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Chronic kidney disease (CKD) and hypertension are becoming a global health challenge,
despite developments in pharmacotherapy. Both diseases can begin in early life by so-
called “developmental origins of health and disease” (DOHaD). Environmental chemical
exposure during pregnancy can affect kidney development, resulting in renal
programming. Here, we focus on environmental chemicals that pregnant mothers are
likely to be exposed, including dioxins, bisphenol A (BPA), phthalates, per- and
polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAH), heavy
metals, and air pollution. We summarize current human evidence and animal models
that supports the link between prenatal exposure to environmental chemicals and
developmental origins of kidney disease and hypertension, with an emphasis on
common mechanisms. These include oxidative stress, renin-angiotensin system,
reduced nephron numbers, and aryl hydrocarbon receptor signaling pathway. Urgent
action is required to identify toxic chemicals in the environment, avoid harmful chemicals
exposure during pregnancy and lactation, and continue to discover other potentially
harmful chemicals. Innovation is also needed to identify kidney disease and hypertension
in the earliest stage, as well as translating effective reprogramming interventions from
animal studies into clinical practice. Toward DOHaD approach, prohibiting toxic chemical
exposure and better understanding of underlying mechanisms, we have the potential to
reduce global burden of kidney disease and hypertension.

Keywords: chronic kidney disease, hypertension, DOHaD (developmental origins of health and disease),
environmental chemical, oxidative stress, endocrine disruption chemical, renin-angiotensin system
1 INTRODUCTION

The association between maternal exposure to environmental risk factors and the increased risk for
developing adult disease has received increasing recognition in recent decades. This phenomenon is
referred to as “developmental programming” or “developmental origins of health and disease”
(DOHaD) (1, 2). The DOHaD hypothesis gained attention after the emergence of observational
studies from the famine cohorts combined with several subsequent epidemiologic investigations (3–5),
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illuminating events before birth can predispose offspring towards
non-communicable diseases (NCDs) in later life. Considering the
increasing burden of global NCDs, therefore, the WHO informed
the public about NCD prevention and control policies (6). So
much so, in fact, that the DOHaD concept becomes a key
prevention strategy to limit the passage of NCD risks to the next
generation (7).

Kidney disease and hypertension are highly prevalent NCDs
worldwide (8). About 10% of the global population is affected by
chronic kidney disease (CKD) (8). Despite hypertension
prevalence is highest in older populations, up to 20% of young
adults are hypertensive (9). Kidney disease and hypertension
have a bidirectional relationship (10), such that CKD is a
complication of uncontrolled hypertension and hypertension is
a frequent finding in kidney disease. Both kidney disease and
hypertension can take their origins in early life (11). During
critical period of development, the fetal kidney is particularly
vulnerable to adverse impacts of gestational events, leading to
functional and structural modifications, known as renal
programming (12). A wide range of maternal insults can
induce renal programming, giving rise to kidney disease and
hypertension in later life. These include maternal malnutrition,
maternal illness, substance abuse or medication use during
pregnancy, exposure to environmental chemicals, etc (13–16).
Numerous studies have reported the adverse renal effects that
occur following exposure to a broad spectrum of environmental
chemicals (17–20). However, little is known about the long-term
adverse consequences on the offspring from maternal exposure
to environmental chemicals in pregnancy. Of note, emerging
evidence supports a “two-hit” hypothesis that explains the
developmental programming of adult diseases (21).
Hypertension and kidney disease may develop with two
sequential hits: the first hit being the prenatal environmental
chemical exposure, followed by the second hit in response to
postnatal insult. CKD is characterized by a progressive loss of
nephrons. There is a ten-fold variation in nephron number at
birth (22), and a further decrease over the life cycle. Reduced
nephron number can stimulate hypertrophy of remaining
nephrons, resulting in glomerulosclerosis and more nephron
loss. From an evolutionary perspective, the transition of
hypertrophied nephrons to fibrosis is considered to be
maladaptive (23). Accordingly, the recognition of the
contribution of environmental chemicals to the changing
nephron formation and numbers from embryo through
senescence could provide new insight into the prevention
of CKD.

In this Review, we focus on environmental chemicals that
pregnant mothers are likely to be exposed as a consequence of
normal consumer activities, that is, dioxins, bisphenol A (BPA),
phthalates, per- and polyfluoroalkyl substances (PFAS),
polycyclic aromatic hydrocarbons (PAH), heavy metals, and
air pollution. We aim to provide an overview of maternal
exposure to environmental chemicals implicated in
developmental origins of kidney disease and hypertension. The
mechanisms mediating renal programming will be a special
focus, and their interrelationships to individual chemicals will
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be discussed. Furthermore, the potential of preventive approach
to protect offspring against developmental origins of kidney
disease and hypertension will be summarized. A drawing
schematic summarizing the sources of environmental
chemicals, adverse impact of maternal exposure on kidney
disease and hypertension on adult offspring, and common
mechanisms underlying renal programming are depicted
in Figure 1.

The PubMed/MEDLINE database was searched for
English-language and full-text articles published from 1980 to
June 2021 using the following search terms: “bisphenol
A” , “polychlorinated dibenzo-p-dioxins” , “dioxins” ,
“polychlorinated biphenyls”, “polychlorinated biphenyl”,
“perfluoroalkyl acid”, “perfluoroalkyl”, “perfluoroalkyl
compound”, “phthalates”, “phthalic acids”, “polycyclic
aromatic hydrocarbons”, “heavy metal”, “lead”, “mercury”,
“cadmium”, “air pollution”, “particulate matter”, “renal
function”, “kidney”, “nephrogenesis”, “blood pressure”,
“albuminuria”, “hypertension”, “developmental programming”,
“DOHaD”, “mother”, “maternal”, “pregnancy”, “gestation”,
“offspring”, “progeny”, and “prenatal”. Additional studies were
then selected and assessed based on appropriate references in
eligible papers.
2 SOURCES AND ADVERSE RENAL
EFFECTS OF ENVIRONMENTAL
CHEMICALS

Various environmental chemicals pose a broad range of adverse
effects on the kidney. Table 1 illustrates the major source and
reported adverse renal effects for environmental chemicals that
individuals are likely to be exposed during normal consumer
activity. Each of these chemicals will be discussed in turn.

2.1 Dioxins
The chemical name for dioxin is 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD), the most extensively studied and toxic dioxin.
While the name “dioxins” is habitually used for the family of
structurally and chemically related polychlorinated dibenzo-p-
dioxins (PCDD), polychlorinated dibenzo-p-furans (PCDFs),
and dioxin-like polychlorinated biphenyl (PCB). Dioxins are
synthetic halogenated aromatic hydrocarbons, emitted mostly
from anthropogenic sources like manufacturing of pesticides,
bleaching of wood pulp and waste incineration (24) (Table 1).
The presence of dioxins in the environment and the risk of
exposure for human health has raised great concern. The half-
lives of PCDDs and PCDFs range from 2–15 years (25); as such,
dioxins last a long time in fat tissue of the body. Dioxins tend to
accumulate in the food chain in the environment. Accordingly,
pregnant mothers can be exposed to these chemicals by eating
diet high in animal fat or occupational exposure. A high-level
exposure to dioxins is associated with decreased kidney function
and hypertension in adults (26, 27). Additionally, the prevalence
of hypertension was correlated with circulating PCDD and
PCDF concentrations in adults with dioxin exposure (28).
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Nevertheless, the association between dioxins on kidney function
and blood pressure (BP) in children remains largely unknown.
The effects of dioxins are mainly mediated by the aryl
hydrocarbon receptor (AHR)—a ligand-activated transcription
factor that contribute to the pathogenesis of CKD and
hypertension (59, 60).

2.2 Bisphenol A
Bisphenol A (BPA) was initially designed as a synthetic estrogen.
It is now widely used for lining metal cans and in polycarbonate
plastics, such as baby bottles, intravenous tubing, and dialysis
circuits (29). Incomplete polymerization and polymer
degradation of BPA causes it to leach out of food and beverage
containers. BPA can be absorbed through ingestion, respiration,
and the skin contact (30). As human exposure to BPA is frequent
and widespread, more than 90% of individuals have detectable
amounts of BPA in their urine (31). In humans, free BPA is
rapidly metabolized in the liver and eliminated by renal excretion
(32). High BPA concentrations have been reported in uremic
patients received hemodialysis or peritoneal dialysis (32).
Additionally, urinary BPA level was associated negatively with
the estimated glomerular filtration rate (eGFR) and positively
with BP (33, 34).

At concentrations lower than that reported in toxicological
studies, BPA could provoke different endocrine-disrupting
effects (30). BPA acts as an endogenous estrogen by interacting
Frontiers in Endocrinology | www.frontiersin.org 3
with estrogen receptors. Also, BPA is a ligand for the AHR. Thus,
taking into account that endocrine disruption chemical (EDC)
function as environmental signals and can be passed on to
subsequent generations (61), there will be a growing need to
understand the mechanisms of BPA action in order to decipher
the association between maternal BPA exposure and kidney
health in adult offspring.

2.3 Phthalates
Phthalates are a family of EDCs generally used as plasticizers in
various industrial commodities (35). Low-molecular weight
(LMW) phthalates have 3–6 carbon atoms in the backbone of
their structure, whereas high-molecular weight (HMW)
phthalates have 7–13 backbone carbons. LMH phthalates are
frequently added to cosmetics, shampoos, and other personal
hygiene products. HMW phthalates are commonly used to make
vinyl plastics in applications in flooring, food packaging and
intravenous tubing (35). Phthalates can be delivered to the
human body through diet, inhalation, and skin contact. Di-2-
ethylhexylphthalate (DEHP) and di-n-butyl phthalate (DBP) are
the primary phthalate ester pollutants in the environment (36).
The metabolites of phthalates can cross the placenta and be
transferred to the fetus (37). Epidemiological studies
demonstrated that high urinary DEHP levels are associated
with high BP, low eGFR and albuminuria (38–40). As
phthalates have estrogenic or antiandrogenic properties,
FIGURE 1 | Adverse impact of maternal environmental chemical exposure on developmental origins of kidney disease and hypertension. In pregnancy, exposure to
various environmental chemicals occurs through daily consumer activity. There are many sources of contamination like industry, waste infrastructure, consumer
products, contaminated foods, etc. These environmental chemicals cause renal programming, resulting in chronic kidney disease and hypertension in adulthood.
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emerging evidence suggests the associations between prenatal
phthalate exposure and adverse offspring outcomes (37).
Following these findings, steps should be taken to explore the
effect of phthalate exposure during pregnancy on
offspring kidneys.

2.4 Per- and Polyfluoroalkyl Substances
Per- and polyfluoroalkyl substances (PFAS) are a diverse group
of human-made chemicals used in a broad range of consumer
and industrial products (41). PFAS exposure is ubiquitous with
perfluoorooctanoic acid (PFOA) and perfluorooctane sulfonic
acid (PFOS) detectable in >90% of the population (42). For
pregnant women, contaminated diet, drinking water, and air are
the main sources of exposure. PFAS can be transferred from
mother to fetus in utero and through breastfeeding to neonates
(42). In adults, high PFOA or PFOS levels are associated with
CKD (43). Likewise, elevated PFOA levels are associated with
reduced kidney function in children and adolescents (62).
Nevertheless, the association between blood PFOA and PFOS
levels and hypertension was not identified in a pediatric
cohort (63).

Several mechanisms have been linked to PFAS-induced
kidney disease, including oxidative stress, peroxisome
proliferators-activated receptor (PPAR) pathways, NF-E2–
related factor 2 (NRF2) pathways, enhanced endothelial
permeability, and epithelial mesenchymal transition (64). Of
note, these mechanisms are also linked to developmental
Frontiers in Endocrinology | www.frontiersin.org 4
origins of kidney disease and hypertension (12–16). Despite
emerging evidence portends PFAS are environmental threats to
renal outcome; yet there is a gap in our understanding of whether
maternal PFAS exposure affects offspring’s kidney health.

2.5 Polycyclic Aromatic Hydrocarbons
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants
and composed of two or more fused aromatic rings of carbon
and hydrogen atoms, which come from industrial, mobile,
domestic, and agricultural emission (44). PAHs are highly
lipophilic and can easily accumulate in fat tissue of living
organisms. Many PAHs are mutagenic, carcinogenic,
teratogenic, and immunotoxic to humans (45). In pregnancy,
comparable amounts of PAHs in maternal blood and cord blood,
whereas low levels in placental tissue were found (44). These data
indicates that PAHs can cross the placenta and transfer to the
fetus. Another report illustrated that up to 30–95% of infants
have exposure to PAHs by breastfeeding (45). Current evidence
supports gestational exposure of PAHs is responsible for adverse
birth outcomes like low birth weight and premature delivery
(46). It has also been shown that benzo(a)pyrene (BaP) and other
PAHs can increase stillbirths and congenital abnormalities (47).
Regarding the kidney, studies in adults have identified increases
in urinary PAH metabolites were associated with a decrease in
eGFR (48), an elevation in BP (49), and the presence of
albuminuria (50). Similar to many environmental chemicals,
PAHs are known AHR ligands. Activation of PAH/AHR
TABLE 1 | Major source and exposure-related adverse renal outcomes of environmental chemicals.

Environmental
chemicals

Common
substances
or derivatives

Major source Exposure-related
adverse renal
outcomes

References

Dioxins TCDD, PCDD,
PCDF, PCB

Consumption of animal products with high fat content, manufacturing of pesticides, bleaching of
wood pulp and waste incineration

Reduced kidney
function,
albuminuria,
hypertension

(24–28)

Bisphenol A Plastic containers, lenses, medical tubing and devices Reduced kidney
function,
albuminuria,
hypertension

(29–34)

Phthalates DEHP, DBP Vinyl plastics, shampoos, cosmetics, food packaging, medical tubing and devices Reduced kidney
function,
albuminuria,
hypertension

(35–40)

Per- and
polyfluoroalkyl
substances

PFOA, PFOS Electrochemical fluorination, telomerization, surfactants, food packaging, non-stick cooking
surfaces, surface protection agents, fire-retarding foams

Reduced kidney
function,
hypertension

(41–43)

Polycyclic
aromatic
hydrocarbon

BaP Cigarette smoke, incomplete combustion of coal, oil, and gas; charbroiled meat Reduced kidney
function,
albuminuria,
hypertension

(44–50)

Heavy metals Pb, Cd, Hg Lead: soil and dust (paint, gasoline, industrial sources); drinking water, cigarette smoke;
Cadmium: fossil fuel combustion; phosphate fertilizers; batteries; contaminated food; Mercury:
coal-fired power plants; smelters, municipal waste incineration

Reduced kidney
function,
albuminuria,
hypertension

(17, 51–53)

Air pollution PM10, PM2.5 Burning of fossil fuels, industrial processes, solvent use, agriculture, waste treatment Reduced kidney
function,
hypertension

(54–58)
October 2
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BaP, benzo(a)pyrene; Pb, lead; Cd, cadmium; Hg, mercury; PM10 (particulate matter <10 mm in diameter), PM2.5 (particulate matter <2.5 mm).
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signaling can alter the toxicokinetic profile of many nephrotoxic
drugs, like aminoglycosides, to mediate kidney injury (65).

2.6 Heavy Metals
Heavy metals constitute an ill-defined group of inorganic
chemical hazards, and those most commonly found at
contaminated sites related to nephrotoxicity are lead (Pb),
cadmium (Cd), and mercury (Hg) (17, 51). The general
population is mainly exposed to lead from air and food, as
lead in foodstuff originated from pots used for cooking and over
50% of lead emissions originating from petrol. Cadmium
compounds are currently used as stabilizers and in re-
chargeable nickel–cadmium batteries. Accordingly, cadmium
exposure is generally from contaminated household waste and
food; and cigarette smoking. Regarding mercury, the major
source of exposure comes from contaminated food (i.e., fish)
and dental amalgam. During pregnancy, there were greater
accumulations of lead, cadmium, and mercury in the fetal
kidney than in brain (52). Chronic exposure to lead has been
linked to the development of lead nephropathy (53). Likewise,
cadmium can cause nephrotoxicity via entering the renal
epithelial cells (66). Mercury exposure has also been shown to
elicit nephrotoxic effects like acute kidney injury and proximal
tubule damage (17). In children, chronic relatively low-level
exposure to various heavy metals may also increase the risk for
CKD and hypertension (19, 20, 67). Owing to heavy metals
remain the most important occupational and environmental
pollutants, especially their nephrotoxic effects, there will be a
growing need to understand whether maternal exposure to heavy
metals impact renal outcomes in adult progeny.

2.7 Air Pollution
Epidemiological studies have obviously established that air
pollution contributes to cardiovascular morbidity and mortality
(54). Air pollutants include gaseous pollutants (e.g., carbon mono
oxide, oxides of nitrogen, ozone and sulfur dioxide) and
particulate matters (PMs). The coarse fraction contains the
particles with a size ranging from PM10 (<10 mm in diameter),
PM2.5 (<2.5 mm) to ultrafine particle (PM0.1). A meta-analysis
study suggested that BP was positively related to PM2.5 exposure
with an elevation of 1.393 mmHg, 95% CI (0.874-1.912) and 0.895
mmHg, 95% CI (0.49-1.299) per 10 mg/m increase for systolic and
diastolic BP, respectively (55). Additionally, there are several
studies showing association with various PMs and CKD
(56–58). Despite the association between maternal air pollution
exposure and birth defects has been addressed (68, 69), how early
exposure to particulate matters may increase the risk of adverse
renal outcome in offspring is still largely unknown.
3 PRENATAL ENVIRONMENTAL
CHEMICAL EXPOSURE ON RENAL
PROGRAMMING

All of the above-mentioned epidemiological evidence linking
environmental chemical pollutants to kidney diseases and
Frontiers in Endocrinology | www.frontiersin.org 5
hypertension are from studies established in direct but not
maternal exposure. Certain chemicals can impair nephrogenesis,
resulting in low nephron endowment and a spectrum of defects in
the kidney and urinary tract (70). Accordingly, developmental
nephrotoxic effects can be expected during environmental
chemical exposure of pregnant women. Any of these anomalies
coinciding with reduced nephron number may have long-term
sequelae such as kidney disease and hypertension in later life (70,
71). Although infants can be an increased risk of nephrotoxicity to
elemental (e.g., mercury) or organic contaminants (e.g.,
melamine) (19, 72, 73), studies focusing on association for
postnatal environmental chemical exposures (a time after
completion of nephrogenesis) and adverse renal outcomes were
excluded. Here, we summarize clinical and experimental studies
regarding environmental chemical exposure in pregnancy related
to adverse renal outcomes and hypertension in offspring.

3.1 Epidemiological Evidence
As shown in Table 2, very few human observational studies
addressed maternal environmental chemical exposure
implicating in offspring’s BP and renal outcome (74–84). All
epidemiological evidence are mother-child cohort studies and
none of them have been observed until adulthood. Prior
prospective studies on the associations of maternal exposure to
BPA and phthalates with childhood BP showed inconsistent
results (74–78). Some studies did not show any association of
fetal exposure to BPA with childhood BP, while others showed
fetal exposure to BPA was associated with higher diastolic blood
pressure (DBP) (74, 75). Another study showed higher second
trimester maternal urine BPA levels were associated with higher
systolic blood pressure (SBP) in boys at the mean age of 9.7 years
(76). In the same cohort study of 1,064 mother-child pairs,
maternal urine phthalate concentrations were not associated
with BP in boys but were associated with lower BP in girls
(76). A study of 500 children, found that participants born to
mothers had high urinary phthalate metabolite concentrations
was associated with low SBP and DBP at age 4 (77). Another
study similarly showed that maternal urinary phthalate
metabolite levels were negatively associated with SBP z-scores
in girls (77). These studies investigating the associations of
maternal phthalate exposure with childhood BP reported sex
specific effects (76–78).

Table 2 illustrates that maternal heavy metal exposure,
especially lead, is related to adverse renal effects on children.
One study of 1,194 mother-infant pairs has evaluated the effect of
prenatal exposure to heavy metals and trace elements on
childhood BP (79). Hg and Pb were not associated with
childhood SBP at 3 to 15 years of age. Although Cd was not
associated with childhood systolic BP overall, the inverse
association between manganese and childhood SBP was
stronger at higher levels of Cd (79). Two studies investigated
the associations between maternal lead levels and renal outcomes
in offspring (80, 81). One study found there were no associations
between maternal lead levels and childhood BP or eGFR at 8-12
years of age. However, they observed maternal lead level was
negatively associated with kidney volume in children (80).
Another study reported there was an inverse association
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between maternal blood lead levels and eGFR in overweight
children at 8-12 years of age (81).

Regarding air pollution, one report demonstrated that higher
prenatal PM2.5 exposure, particularly in the second trimester,
was associated with elevated childhood BP at 4-6 years of age
(82). Another report similarly showed that second and third
trimester PM2.5 exposure may increase children’s BP at 4-6 years
of age (83). Analysis of one study of 1,293 mother-child pairs
indicated that a 5-mg/m3 increment in PM2.5 during the third
trimester was associated with a 3.49 percentile increase in
childhood systolic BP at 3 to 9 ages of age (84) (Table 2).

So far, there is lack of information about the BP and renal
outcomes in children born to mothers exposed to PFOA, PFNA,
or PAHs. However, maternal exposure to these chemicals have
been linked to preterm birth, low birth weight (LBW), and
intrauterine growth retardation (IUGR) (85–87). It is
noteworthy that these risk factors related to reduced nephron
number (70, 71) as well as kidney disease and hypertension in
later life (11, 72, 88, 89). Likewise, prenatal PM2.5/PM10 or
phthalate exposure were related with IUGR and LBW (76, 90).
Since developmental origins of kidney disease can be attributed
to multiple hits, a programmed low nephron endowment likely
constitutes a first-hit to the kidney which makes the remaining
glomeruli more vulnerable to environmental influences and
increases the risk for developing CKD when facing other
chemical pollutants in later life.
Frontiers in Endocrinology | www.frontiersin.org 6
3.2 Evidence from Animal Models
To establish a causal relationship between prenatal exposure to
environment chemicals and kidney disease and hypertension,
animal models are valuable tools for establishing the dose–
response relationship, understanding the mechanisms of
developmental programming, and developing therapeutic
interventions (15).

Table 3 summarizes animal studies demonstrating the
association between maternal environmental chemical
exposure and subsequent kidney disease and hypertension in
progeny (91–105). The current review is solely restricted to
chemical exposures happening during the duration of kidney
development, with a focus on reporting offspring outcomes
starting after birth. As shown in Table 3, rats have been the
dominant animal species used. However, using large animals to
study similar exposures are not applied as of today. The
programming effects of environmental chemicals have been
reported in rats ranging from 2 to 21 weeks of age, which is
roughly equivalent to human ages from infancy to young
adulthood (106).

Several types of chemicals have been evaluated, including
TCDD (88–90), BPA (94, 95), DEHP (96), DBP (97, 98), BaP
(99), heavy metal mixture (100), Cd (101–103), and PM2.5 (104,
105). Maternal exposure to TCDD or BPA causes the rise of BP
in adult rat offspring (91, 92, 94), which was relevant to
dysregulated AHR signaling pathway. Besides, hydronephrosis
TABLE 2 | Effects of maternal environmental chemical exposure on blood pressure and renal outcomes in children.

Chemicals Study/country Participants Major findings References

Bisphenol A EDC birth cohort/South Korea 645 children Maternal urinary BPA concentration during midterm pregnancy
was associated with children’s DBP at age 4

(74)

Bisphenol A European HELIX cohort 1,277 children Increases in DBP were observed with maternal BPA
concentrations

(75)

Bisphenol A Generation R Study/Netherlands 1,064 mother-child pairs Maternal second trimester urinary BPA levels were associated
with SBP in boys at mean age 9.7 years

(76)

Phthalates Generation R Study/Netherlands 1,064 mother-child pairs Maternal urinary phthalate metabolite levels were negatively
associated with SBP and DBP in girls

(76)

Phthalates Rhea pregnancy cohort/Greece 500 mother-child pairs Maternal urinary phthalate metabolite concentrations were
negatively associated with SBP and DBP at age 4.

(77)

Phthalates INMA birth cohort/Spain 391 mother-child pairs Maternal urinary phthalate metabolite were associated with lower
SBP z-scores in girls but not in boys.

(78)

Heavy metals Boston Birth Cohort/USA 1,194 mother-infant pairs Hg, Pb, and Cd were not associated with childhood SBP at 3 to
15 years of age.

(79)

Lead MINIMat trial/Bangladesh 948 mother-infant pairs There were no associations between maternal lead levels and
childhood BP or eGFR at 8-12 years of age. There was an inverse
association between maternal lead level and kidney volume.

(80)

Lead PROGRESS birth cohort/Mexico 453 mother-child pairs There was an inverse association between maternal blood lead
levels and eGFR in overweight children at 8-12 years of age.

(81)

Air pollution CANDLE study 822 mother-child pairs The SBP percentile increased by 14.6 and DBP percentile
increased by 8.7 with each 2-mg/m3 increase in second-trimester
PM2.5.

(82)

Air pollution PROGRESS birth cohort/Mexico 537 mother-child pairs A 10 mg/m3 increase in PM2.5 predicts a cumulative increase of
2.6 mmHg in SBP and 0.88 mmHg in DBP at ages 4-6 years.

(83)

Air pollution Boston Birth Cohort/USA 1,293 mother-child pairs A 5 mg/m3 increment in PM2.5 during the third trimester was
associated with a 3.49 percentile increase in childhood SBP at 3
to 9 ages of age.

(84)
October 2021 | Volume 12 | A
EDC, Environment and Development of Children; INMA, Infancia y Medio Ambiente”—Environment and Childhood; HELIX, Human Early-Life Exposome; MINIMat, Maternal and Infant
Nutrition Interventions, Matlab; PROGRESS, Programming Research in Obesity, Growth, Environment and Social Stressors; CANDLE, Conditions Affecting Neurocognitive Development
and Learning in Early Childhood; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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was described in rat offspring prenatally exposed to TCDD (93).
EDC exposure during pregnancy induced kidney disease and
hypertension in adult offspring was observed in three studies
where BPA, DEHP, and DBP were orally administered in mother
rats (95–98). Another environmental chemical that has been
investigated is BaP (99). Oral doses of BaP exposure (600 or
1200 mg/kg/day) were administered to dams during gestational
days14-17 and showedhypertension in rat offspringofboth sexes at
8 weeks of age (99). Animal studies of maternal heavy metal
exposure implicating in the offspring kidney suggested that Cd is
themain cause of adverse renal outcomes programmedby early-life
heavy metal exposure (100–103). A combined metal mixtures (Pb,
Cd, and Hg) in drinking water administered to mother rats during
pregnancy and lactation study in rats resulted in kidney injury and
renal hypertrophy in their offspring (100). Additionally, prenatally
Cd-exposed offspring rats presented the features of kidney injury in
other three studies (101–103), while no prior studies have
addressed the effects of Pb or Hg. Furthermore, air pollution was
shown to lead to hypertension in rats ormice prenatally exposed to
PM2.5 (104, 105).

3.3 Mechanisms behind Developmental
Origins of Kidney Disease and
Hypertension
Taking all these evidences in consideration, various
environmental chemical exposures in pregnancy can increase
Frontiers in Endocrinology | www.frontiersin.org 7
the risk of kidney disease and hypertension later in life.
Considering that diverse maternal chemical exposures induce
similar offspring renal outcomes, there might be some common
mechanisms behind renal programming. Up to the present, a
number of mechanisms of renal programming have been
identified and some of them are linked to the pathogenesis
underlying environmental chemical-induced kidney disease
and hypertension (12–15, 72, 107–110). Several mechanisms
have been considered, including oxidative stress, aberrant
activation of the renin-angiotensin system (RAS), reduced
nephron numbers, and dysregulated AHR signaling pathway,
as illustrated below (Figure 2). These mechanisms are discussed
in the following sections.

3.3.1 Oxidative Stress
Oxidative stress is referred to overproduction of reactive oxygen
and nitrogen species (ROS/RNS) prevails over the defensive
antioxidant system, resulting in oxidative stress damage (111).
ROS/RNS play a dual role in pregnancy; such as moderate ROS/
RNS levels contribute to normal organogenesis, whereas their
overproduction adversely affects fetal outcomes (112). There are
several models of maternal chemical exposure tied up with
oxidative stress in mediating kidney disease and hypertension
of developmental origins, comprising TCDD (91, 92), BPA (94),
and PM2.5 (104). Increased ROS generation, decreased
antioxidant capacity, and impaired nitric oxide (NO) signaling
TABLE 3 | Summary of animal models of developmental programming of kidney disease and hypertension categorized according to environmental chemical exposures.

Enviromental
Chemical

Animal Models Species/
Gender

Age at
evaluation

Offspring Outcomes Ref.

TCDD TCDD 200 ng/kg orally on gestational days 14 and 21 and postnatal
days 7 and 14

SD rats/M 12 weeks Hypertension (91)

TCDD TCDD 200 ng/kg orally on gestational days 14 and 21 and postnatal
days 7 and 14

SD rats/M 16 weeks Hypertension (92)

TCDD TCDD 6.0 µg/g orally on gestational day 14.5 C57BL/6N
mice/M

3 months Hydronephrosis (93)

BPA Oral administration of bisphenol A 50 mg/kg/day during pregnancy and
lactation.

SD rats/M 16 weeks Hypertension (94)

BPA BPA 10 or 100 mg/kg/day during gestational days 9-16 OF1 mice/M
& F

30 days Impaired glomerular and tubular
formation

(95)

DEHP Oral administration of DEHP 0.25 or 6.25mg/kg/day during pregnancy Wistar rats/
M & F

21 weeks Reduced kidney function, reduced
nehron number, and hypertension

(96)

DBP Oral administration of DBP 850 mg/kg/day during gestational days 14–
18.

SD rat/M 8 weeks Reduced kidney function and renal
fibrosis

(97, 98)

BaP Oral administration of BaP 600 or 1200 mg/kg/day during gestational
days 14-17

LEH rats/M
& F

8 weeks Hypertension (99)

Heavy metals Metal mixtures (Pb 125 or 250 mg/L, Cd 37.5 or 75 mg/L, Hg 0.75 or
1.5 mg/L) in drinking water during pregnacy and lactation

SD rats/M
&F

23 days Kidney injury and renal hypertrophy (100)

Cd Inhaled Cd oxide nanoparticle (230 mg CdO NP/m3) for 2.5 h/d, 7 d/wk
during gestational days 4.5-16.5

CD-1 mice/
M & F

14 days Kidney injury (101)

Cd Oral administration of Cd chloride 0.5 mg/kg/day during pregnancy Wistar rats/
M & F

60 days Reduced kidney finction (102)

Cd Oral administration of Cd chloride 2.0 or 2.5 mg/kg/day on gestational
days 8, 10, 12 and 14

SD rats/M 49 days Kidney injury (103)

PM2.5 Oropharyngeal drip of PM2.5 (1.0 mg/kg) at gestational days 8, 10, and
12

SD rats/M 14 weeks Hypertension (104)

PM2.5 PM2.5 exposure for 16 weeks before delivery C57BL/6N
mice/M & F

12 weeks Hypertension (105)
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FIGURE 2 | Overview of the common mechanisms of renal programming in response to various environmental chemicals in early life. RAS, renin-angiotensin system;
AHR, aryl hydrocarbon receptor.
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pathway all contribute to oxidative stress-induced renal
programming, as we reviewed elsewhere (108). A marker of
oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG),
was increased in offspring kidneys prenatally exposed to TCDD
(91) or BPA (94). Conversely, various antioxidants have been
used as a therapeutic strategy to prevent developmental origins
of kidney disease and hypertension (113). In a prenatal PM2.5

exposure rat model (104), offspring developed hypertension
coinciding with oxidative stress, which was prevented by
tempol, a synthetic antioxidant. These findings support the
notion that kidney disease and hypertension programmed by
maternal chemical exposure might be attributed to oxidative
stress. In view to oxidative stress is proposed as one of the main
mechanisms of chemical-induced pathology in humans (114), its
role in kidney disease and hypertension of developmental
origins, especially in response to various prenatal chemical
pollutants, awaits further exploration.

3.3.2 Reduced Nephron Number
Nephron number is a major determinant of kidney health in later
life. In general, nephron number is approximately 1 million per
human kidney, with a huge individual differences ranging from 0.2
to 2.5 million (115). As we mentioned earlier, prior research has
demonstrated that reduced nephron number, in relation to LBW
Frontiers in Endocrinology | www.frontiersin.org 8
andpretermbirth,may result inhypertension andkidney disease in
later life (11, 72, 88, 89). Epidemiological studies demonstrated that
maternal exposure to PFOA, PFNA, PAHs, phthalates, and PM2.5/
PM10 associated with preterm birth and LBW (76, 85–87, 90), both
are risk factors related to reduced nephron number. Therefore, the
role of these chemicals on nephron number in kidney disease and
hypertensionofdevelopmental origins is still awaitingdiscoverybut
is certainly a subject of great interest.

Reduced nephron number can cause compensatory
glomerular hyperfiltration and glomerular hypertension,
consequently resulting in further nephron loss later in life.
Accordingly, reduced nephron number has been found to be a
key mechanism behind renal programming (72). In a maternal
DEHP exposure model, adult offspring displayed reduced kidney
function and hypertension coinciding with dysregulation of
several nephrogenesis gene expression (96). These data suggest
that maternal DEHP exposure impaired nephrogenesis, resulting
in a nephron deficit, and subsequently kidney disease and
hypertension later in life (96). Moreover, the severity of
adverse nephrotoxic effects and the extent of renal involvement
may be modified by the stage of kidney development (20). Thus,
whether nephron number can be influenced by various chemical
exposures in a dose- and stage-specific manner are required for
further evaluation.
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3.3.3 Aberrant Activation of RAS
The kidney is a major target for the multiple elements of the RAS
(116). Blockers of the RAS have been the cornerstones of
pharmacologic treatment for patients with hypertension and
CKD (116). During nephrogenesis, constituents of the RAS
are highly expressed and play key roles in mediating
proper renal morphology and physiological function (117). As
reviewed elsewhere (110), a transient biphasic response with
downregulation of classical RAS axis in neonatal stage that
becomes normalized with age. Thus, varied maternal insults
can disturb this normalization in adulthood, insomuch that the
classical RAS axis is inappropriately activated resulting in adult
kidney disease and hypertension. While RAS blocker fetopathy,
which presents renal malformation, appears when pregnant
women taking angiotensin-converting enzyme (ACE) inhibitor
or angiotensin receptor blocker (ARB) during the nephrogenesis
stage (118). Table 3 shows several environmental chemicals can
program the kidney and RAS concurrently—TCDD (92), DEHP
(96), and BaP (99)—giving rise to hypertension in adult
offspring. Currently, several early-life interventions targeting
the RAS to prevent kidney disease and hypertension have been
employed in animal models (110). To what extent the RAS are
interconnected with various environmental chemicals towards
kidney disease and hypertension of developmental origins are
issues that await further clarification.

3.3.4 Dysregulated AHR Signaling Pathway
Quite a few environmental chemicals are ligands for AHR, such as
TCDD, PCDD, PCDF, PCB, BPA, BaP (119). In addition to
exogenous ligands (i.e., environmental chemicals), AHR
signaling can be activated by endogenous ligands like
tryptophan metabolites (119). In patients with kidney disease,
the most important AHR ligands are uremic toxins, especially
those gut microbiota-derived from tryptophan metabolism. These
tryptophan-derived uremic toxins have proinflammatory,
prooxidant, procoagulant, and pro-apoptotic effects, all of which
are involved in the pathogenesis of hypertension and CKD (120).
In a maternal BPA exposure model, adult offspring developed
hypertension coinciding with increased AHR protein level as well
as the mRNA expression of AHR target gene Ahrr, Cyp1a1, and
Arnt (94). Similarly, maternal TCDD-induced programmed
hypertension was associated with mediation of the AhR
signaling pathway (91, 92). Conversely, antagonizing AHR
signaling by resveratrol has been reported to protect adult
offspring against hypertension programmed by environmental
chemicals like TCDD (92) and BPA (94). Moreover, AHR
signaling can modulate pro-inflammatory T helper 17 (TH17)
axis and trigger inflammation, by which environmental chemicals
may link to the development of hypertension and kidney disease
(121, 122). Hopefully, elucidation of the role of AHR in chemical-
induced programmed kidney disease and hypertension will aid in
the development of novel therapies.

3.3.5 Others
Other molecular mechanisms relevant to the development of
kidney disease and hypertension are identified in different
animal models of developmental origins, such as dysbiotic gut
Frontiers in Endocrinology | www.frontiersin.org 9
microbiota (123), dysregulated nutrient-sensing signaling
(124), impaired sodium transport (12), and epigenetic
regulation (125). Since these mechanisms are more or less
related to environmental chemicals (126–128), there might be
considerable interplay among these mechanisms behind kidney
disease and hypertension of developmental origins, even though
this remains speculative.
4 THERAPEUTIC STRATEGIES
TARGETING ON ENVIRONMENTAL
CHEMICALS

Taking into account the fact that our advanced understanding of
the DOHaD research recently, it turns out therapeutic
interventions can be shifted from adulthood to early life before
disease occurs, by so-called reprogramming (129). So far,
reprogramming strategies to reverse the programming processes
that have been investigated include lifestyle modification,
nutritional intervention, and pharmacological therapy.
Concerning environmental chemical pollutants, there is no
doubt that reprogramming strategies should focus on avoiding
exposure to theoretically harmful chemicals prenatally and
promoting a healthy lifestyle. As mentioned earlier, several
chemicals induced programmed kidney disease and
hypertension are associated with oxidative stress (91, 92, 94,
104). Several natural antioxidants have been used as nutritional
interventions in pregnancy to prevent kidney disease and
hypertension in a number of animal models, as we reviewed
elsewhere (113, 130). Additionally, early-life interventions
targeting specific signaling pathways might be of benefit in the
prevention of chemical pollutant-induced renal programming. An
example of therapeutic target is the RAS. Several RAS-based
interventions have also shown benefits in protecting against
programmed hypertension, such as renin inhibitor, ACE
inhibitor, ARB, and ACE2 activator (110). In view of that
aberrant RAS signaling contributes to maternal chemical
exposure-induced renal programming (91, 96, 99), RAS-based
interventions might be an ideal reprogramming strategy.
Furthermore, resveratrol acting like an AHR antagonist benefits
kidney disease and hypertension of developmental origins (131,
132). Although various reprogramming interventions that show
tremendous advances with regard to renal programming, their
protective benefits against kidney disease and hypertension
programmed by maternal environmental chemical exposure
remain still a long way off.
5 CONCLUSIONS AND FUTURE
PERSPECTIVES

Previous studies have indicated the adverse impact of
environmental chemicals on public health. This review sought
to highlight the risks of environmental chemicals are
communicable to the future generations and the value of
DOHaD approach will aid in prevention rather than treatment
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of kidney disease and hypertension. At face value, it would be
logical to consider early prohibiting exposure to hazardous
chemicals. However, there are many aspects still unsolved.
Limited environmental chemicals have been evaluated in
humans and animal models of kidney disease and hypertension,
not to mention that only a few of them have been studied in the
DOHaD filed. Global chemicals production is expected to double
by 2030, and the already widespread use of chemicals is likely to
also increase, including in consumer products (133). At a deeper
level, little reliable information currently exists regarding the long-
term effects of environmental chemical exposure in human
cohorts and animal studies. Most epidemiological evidence are
mother-child cohorts, which are hard to proceed to adulthood.
Considering certain chemicals like EDCs have shown
transgenerational epigenetic effects on endocrine function, future
work in animal studies is needed to better understand various
environmental chemicals can induce kidney disease and
hypertension in future generations to which extent. Moreover,
reprogramming interventions targeting common mechanisms to
prevent kidney disease and hypertension are still missing in
the literature.

Peace, dignity and equality on a healthy planet — these are
the ultimate goals stated by the United Nations in 2015, to be
achieved by 2030 (134). While much remains to be done to tackle
the challenging of NCDs, kidney disease in particular (135, 136).
In 2020, the World Kidney Day informed the public about the
importance of preventive interventions – be it primary,
secondary or tertiary (137). Seeing the prevention strategy
from a DOHaD perspective, primary and secondary prevention
seems our best strategy to improve global kidney health. First,
primary prevention aims to prevent kidney disease before it ever
occurs. There is an urgent need for multidisciplinary efforts to
perform investigations that identify toxic chemicals in the
environment. During pregnancy through early childhood,
avoiding harmful chemicals and toxins exposure at home, at
work, and at play are essential for supporting kidney health.
Frontiers in Endocrinology | www.frontiersin.org 10
Although various environmental chemicals have been identified
so far, preventive efforts should continue to discover other
potentially harmful chemicals. Secondary prevention is early
screening to identify and prompt treatment of kidney disease
in the earliest stages. Although early detection CKD has the
potential to yield marked public health benefits, most countries
had inadequate CKD detection and surveillance systems to
achieve this goal (136). Additionally, there will be a growing
need to translate effective reprogramming interventions from
animal studies into clinical practice as the process moves far
slower than expected.

In conclusion, maternal environmental chemical exposure is a
considerably pathogenetic link in kidney disease and hypertension
of developmental origins. Further advances in the DOHaD field,
aimed at the pregnant mothers and their offspring, hence have the
potential to combat the burden of kidney disease and
hypertension, which represent major global health challenges.
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