–101519. [CrossRef]
[PubMed]

33. Madsen, A.; Bozickovic, O.; Bjune, J.I.; Mellgren, G.; Sagen, J.V. Metformin inhibits hepatocellular glucose,
lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2
(SRC-2). Sci. Rep. 2015, 5, 16430. [CrossRef] [PubMed]

34. Mello, S.S.; Sinow, C.; Raj, N.; Mazur, P.K.; Bieging-Rolett, K.; Broz, D.K.; Imam, J.F.C.; Vogel, H.; Wood, L.D.;
Sage, J.; et al. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev. 2017,
31, 1095–1108. [CrossRef]

35. Wahdan-Alaswad, R.; Fan, Z.; Edgerton, S.M.; Liu, B.; Deng, X.S.; Arnadottir, S.S.; Richer, J.K.; Anderson, S.M.;
Thor, A.D. Glucose promotes breast cancer aggression and reduces metformin efficacy. Cell Cycle 2013, 12,
3759–3769. [CrossRef]

36. Wu, C.; Qin, N.; Ren, H.; Yang, M.; Liu, S.; Wang, Q. Metformin Regulating miR-34a Pathway to Inhibit Egr1
in Rat Mesangial Cells Cultured with High Glucose. Int. J. Endocrinol 2018, 2018, 6462793. [CrossRef]

37. Baron, V.; Adamson, E.D.; Calogero, A.; Ragona, G.; Mercola, D. The transcription factor Egr1 is a direct
regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene. Ther.
2006, 13, 115–124. [CrossRef]

38. Gao, S.; Ge, A.; Xu, S.; You, Z.; Ning, S.; Zhao, Y.; Pang, D. PSAT1 is regulated by ATF4 and enhances cell
proliferation via the GSK3beta/beta-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. J. Exp.
Clin. Cancer Res 2017, 36, 179. [CrossRef]

39. Yang, Y.; Wu, J.; Cai, J.; He, Z.; Yuan, J.; Zhu, X.; Li, Y.; Li, M.; Guan, H. PSAT1 regulates cyclin D1 degradation
and sustains proliferation of non-small cell lung cancer cells. Int. J. Cancer 2015, 136, E39–E50. [CrossRef]

40. García Navas, R.; Nuevo-Tapioles, C.; Liceras-Boillos, P.; Anta, B.; Lillo, C.; Gómez Rodríguez, C.;
Baltanas, F.C.; Santos, E. PO-173 Critical requirement of the Sos1 and Sos2 RasGEFs for maintenance
of mitochondrial homeostasis. ESMO Open 2018, 3 (Suppl. 2), A295.

41. Sheffels, E.; Sealover, N.E.; Wang, C.; Kim, D.H.; Vazirani, I.A.; Lee, E.; E, M.T.; Morrison, D.K.; Luo, J.;
Kortum, R.L. Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange
factor SOS2 to mediate cell transformation. Sci. Signal 2018, 11, 546. [CrossRef] [PubMed]

42. Mardones, G.A.; Burgos, P.V.; Brooks, D.A.; Parkinson-Lawrence, E.; Mattera, R.; Bonifacino, J.S.
The trans-Golgi network accessory protein p56 promotes long-range movement of GGA/clathrin-containing
transport carriers and lysosomal enzyme sorting. Mol. Biol. Cell 2007, 18, 3486–3501. [CrossRef]

43. Emmerson, P.J.; Duffin, K.L.; Chintharlapalli, S.; Wu, X. GDF15 and Growth Control. Front Physiol. 2018, 9,
1712. [CrossRef] [PubMed]

44. Pavo, N.; Wurm, R.; Neuhold, S.; Adlbrecht, C.; Vila, G.; Strunk, G.; Clodi, M.; Resl, M.; Brath, H.; Prager, R.;
et al. GDF-15 Is Associated with Cancer Incidence in Patients with Type 2 Diabetes. Clin. Chem. 2016, 62,
1612–1620. [CrossRef] [PubMed]

45. Sato, T.; Morita, M.; Nomura, M.; Tanuma, N. Revisiting glucose metabolism in cancer: Lessons from a PKM
knock-in model. Mol. Cell Oncol. 2018, 5, e1472054. [CrossRef] [PubMed]

46. Bridgeman, S.C.; Ellison, G.C.; Melton, P.E.; Newsholme, P.; Mamotte, C.D.S. Epigenetic effects of metformin:
From molecular mechanisms to clinical implications. Diabetes Obes Metab 2018, 20, 1553–1562. [CrossRef]
[PubMed]

47. Andrzejewski, S.; Siegel, P.M.; St-Pierre, J. Metabolic Profiles Associated With Metformin Efficacy in Cancer.
Front Endocrinol (Lausanne) 2018, 9, 372. [CrossRef] [PubMed]

48. Saito, S.; Furuno, A.; Sakurai, J.; Sakamoto, A.; Park, H.R.; Shin-Ya, K.; Tsuruo, T.; Tomida, A. Chemical
genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose
deprivation. Cancer Res. 2009, 69, 4225–4234. [CrossRef]

49. Wang, Y.; Xu, W.; Yan, Z.; Zhao, W.; Mi, J.; Li, J.; Yan, H. Metformin induces autophagy and G0/G1 phase cell
cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J. Exp. Clin. Cancer Res.
2018, 37, 63. [CrossRef]

50. He, L.; Wondisford, F.E. Metformin action: Concentrations matter. Cell Metab. 2015, 21, 159–162. [CrossRef]

http://dx.doi.org/10.1016/j.cellsig.2012.04.017
http://www.ncbi.nlm.nih.gov/pubmed/22561086
http://dx.doi.org/10.18632/oncotarget.21552
http://www.ncbi.nlm.nih.gov/pubmed/29254182
http://dx.doi.org/10.1038/srep16430
http://www.ncbi.nlm.nih.gov/pubmed/26548416
http://dx.doi.org/10.1101/gad.284661.116
http://dx.doi.org/10.4161/cc.26641
http://dx.doi.org/10.1155/2018/6462793
http://dx.doi.org/10.1038/sj.cgt.7700896
http://dx.doi.org/10.1186/s13046-017-0648-4
http://dx.doi.org/10.1002/ijc.29150
http://dx.doi.org/10.1126/scisignal.aar8371
http://www.ncbi.nlm.nih.gov/pubmed/30181243
http://dx.doi.org/10.1091/mbc.e07-02-0190
http://dx.doi.org/10.3389/fphys.2018.01712
http://www.ncbi.nlm.nih.gov/pubmed/30542297
http://dx.doi.org/10.1373/clinchem.2016.257212
http://www.ncbi.nlm.nih.gov/pubmed/27756762
http://dx.doi.org/10.1080/23723556.2018.1472054
http://www.ncbi.nlm.nih.gov/pubmed/30250920
http://dx.doi.org/10.1111/dom.13262
http://www.ncbi.nlm.nih.gov/pubmed/29457866
http://dx.doi.org/10.3389/fendo.2018.00372
http://www.ncbi.nlm.nih.gov/pubmed/30186229
http://dx.doi.org/10.1158/0008-5472.CAN-08-2689
http://dx.doi.org/10.1186/s13046-018-0731-5
http://dx.doi.org/10.1016/j.cmet.2015.01.003


Int. J. Mol. Sci. 2019, 20, 3173 15 of 15

51. Peng, M.; Darko, K.O.; Tao, T.; Huang, Y.; Su, Q.; He, C.; Yin, T.; Liu, Z.; Yang, X. Combination of metformin
with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev. 2017, 54, 24–33.
[CrossRef] [PubMed]

52. Salis, O.; Bedir, A.; Ozdemir, T.; Okuyucu, A.; Alacam, H. The relationship between anticancer effect of
metformin and the transcriptional regulation of certain genes (CHOP, CAV-1, HO-1, SGK-1 and Par-4) on
MCF-7 cell line. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1602–1609. [PubMed]

53. Asiedu, M.K.; Barron, M.; Aubry, M.C.; Wigle, D.A. Patient- and Cell Type-Specific Heterogeneity of
Metformin Response. Basic Clin. Pharmacol. Toxicol. 2018, 122, 214–222. [CrossRef] [PubMed]

54. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.;
Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data
sets–update. Nucleic Acids Res. 2013, 41, D991–D995. [CrossRef] [PubMed]

55. Rustici, G.; Kolesnikov, N.; Brandizi, M.; Burdett, T.; Dylag, M.; Emam, I.; Farne, A.; Hastings, E.;
Ison, J.; Keays, M.; et al. ArrayExpress update–trends in database growth and links to data analysis
tools. Nucleic Acids Res. 2013, 41, D987–D990. [CrossRef] [PubMed]

56. Ramasamy, A.; Mondry, A.; Holmes, C.C.; Altman, D.G. Key issues in conducting a meta-analysis of gene
expression microarray datasets. PLoS Med. 2008, 5, e184. [CrossRef] [PubMed]

57. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

58. Bakhashab, S.; Ahmed, F.W.; Schulten, H.J.; Bashir, A.; Karim, S.; Al-Malki, A.L.; Gari, M.A.;
Abuzenadah, A.M.; Chaudhary, A.G.; Alqahtani, M.H.; et al. Metformin improves the angiogenic potential
of human CD34(+) cells co-incident with downregulating CXCL10 and TIMP1 gene expression and
increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction.
Cardiovasc. Diabetol. 2016, 15, 27. [CrossRef]

59. Smedley, D.; Haider, S.; Durinck, S.; Pandini, L.; Provero, P.; Allen, J.; Arnaiz, O.; Awedh, M.H.; Baldock, R.;
Barbiera, G.; et al. The BioMart community portal: An innovative alternative to large, centralized data
repositories. Nucleic Acids Res 2015, 43, W589–W598. [CrossRef]

60. Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using
DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [CrossRef]

61. Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.;
Giron, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [CrossRef] [PubMed]

62. Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version
11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool
enhancements. Nucleic Acids Res. 2017, 45, D183–D189. [CrossRef] [PubMed]

63. Chatr-Aryamontri, A.; Oughtred, R.; Boucher, L.; Rust, J.; Chang, C.; Kolas, N.K.; O’Donnell, L.; Oster, S.;
Theesfeld, C.; Sellam, A.; et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017, 45,
D369–D379. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ctrv.2017.01.005
http://www.ncbi.nlm.nih.gov/pubmed/28161619
http://www.ncbi.nlm.nih.gov/pubmed/24943970
http://dx.doi.org/10.1111/bcpt.12898
http://www.ncbi.nlm.nih.gov/pubmed/28862803
http://dx.doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pubmed/23193258
http://dx.doi.org/10.1093/nar/gks1174
http://www.ncbi.nlm.nih.gov/pubmed/23193272
http://dx.doi.org/10.1371/journal.pmed.0050184
http://www.ncbi.nlm.nih.gov/pubmed/18767902
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1186/s12933-016-0344-2
http://dx.doi.org/10.1093/nar/gkv350
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1093/nar/gkx1098
http://www.ncbi.nlm.nih.gov/pubmed/29155950
http://dx.doi.org/10.1093/nar/gkw1138
http://www.ncbi.nlm.nih.gov/pubmed/27899595
http://dx.doi.org/10.1093/nar/gkw1102
http://www.ncbi.nlm.nih.gov/pubmed/27980099
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Meta-Analysis on Microarray Expression Data Sets 
	Genes Either Up- or Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions 
	Biofunctional Analysis on Genes Either Up- or Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions 
	Genes Both Up- and Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions 
	Biofunctional Analysis of Genes Both Up- and Down-Regulated in MTF-Treated vs. MTF-Untreated Conditions 
	DEGs in 6 h and 8 h vs. 24 h MTF Treatment 

	Discussion 
	Genes Upregulated under Different Conditions 
	Genes Downregulated under Different Conditions 
	Genes Both Up- and Down-Regulated under Different Conditions 
	DEGs in 6 h and 8 h vs. 24 h MTF Treatment 
	Biofunctional Assessment 
	Implications for MTF Treatment 

	Materials and Methods 
	Selection of Microarray Data Sets 
	Calculation of DEGs 
	Functional Gene Analysis 

	References

