Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(tert-Butoxycarbonyl)-2-(4-chlorophenyl)-1.3-thiazolidine-4-carboxylic acid

Shu-Min Ding

School of Chemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China Correspondence e-mail: dsm@cczu.edu.cn

Received 11 September 2010; accepted 18 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.010 Å; R factor = 0.062; wR factor = 0.159; data-to-parameter ratio = 8.9.

In the title compound, $C_{15}H_{18}CINO_4S$, the thiazolidine ring adopts a twisted conformation about the S-C(methylene) bond. The dihedral angle between the five- and six-membered rings is $77.2 (3)^{\circ}$. In the crystal, the molecules are linked by $O-H \cdots O$ hydrogen bonds, generating C(7) chains propagating in [100].

Related literature

For background to the biological properties of the title compound, see: Lu et al. (2010); Song et al. (2009). For reference bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C15H18CINO4S $M_r = 343.81$

Monoclinic, P21 a = 6.4600 (13) Å

b = 10.641 (2) A
c = 12.411 (3) Å
$\beta = 94.52 \ (3)^{\circ}$
V = 850.5 (3) Å ³
Z = 2

Data collection

Enraf–Nonius CAD-4	1638 independent reflections
diffractometer	1363 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	200 standard reflections every 3
(North et al., 1968)	reflections
$T_{\min} = 0.899, \ T_{\max} = 0.965$	intensity decay: 1%
1638 measured reflections	

Refinement

D-

$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.159$	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.08	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
1638 reflections	Absolute structure: Flack (1983)
185 parameters	Flack parameter: -0.09 (19)
89 restraints	• • • • • •

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$	
$O2-H2A\cdots O3^{i}$	0.82	1.83	2.638 (6)	167	
Symmetry code: (i) x	+1, y, z.				

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported by youthfund project (project JQ201006) of Changzhou University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5637).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Lu, Y., Wang, Z., Li, C.-M., Chen, J.-J., Dalton, J. T., Li, W. & Miller, D. D. (2010). Bioorg. Med. Chem. 18, 477-495.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, Z.-C., Ma, G.-Y., Lv, P.-C., Li, H.-Q., Xiao, Z.-P. & Zhu, H.-L. (2009). Eur. J. Med. Chem. 44, 3903-3908.

Mo $K\alpha$ radiation $\mu = 0.36 \text{ mm}^{-3}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

T = 293 K

Acta Cryst. (2010). E66, o2633 [doi:10.1107/S1600536810037396]

3-(tert-Butoxycarbonyl)-2-(4-chlorophenyl)-1,3-thiazolidine-4-carboxylic acid

S.-M. Ding

Comment

Recently, 3-*tert*-butoxycarbonyl-2-arylthiazolidine-4-carboxylic acid derivatives have been reported to possess antimicrobial and antitumor activities (Song *et al.*, 2009; Lu *et al.*, 2010). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen *et al.*, 1987) (Fig. 1). There are intermolecular O—H···O hydrogen bonds in (I).

Experimental

A mixture of *L*-cysteine (1.41 g, 10 mmol) and 4-chlorobenzaldehyde (1.4 g, 10 mmol) in methanol (100 ml) was stirred at room temperature for 10 h, and the separated solid was collected, washed with diethyl ether, and dried to obtain 2-(4-chlorophenyl)thiazolidine-4-carboxylic with yield of 90%. In ice water, 2-(4-chlorophenyl)thiazolidine-4-carboxylic (1 mmol) was dissolved in 1 N NaOH (1 ml) and 1,4-dioxane (10 ml); then di-*tert*-butyldicarbonate (1 mmol) was added slowly and stirred at room temperature for 6 h. The reaction mixture was concentrated in a vacuum and washed with ethyl acetate (10 ml). The aqueous phase was adjusted to pH 4 by adding 1 N HCl, then extracted with ethyl acetate, dried with magnesium sulfate, filtered, After keeping the filtrate in air for 5 d, colorless block-shaped crystals of (I) were formed.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figures

Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.

3-(tert-Butoxycarbonyl)-2-(4-chlorophenyl)-1,3-thiazolidine-4-carboxylic acid

Crystal data $C_{15}H_{18}CINO_4S$ $M_r = 343.81$

F(000) = 360
$D_{\rm x} = 1.343 \ {\rm Mg \ m^{-3}}$

Monoclinic, $P2_1$ Hall symbol: P 2yb a = 6.4600 (13) Åb = 10.641 (2) Åc = 12.411 (3) Å $\beta = 94.52 (3)^{\circ}$ $V = 850.5 (3) \text{ Å}^{3}$ Z = 2

Data collection

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 9-12^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

Enraf–Nonius CAD-4 diffractometer	1363 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.0000$
graphite	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
$\omega/2\theta$ scan	$h = -7 \rightarrow 7$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 12$
$T_{\min} = 0.899, \ T_{\max} = 0.965$	$l = 0 \rightarrow 14$
1638 measured reflections	200 standard reflections every 3 reflections
1638 independent reflections	intensity decay: 1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0649P)^2 + 1.2912P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{max} < 0.001$
1638 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
185 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
89 restraints	Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.09 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.3575 (11)	0.4607 (7)	0.7980 (6)	0.0457 (16)
H1	0.4776	0.4984	0.7768	0.055*
C2	0.3229 (12)	0.3336 (8)	0.7816 (6)	0.0519 (17)
H2	0.4183	0.2863	0.7465	0.062*
C3	0.1505 (12)	0.2766 (8)	0.8162 (7)	0.0555 (18)
C4	0.0021 (13)	0.3440 (8)	0.8654 (6)	0.0585 (18)
H4	-0.1163	0.3054	0.8879	0.070*
C5	0.0368 (11)	0.4720 (7)	0.8800 (6)	0.0492 (16)
Н5	-0.0604	0.5195	0.9136	0.059*
C6	0.2109 (9)	0.5308 (6)	0.8464 (5)	0.0349 (13)
C7	0.2361 (9)	0.6677 (6)	0.8692 (4)	0.0358 (13)
H7	0.1036	0.7023	0.8887	0.043*
C8	0.4770 (9)	0.8351 (7)	0.8161 (5)	0.0409 (14)
H8	0.4364	0.9165	0.7842	0.049*
01	0.8408 (8)	0.8639 (5)	0.8109 (4)	0.060
C9	0.4827 (11)	0.8471 (7)	0.9375 (5)	0.0494 (16)
H9A	0.3760	0.9043	0.9583	0.059*
H9B	0.6170	0.8774	0.9671	0.059*
C10	0.6910 (9)	0.8031 (8)	0.7835 (5)	0.0459 (17)
C11	0.2163 (9)	0.7473 (7)	0.6838 (5)	0.0373 (14)
C12	0.2095 (11)	0.8500 (8)	0.5098 (5)	0.0520 (18)
C13	0.2564 (14)	0.7386 (9)	0.4443 (8)	0.070
H13A	0.3999	0.7161	0.4586	0.106*
H13B	0.2293	0.7579	0.3690	0.106*
H13C	0.1705	0.6695	0.4629	0.106*
C14	-0.0195 (13)	0.8803 (9)	0.4998 (8)	0.069
H14A	-0.0975	0.8056	0.5123	0.104*
H14B	-0.0583	0.9117	0.4286	0.104*
H14C	-0.0483	0.9429	0.5523	0.104*
C15	0.3316 (15)	0.9649 (10)	0.4750 (7)	0.078 (3)
H15A	0.2943	1.0371	0.5156	0.116*
H15B	0.2992	0.9802	0.3993	0.116*
H15C	0.4777	0.9492	0.4883	0.116*
C11	0.1156 (5)	0.1156 (2)	0.7961 (2)	0.0908 (9)
N1	0.3167 (7)	0.7456 (5)	0.7848 (4)	0.0336 (11)
02	0.6980 (6)	0.7001 (6)	0.7256 (4)	0.0534 (12)
H2A	0.8185	0.6858	0.7131	0.080*
O3	0.0721 (6)	0.6749 (5)	0.6573 (3)	0.0398 (10)
O4	0.2916 (7)	0.8324 (5)	0.6216 (3)	0.0448 (11)
S1	0.4357 (3)	0.68989 (18)	0.98363 (12)	0.0481 (5)
	, 97 .			
Atomic displaceme	ant parameters (A^2)	22	10	- 13
U	U^{22}	U^{33}	U^{12}	U^{ij}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

 U^{23}

C1	0.047 (4)	0.049 (3)	0.041 (4)	0.001 (3)	0.003 (3)	0.001 (3)
C2	0.059 (4)	0.055 (4)	0.041 (4)	0.010 (3)	0.001 (3)	-0.006 (3)
C3	0.064 (4)	0.047 (4)	0.053 (4)	-0.006 (3)	-0.014 (3)	0.007 (3)
C4	0.060 (4)	0.057 (4)	0.058 (4)	-0.014 (3)	0.004 (3)	0.004 (4)
C5	0.046 (3)	0.056 (4)	0.045 (4)	-0.004 (3)	0.003 (3)	0.011 (3)
C6	0.039 (3)	0.035 (3)	0.031 (3)	0.000 (2)	0.002 (2)	0.008 (3)
C7	0.035 (3)	0.043 (4)	0.030 (3)	0.005 (3)	0.003 (2)	0.006 (3)
C8	0.042 (3)	0.038 (3)	0.042 (3)	0.001 (3)	-0.004 (3)	0.001 (3)
01	0.060	0.060	0.060	0.000	0.005	0.000
C9	0.052 (4)	0.052 (4)	0.043 (3)	0.008 (3)	-0.006 (3)	-0.009 (3)
C10	0.026 (3)	0.074 (5)	0.037 (3)	-0.015 (3)	-0.006 (2)	-0.002 (3)
C11	0.028 (3)	0.053 (4)	0.031 (3)	0.009 (3)	-0.002 (2)	-0.002 (3)
C12	0.050 (4)	0.070 (5)	0.035 (3)	-0.008 (4)	-0.003 (3)	0.019 (4)
C13	0.070	0.070	0.070	0.000	0.006	0.000
C14	0.070	0.070	0.070	0.000	0.006	0.000
C15	0.086 (6)	0.085 (7)	0.061 (5)	-0.007 (5)	0.006 (4)	0.036 (5)
Cl1	0.115 (2)	0.0475 (12)	0.1032 (19)	-0.0122 (13)	-0.0338 (16)	0.0021 (13)
N1	0.030 (2)	0.038 (3)	0.033 (2)	0.004 (2)	0.0010 (19)	0.001 (2)
O2	0.032 (2)	0.066 (3)	0.064 (3)	-0.010 (2)	0.012 (2)	-0.018 (3)
O3	0.029 (2)	0.058 (3)	0.0317 (19)	-0.007 (2)	-0.0026 (15)	-0.005 (2)
O4	0.044 (2)	0.055 (3)	0.035 (2)	-0.015 (2)	0.0001 (18)	0.016 (2)
S1	0.0578 (10)	0.0564 (10)	0.0285 (7)	-0.0005 (9)	-0.0071 (6)	-0.0025 (9)

Geometric parameters (Å, °)

1.379 (9)	С9—Н9А	0.9700
1.384 (11)	С9—Н9В	0.9700
0.9300	C10—O2	1.313 (9)
1.367 (11)	C11—O3	1.234 (8)
0.9300	C11—O4	1.308 (8)
1.378 (12)	C11—N1	1.365 (8)
1.744 (8)	C12—O4	1.457 (8)
1.390 (11)	C12—C13	1.483 (12)
0.9300	C12—C14	1.510 (11)
1.380 (9)	C12—C15	1.535 (11)
0.9300	C13—H13A	0.9600
1.490 (9)	С13—Н13В	0.9600
1.464 (8)	C13—H13C	0.9600
1.857 (6)	C14—H14A	0.9600
0.9800	C14—H14B	0.9600
1.437 (8)	C14—H14C	0.9600
1.510 (9)	C15—H15A	0.9600
1.510 (9)	C15—H15B	0.9600
0.9800	C15—H15C	0.9600
1.191 (8)	O2—H2A	0.8200
1.801 (8)		
119.0 (7)	O1—C10—O2	123.2 (6)
120.5	O1—C10—C8	122.8 (7)
120.5	O2—C10—C8	114.0 (5)
	1.379 (9) 1.384 (11) 0.9300 1.367 (11) 0.9300 1.378 (12) 1.744 (8) 1.390 (11) 0.9300 1.380 (9) 0.9300 1.490 (9) 1.464 (8) 1.857 (6) 0.9800 1.437 (8) 1.510 (9) 1.510 (9) 0.9800 1.191 (8) 1.801 (8) 119.0 (7) 120.5 120.5	1.379(9)C9—H9A $1.384(11)$ C9—H9B 0.9300 C10—O2 $1.367(11)$ C11—O3 0.9300 C11—O4 $1.378(12)$ C11—N1 $1.744(8)$ C12—O4 $1.390(11)$ C12—C13 0.9300 C12—C14 $1.380(9)$ C12—C15 0.9300 C13—H13A $1.490(9)$ C13—H13B $1.464(8)$ C13—H13C $1.857(6)$ C14—H14A 0.9800 C15—H15A $1.510(9)$ C15—H15B 0.9800 C15—H15B 0.9800 C15—H15C $1.191(8)$ O2—H2A $1.801(8)$ 119.0(7) $119.0(7)$ O1—C10—O2 120.5 O2—C10—C8

C3—C2—C1	120.9 (7)	O3—C11—O4	125.6 (5)
С3—С2—Н2	119.6	O3—C11—N1	122.1 (6)
C1—C2—H2	119.6	O4—C11—N1	112.3 (5)
C2—C3—C4	121.4 (8)	O4—C12—C13	110.1 (7)
C2—C3—Cl1	119.4 (7)	O4—C12—C14	112.7 (6)
C4—C3—Cl1	119.2 (7)	C13—C12—C14	111.5 (7)
C3—C4—C5	117.2 (8)	O4—C12—C15	102.4 (6)
C3—C4—H4	121.4	C13—C12—C15	110.5 (6)
С5—С4—Н4	121.4	C14—C12—C15	109.2 (7)
C6—C5—C4	122.2 (8)	C12—C13—H13A	109.5
С6—С5—Н5	118.9	С12—С13—Н13В	109.5
С4—С5—Н5	118.9	H13A—C13—H13B	109.5
C1—C6—C5	119.3 (6)	C12—C13—H13C	109.5
C1—C6—C7	122.9 (6)	H13A—C13—H13C	109.5
C5—C6—C7	117.8 (6)	H13B—C13—H13C	109.5
N1—C7—C6	117.2 (5)	C12—C14—H14A	109.5
N1—C7—S1	102.2 (4)	C12C14H14B	109.5
C6—C7—S1	109.2 (4)	H14A—C14—H14B	109.5
N1—C7—H7	109.3	C12—C14—H14C	109.5
С6—С7—Н7	109.3	H14A—C14—H14C	109.5
S1—C7—H7	109.3	H14B—C14—H14C	109.5
N1—C8—C10	115.7 (6)	C12—C15—H15A	109.5
N1—C8—C9	106.7 (5)	С12—С15—Н15В	109.5
C10—C8—C9	109.6 (5)	H15A—C15—H15B	109.5
N1—C8—H8	108.2	С12—С15—Н15С	109.5
С10—С8—Н8	108.2	H15A—C15—H15C	109.5
С9—С8—Н8	108.2	H15B—C15—H15C	109.5
C8—C9—S1	104.3 (5)	C11—N1—C8	121.3 (5)
С8—С9—Н9А	110.9	C11—N1—C7	119.6 (5)
S1—C9—H9A	110.9	C8—N1—C7	118.1 (5)
С8—С9—Н9В	110.9	C10—O2—H2A	109.5
S1—C9—H9B	110.9	C11—O4—C12	121.8 (5)
Н9А—С9—Н9В	108.9	C9—S1—C7	90.0 (3)
C6—C1—C2—C3	-2.5 (11)	O3—C11—N1—C8	-176.7 (6)
C1—C2—C3—C4	2.1 (12)	O4—C11—N1—C8	3.6 (8)
C1—C2—C3—C11	-178.8 (6)	O3—C11—N1—C7	-8.1 (9)
C2—C3—C4—C5	-1.1 (11)	O4—C11—N1—C7	172.2 (5)
Cl1—C3—C4—C5	179.8 (6)	C10-C8-N1-C11	-83.3 (7)
C3—C4—C5—C6	0.5 (11)	C9—C8—N1—C11	154.5 (5)
C2-C1-C6-C5	1.9 (10)	C10—C8—N1—C7	107.9 (6)
C2—C1—C6—C7	178.9 (6)	C9—C8—N1—C7	-14.2 (7)
C4—C5—C6—C1	-0.9 (10)	C6—C7—N1—C11	56.7 (7)
C4—C5—C6—C7	-178.1 (6)	S1—C7—N1—C11	176.0 (4)
C1—C6—C7—N1	42.7 (8)	C6—C7—N1—C8	-134.4 (6)
C5—C6—C7—N1	-140.2 (6)	S1—C7—N1—C8	-15.1 (6)
C1—C6—C7—S1	-72.7 (7)	O3—C11—O4—C12	-0.4 (10)
C5—C6—C7—S1	104.3 (6)	N1—C11—O4—C12	179.3 (6)
N1—C8—C9—S1	37.6 (6)	C13—C12—O4—C11	-67.2 (8)
C10—C8—C9—S1	-88.4 (6)	C14—C12—O4—C11	58.1 (10)

N1-C8-C10-O1	-174.4 (6)		C15-C12-O4-C11		175.3 (6)	
C9—C8—C10—O1	-53.8 (9)		C8—C9—S1—C7		-40.6 (5)	
N1-C8-C10-O2	3.4 (8)		N1—C7—S1—C9		31.7 (4)	
C9—C8—C10—O2	124.0 (6)		C6—C7—S1—C9		156.5 (5)	
Hydrogen-bond geometry (Å, °)						
D—H···A		<i>D</i> —Н	Н…А	$D \cdots A$	D-	-H…A
O2—H2A···O3 ⁱ		0.82	1.83	2.638 (6)	16	7
Symmetry codes: (i) $x+1$, y , z .						

