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Abstract: One of the most common methods for diagnosing coronary artery disease is the use of
the coronary artery calcium score CT. However, the current diagnostic method using the coronary
artery calcium score CT requires a considerable time, because the radiologist must manually check
the CT images one-by-one, and check the exact range. In this paper, three CNN models are applied
for 1200 normal cardiovascular CT images, and 1200 CT images in which calcium is present in the
cardiovascular system. We conduct the experimental test by classifying the CT image data into
the original coronary artery calcium score CT images containing the entire rib cage, the cardiac
segmented images that cut out only the heart region, and cardiac cropped images that are created
by using the cardiac images that are segmented into nine sub-parts and enlarged. As a result of
the experimental test to determine the presence of calcium in a given CT image using Inception
Resnet v2, VGG, and Resnet 50 models, the highest accuracy of 98.52% was obtained when cardiac
cropped image data was applied using the Resnet 50 model. Therefore, in this paper, it is expected
that through further research, both the simple presence of calcium and the automation of the calcium
analysis score for each coronary artery calcium score CT will become possible.

Keywords: calcium detection; coronary artery calcium score CT; resnet-50; VGG; inception resnet V2;
deep learning; image classification

1. Introduction

Among the various causes of death, stroke and coronary artery disease (CAD) are the
leading global causes of death. Statistics from the World Health Organization (WHO) show
that in 2019, approximately 17.9 million people died from cardiovascular disease (CVD),
accounting for 32% of global deaths, of which 85% were due to heart attacks and strokes.
About three-quarters of these occurred in low- and middle-income countries, and 38% of
the 17 million premature deaths (under 70 years of age) from noncommunicable diseases
in 2019 were due to cardiovascular disease [1].

CAD is caused by narrowing of the coronary arteries. Since the coronary arteries are
blood vessels that supply oxygen, blood, and nutrients to the heart, when the coronary
arteries are narrowed, it can cause chest pain (angina), difficulty in breathing, and pain.
Thus, it can cause pain, dizziness, nausea, and even heart attack [2]. CAD is usually
associated with the individual’s lifestyle and habits. Typically, it can appear in individuals
who smoke or drink large amounts of alcohol habitually or regularly, and can also appear
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in people with high cholesterol or high blood pressure and diabetes. Therefore, through
proper diagnosis and early evaluation, it is possible to reduce the risk of the progression of
fatal CAD by lifestyle modification.

Coronary artery calcification is a phenomenon in which waste or calcium accumulates
and hardens in the blood vessel wall of the coronary artery. Coronary artery calcium (CAC)
score, a marker of subclinical coronary atherosclerosis, reflects the cumulative exposure
to cardiovascular risk factors over the lifetime, and can inform shared decision-making
regarding the use of preventive therapies [3,4]. It can be diagnosed by methods such as
treadmill test, radionuclide scan, computed tomography (CT) scan, magnetic resonance
imaging (MRI) scan, and coronary angiography [5–7]. CAC-CT can be used to score CAC.
However, these methods generally require a specialist to manually check all data one-by-
one. In addition, in the case of medical images, a radiologist must directly check and input
each image using medical software, prior to diagnosis.

In this paper, deep-learning is applied to the coronary artery calcium score CT image
data to determine the calcification score, which is most commonly used to determine the
degree of coronary artery calcification [8]. Appendix A provides a detailed description of
coronary artery calcium score CT images and Figure A1 show about example of CT image.
Deep-learning in coronary artery calcium score CT images has played a key role in dividing
the organs into meaningful areas by considering the characteristics and information of
specific organs among various organs, and performs a supporting function of making
medical decisions based on the characteristics of the organs [9–11]. In particular, CNN
models have been steadily applied for a long time in the field of computer vision [12].
CNN models have now been applied in both computer vision and in various applications,
such as natural language processing, hyperspectral image processing, and medical image
analysis [13]. A CNN model receives 2D data, and extracts high-level functions and features
through many hidden layers. Therefore, to provide physiological signals in CNN models,
some research teams are using 2D data that is converted from 1D signals [14].

In this paper, we applied three traditional CNN models (Inception Resnet v2, VGG,
and Resnet 50) to train the coronary artery calcium score CT images, to determine whether
calcification occurred in the coronary arteries or not. We constructed the training data using
PNG image format by division into three types. The first type was the original coronary
artery calcium score CT images. The second type was the cardiac segmented images in
which only the heart region was cut by applying the recent segmentation technique. The
last type was the cardiac cropped images created by dividing the segmented cardiac images
into nine, and enlarging them. For these data, the three CNN models mentioned above
were applied to determine the presence of calcium. This research was conducted with
IRB approval (SCHCA202002025-HE001) for an AI-based cardiovascular disease diagnosis
study from Soonchunhyang University Cheonan Hospital to apply the CT images of
patients to deep-learning training. For the CT image training data used for deep-learning,
about 2400 images of 177 individuals provided by Soonchunhyang University Cheonan
Hospital were used. To apply the CNN model to the entire provided data, training was
performed by classifying it into 1200 CT images with calcium region, and 1200 CT images
containing normal cardiovascular features.

2. Related Works

CNN deep-learning model, which has been widely used for image classification,
is developing rapidly under the influence of the recent rapid increase in big data and
the improvement of the processing speed of GPU hardware, and various deep-learning
approaches are being conducted through datasets that have collected various public data
and assets [15–17]. Chougrad et al. [18] developed a CNN model of the CAD framework
to discriminate breast cancer. Deep-learning typically requires massive datasets to train
networks of a certain depth. In the case of transfer learning, overfitting can easily occur,
but it is an effective method for processing a relatively small dataset. These research efforts
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show that when training a CNN model, the best results can be obtained with optimal
fine-tuning, even in the same public dataset classification.

Xie et al. [19] proposed a lung nodule algorithm that adds tissue, shape, and deep
model learning information at the decision stage. This algorithm uses a shape descriptor in
Fourier—a texture descriptor based on a gray level co-occurrence matrix—to characterize
the heterogeneity of the nodule, and automatically learns the feature expression of the
nodule in slice units using a deep convolutional neural network (DCNN).

Ming et al. [7] proposed a dense connected residual network (DCRN) for noise re-
duction in low-dose CT images, which helps to preserve details, and when removing CT
noise, makes more efficient data. Research on these medical images is steadily progressing,
and research on how to process a dataset and what features to connect and learn is also
receiving a lot of attention. In regard to medical imaging data, it is generally not provided
as a public dataset that can be used by all researchers; thus, there is the limitation that it is
difficult for general researchers to collect such medical datasets.

Van et al. [9] conducted research on each blood vessel, such as the left anterior descend-
ing artery (LAD), the left circumflex artery (LCX), and the right coronary artery (RCA).
The dataset for this paper included CT from the national lung screening trial (NLST),
PET attenuation correction (ACPET) CT, coronary artery calcium scoring CT (CAC–CT),
diagnostic CT of the chest, radiation therapy treatment planning (RadTherapy) CT, and
CT examinations from the Jackson Heart Study (JHS) consisting of six types, and they
conducted CNN learning for each blood vessel, and then learned and evaluated whether
calcification had occurred. The baseline is low-dose chest CT examinations, and it learned
NLST data and evaluated CT data, such as CAC-CT and ACPET. A small set of examina-
tions of the respective type supplemented to the baseline are data-specific. Learning was
performed by combining one other CT data with NLST, and evaluation was performed with
the combined data. For the data-specific examinations, training evaluation was performed
by combining different CTs with NLST, just as CAC–CT data was included in NLST data to
evaluate CAC–CT. Combined data is a combination of examinations of all available types,
and it included all other CT data in the NLST data, and was conducted as a method to
evaluate the learning of other CT data.

Martin et al. [20] proposed a study on deep-learning-based automatic coronary calcium
score algorithm evaluation with data of 511 patients from 2014 to 2018. All data were
collected on a dual-source CT scanner (SOMATOM Force, Siemens Healthineers, Erlangen,
Germany). Deep-learning-based automated calcium analysis was performed using the
prototype proposed by Martin (Automated Scoring Siemens Healthineers), which is based
on a neural network with ResNet architecture and a fully connected neural network for
spatial coordinate functions. They used Hounsfield units, and trained on 2000 datasets.
Accuracy was decided according to CACS. When it was (0, 1–10, 11–100, 101–400, and >400),
the accuracy was (94.9%, 73.5%, 95.6%, 98.3%, and 92.3%), respectively. The limitation
of this paper is that most of the data consists of data from normal individuals without
calcification.

Kotia et al. [21] proposed a concept called “few-shot learning”. Deep learning is being
used in many medical fields, but its limitation is that it is highly dependent on the amount
of available data. In order to solve this limitation, the desired information is generated
by using a small amount of data. Data augmentation plays an important role in few-shot
learning; and in order to utilize it, the quality of the data has to be quite high.

3. CNN Models
3.1. VGG Network

The VGG network was introduced in a paper published by Oxford researchers in
2014 [13], and took second place in the ILSVRC 2014 competition. Unlike previous net-
works, the core of the VGG network is to deep-stack 3 × 3, a relatively small convolution
filter, and it uses a larger number of layers, such as (11, 13, 16, and 19). When three
3 × 3 filters are stacked, one 7 × 7 convolution layer and the receptive field are the same,
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but the activation function can be used more, so more nonlinearity can be obtained, and at
the same time, the number of parameters can be reduced.

Figure 1 shows the VGG16 network and VGG 19 network models. Once input data
comes in, it is filtered by two convolution layers with 64 3 × 3 kernels and 1 × 1 stride.
Then, max pooling with 2 × 2 kernel and 2 × 2 stride is performed, and then it is filtered
again into two convolution layers with 128 3 × 3 kernels and 1 × 1 stride. After that, max
pooling—which is max pooling through 256 3 × 3 kernels, 512 kernels, and 512 kernels—
is performed, and two fully connected layers with 4096 neurons and 1000 fully-connected
layers are dense to see if calcification has progressed. It has two output units to determine
if it is normal.
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3.2. Inception Network

Inception network [22] was announced in the same year as the VGG network, and
the model won first place in the ILSVRC 2014 competition. It is composed of a total of
22 layers, and has a very long and complex structure. Inception network proposed a block
structure called the Inception module, as shown in Figure 2. The biggest feature is that it
uses concatenation, which, after undergoing a total of four different operations, combines
the feature maps in the channel direction. In addition, 1 × 1, 3 × 3, and 5 × 5 convolution
operations were mixed, and used to express various receptive fields.
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with dimensionality reduction in the Inception module.

This method is called the naïve inception module. In addition, since 3 × 3 convolution
and 5× 5 convolution operations take up a lot of computation, 1× 1 convolution operation
is added before the two convolution operations to reduce the number of feature maps,
and then 3 × 3 and 5 × 5 convolution operations are performed to increase the number
of feature maps. An Inception module with a dimension reduction method that adds a
bottleneck structure that increases was proposed. Due to this, the amount of computation
of the inception module can be reduced by more than half.

3.3. Residual Neural Network (ResNet)

ResNet [23] took first place in the ILSVRC 2015 competition with the structure pro-
posed by Microsoft Research. It has a structure similar to VGG, in that the 3× 3 convolution
is repeated. It is classified into ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152,
etc., according to the number of layers. There is a shortcut to the side of the two convolution
layers, which is usually an identity shortcut—i.e., adding the input feature map to the
output. Whenever the number of output feature maps is doubled, a method of reducing the
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width and length of the feature map by half is used; and instead of pooling, a convolution
operation with stride = 2 is used. In this paper, ResNet-50 is applied, and since the number
of feature maps increases in models over 50, the bottleneck structure seen in the inception
module is applied to overlap the bottleneck residual block, as shown as Figure 3
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4. Methodology
Overall Workflow of the Proposed Method

In this research, labeling work was performed on 2400 images of data from 2300 in-
dividuals collected at Soonchunhyang University Cheonan hospital. This process was
conducted with a radiologist and cardiologist, and anonymization of personal information
was applied to all data. The original coronary artery calcium score CT data collected
consisted of normal subjects, and those with cardiovascular calcium. For this research, we
divided these data into Coronary artery calcium scoring CT with calcium, and without. The
coronary artery calcium score CT image data used in this paper were labeled by dividing
the heart region and other regions as shown in Figure 4. The images of the heart region
were further divided into CT with calcium, and CT without calcium. In addition, when the
CCS was lower than 20, the CTs with calcium were classified and labeled as low; and when
it was higher than 20, they were labeled as high. This criterion was established because
50% of the collected data had less than 20 points, and 50% had more than 20 points. In the
future, and as research progresses, we will use less than 100 as mild plaque burden, and
designate less than 10 as minimal plaque burden, and follow the existing classification.
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In Figure 5, the data with title beginning with ‘calcium’ is the data with calcium in the
coronary arteries, while the data with title starting with ‘no_calcium’ is the normal data, in
which calcification in the coronary arteries has not progressed.
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Figure 5. (a) Original coronary artery calcium score CT image without calcification, (b) Original coronary artery calcium
score CT image with calcification.

K-means clustering and the mathematical morphology were used to dissect the cardiac
region to generate the cardiac segmented images. First, the air material at the edge of the
coronary artery calcium score CT image was filtered by the convex hull of the foreground
mask. Afterwards, other body organs, such as fat, muscle, and lungs, were processed by the
convex hull of the lung mask. Finally, the vertebral part was filtered by the convex hull of
the vertebral mask. Figure 6 shows the way in which the whole cardiac segmented images
generation process was carried out. The segmentation process is intended to generate
a binary mask of the entire cardiac anatomical ROI containing the four chambers, the
coronary artery, and the DA. First, the air mass at the edge of the chest CT image is filtered
by the convex hull of the foreground mask. Then other body material—such as lungs,
muscle, and fat—are filtered by the convex envelope of the lung mask. Finally, the spinal
material is filtered by the convex hull of the spinal mask [24]. Figure 7 shows the results of
the segmentation process, and in this paper, unnecessary regions in the heart CT image
were removed by applying this algorithm.

Figure 8 shows the result of images created by dividing the data into nine segments
using the cardiac region segmentation data. The image data divided into nine was resized
to 299 × 299 pxl size for deep-learning training. General CT images are stored as dcm file
format with HU value. In this paper, we applied PNG file format with pixel values. This
can be readily used for real-time labeling using a general camera, and as an assistant tool for
medical doctors in the future. During data deep-learning training for this image data, there
were frequent situations in which training did not proceed, due to lack of memory because
of the use of many convolution layers. Therefore, we reduced the batch size to train three
CNN models, and applied dropout to prevent overfitting. In the case of training accuracy
and training loss, good results were obtained; but in the case of validation, splattered
values occurred, due to the lack of training data. To solve this problem, the amount of
data was increased by changing the angle, left, right ratio, and position values of the image
through the validation generator.
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To find the optimal model for each image dataset, first, Figure 9 shows that when CT
data was input to the current models, the highest performance was evaluated. There are
cases in which calcium is formed in many areas of the entire CT image, but otherwise it
occupies a very insignificant portion of the total pixels. Therefore, we constructed the most
optimal dataset for training and decision by extracting only the necessary areas from the
entire learning area.
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5. Results
5.1. Experimental Test Setup

The experimental test in this paper was conducted using Windows 10, Intel Core
i7-9700 CPU @ 3.00 GHZ, 32.0 GB RAM, and NVIDIA GeForce RTX 2080 graphics card.
The program was written using Python language, and CNN models of Resnet 50, VGG,
and Inception Resnet V2, were applied. The optimization was conducted by setting the
stochastic gradient descent (SGD) momentum to 0.9, weight decay to 0.005, learning
frequency to 0.001, and batch size to 8. Normalization and dropout were performed to
prevent overfitting. For each model, our proposed method has 1.46 million parameters for
Resnet 50, has 23.53 million parameters for Resnet v2 and has 118.25 million parameters
for the VGG, As shown as Table 1. For coronary artery calcium detection from CT images,
Resnet 50 was most suitable for our experimental test in number of parameters and
inference time.

Table 1. Computational cost comparison.

Method No. of Parameters Inference Time

Resnet 50 1.46 m 24 ms
Resnet v2 23.53 m 74 ms

VGG 118.25 m 102 ms

5.2. Data Acquisition

All data used in this paper were collected at Soonchunhyang University Cheonan
Hospital, anonymized before use, and were obtained with the approval of the Institutional
Review Board (IRB) and Philips iCT 256 with ISP version 10.1 (intelispace portal) were used.
The data were used with strict security and applied guidelines. Of the 2300 data collected,
1800 individuals without cardiovascular calcium were normal, while 500 individuals were
classified as individuals with cardiovascular calcium. For the collected data, the average
CT image data of an individual consists of 56 images, and information on various organs
and body materials—such as heart, lungs, ribs, spine, and air—are contained in this image.
We used the whole coronary artery calcium score CT data, and at this time, used only the
heart region for which it needs to be determined whether or not calcification is in progress
based on this, which may be hindered by other organs in learning. Among the collected
data, CT data with light bleeding due to a stent or other material was decided to be an
outlier, and excluded from the data.

For this paper, the dataset created with these data was divided into the original CT
dataset (2400 images), the cardiac segmented CT dataset (1900 images), and the cardiac
cropped CT dataset (2800 images). Since general deep learning approach is a data-driven
approach, the more data we have, the higher performance we would achieve. Thus, to
increase the number of CT data, data augmentation was performed by 10% of each dataset.
As a result, the number of original coronary artery calcium score CT images consists of
2200 images for training, 220 for validation, and 220 for testing, for a total 2640 images;
the total number of cardiac segmented CT dataset consists of a total 2090 images, with
1760 images for training, 165 images for validation, and 165 images for testing. Finally, the
number of cardiac cropped CT dataset consists of a total of 3080 images, with 2420 images
for training, 330 images for validation, and 330 images for testing, as shown as Table 2.
Due to the cardiac segmentation algorithm, the number of data was reduced, due to the
case in which the image was completely erased, and came out as a black image. In the case
of the original coronary artery calcium score CT image data, the size was 512 × 512 px, the
cardiac segmented CT data was 299 × 299 px, and the cardiac cropped CT data was also
processed in the size 299 × 299 px. In this paper, the names of the data files were divided
into ‘calcium’ for calcified data and ‘no_calcium’ for non-calcified data, and categorization
was carried out through this. Algorithm 1 is a pseudocode that briefly shows the training
process for CNN models.
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Algorithm 1: Pseudocode for training coronary artery calcium score CT images-Train model

Input: Original coronary artery calcium score CT image dataset, Cardiac segmented image
dataset, Cardiac cropped dataset
Output: Detection of calcification
Begin
1: Read_data (Image_width, Image_height_Image_channel)
2: for filename
if category == “calcium”:
Categories.append(1)
else:
Categories.append(0)
3: RestNet50← load()
4: InceptionResNetV2← load()
5: VGG← load()
6: df[‘catefoty’].replace({0: “non_calcium”, 1: “calcium”})
7: train_datagen = rescale, shear_range, zoom_range, horizontal_flip, width_shift_range,
height_shift_range
8: train_generator← train_datagen.flow_from_dataframe
9: validation_generator = validate_datagen.flow_from_dataframe
10: model← create_model()
11: if training = True then
12: history
13: model.save
14: model.evaluate(train_generator, test_generator)
15: return results()
16: end procedure

Table 2. Configuration of each dataset.

Training Validation Testing Total

Original coronary artery
calcium score CT images 2200 220 220 2640

Cardiac segmented CT images 1760 165 165 2090
Cardiac cropped CT images 2420 330 330 3080

6. Discussion

In this paper, we trained the coronary artery calcium score CT image data using
Inception Resnet v2, Resnet-50, and VGG models. The procedure was conducted with data
from Koreans who visited Soonchunhyang University Cheonan Hospital, and on average,
coronary artery calcium score CT images (1 to 56) were collected and applied. When the
original coronary artery calcium score CT image data was trained on each model, Resnet-50
showed 88.95% validation accuracy and 81.08% test accuracy; in Resnet v2, the verification
accuracy was 52.24%, while the test accuracy was 51.47%; and in VGG, 84.33% and 61.23%
values were shown, respectively.

For the cardiac segmented CT image data, in Resnet-50, the validation accuracy was
67.02% and the test accuracy was 81.56%; in Resnet v2, 51.37% validation accuracy and
48.57% test accuracy were obtained; and in VGG, 89.31% and 73.25% values were obtained,
respectively. Finally, in Resnet-50, the cardiac cropped CT image data showed 99.08%
verification accuracy and 98.52% test accuracy; in Resnet v2, 87.53% verification accuracy
and 80.23% test accuracy were obtained; and in VGG, 86.59% and 96.20% values were
obtained, respectively. All of the result is in Table 3.
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Table 3. Results of validation and test accuracy for each model.

Validation Accuracy Test Accuracy

Original coronary artery calcium score CT-data
Resnet-50 88.95 81.08
Resnet v2 52.24 51.47

VGG 84.33 61.23
Cardiac segmented data

Resnet-50 67.02 81.56
Resnet v2 51.37 48.57

VGG 89.31 73.25
Cardiac cropped data

Resnet-50 99.08 98.52
Resnet v2 87.53 80.23

VGG 86.59 96.20

As a result, in the case of the original coronary artery calcium score CT image data and
the cardiac segmented CT image data, there was no significant difference in test accuracy
in the other models except VGG; while in the validation accuracy, the original coronary
artery calcium score CT image data showed higher accuracy in the rest of the models,
except VGG. When the cardiac cropped CT image data was used, validation and test
accuracy values were higher for all results, except for the validation accuracy of VGG for
the cardiac segmented data. Additionally, among CNN models, Resnet-50 showed the
highest test accuracy.

In the research of van Velzen et al. [19], baseline showed 95% test accuracy, data-
specific provided 97% test accuracy, and combined showed 96% test accuracy. Although
their baseline is similar to that of this paper, we did not decide the presence or absence
of calcium in each blood vessel, but only the presence or absence of calcium in the whole
heart. Therefore, their method can only determine whether calcification has progressed or
not, and in this case, the proposed method in this paper shows higher accuracy of 98.52%.
In this paper, after deciding the presence or absence of cardiac calcification in the patient,
we plan in the future to research each blood vessel with images that have been calcified.
This has the advantage of efficiently labeling the presence or absence of calcium when the
latest data are collected later.

7. Conclusions

In this paper, we divided CT image data into the original coronary artery calcium score
CT image dataset, the cardiac segmented image dataset, and the cardiac cropped image
dataset, and trained using Resnet-50, Inception Res-net V2, and VGG models. Datasets
were stored in PNG format after anonymization through preprocessing. When training
the datasets with the three CNN models, when using the cardiac cropped image dataset to
determine the presence of calcium, 99.08% verification accuracy and 98.52% test accuracy
were obtained, which were higher than those values of the original coronary artery calcium
score CT image dataset, or of the cardiac cropped image dataset.

In this paper, only three CNN models were applied to train the coronary artery calcium
score CT dataset; however, in the future we plan research to continue the research to find
the optimal model and dataset by extending it to all other CNN models. Through this, we
plan to find the most appropriate model to determine the presence or absence of calcium in
coronary artery calcium score CT image in the future, and conduct research to automate
the analysis score for each heart blood vessel, and predict the possibility of disease.
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Abbreviations
The following abbreviations are used in this manuscript:

CAD Coronary artery disease
CAC Coronary artery calcium
CVD Coronary vascular disease
CNN Convolutional neural network
CT Computer tomography
CPU Central processing unit
LAD Left anterior descending artery
LCX Left circumflex artery
RCA Right coronary artery
MRI Magnetic resonance imaging
GPU Graphical processing unit
PNG Portable network graphics
DCM Digital imaging and communications in medicine
DCNN Deep convolutional neural network
WHO World Health Organization

Appendix A

Computed tomography (CT) image is a tomography technique in which a subject is
placed between an X-ray generator and an X-ray detector, X-ray images called sinograms are
taken from various directions, and then restored to a cross-sectional image by calculating
inverse radon transformation with a computer. CT is one of the most commonly used
medical imaging techniques in the current medical field. Because CT has excellent ability
to reproduce cross-sections of the human body, it is possible to determine the degree of
deformation of the normal anatomical structure of the human body relatively easily and
accurately. It plays a very important role in the field of imaging diagnosis due to the
difference in absorption of minute parts by expressing excellent resolution and contrast in
distinguishing blood, tissue, cerebrospinal fluid, white matter, gray matter, and tumors.
A large amount of calcium pixels appearing in the coronary arteries can be predicted to
increase the risk of cardiovascular disease, as shown in Figure A1a:
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