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Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer’s disease. Understanding whether these

features predict cognitive decline, alone or in combination, is crucial to develop new prognostic measures and enhanced stratifica-

tion for clinical trials. Here, we studied how baseline assessments of in vivo tau pathology (measured by 18F-AV-1451 PET), neu-

roinflammation (measured by 11C-PK11195 PET) and brain atrophy (derived from structural MRI) predicted longitudinal cogni-

tive changes in patients with Alzheimer’s disease pathology. Twenty-six patients (n = 12 with clinically probable Alzheimer’s

dementia and n = 14 with amyloid-positive mild cognitive impairment) and 29 healthy control subjects underwent baseline assess-

ment with 18F-AV-1451 PET, 11C-PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3

years using the revised Addenbrooke’s Cognitive Examination. Regional grey matter volumes, and regional binding of 18F-AV-

1451 and 11C-PK11195 were derived from 15 temporo-parietal regions characteristically affected by Alzheimer’s disease path-

ology. A principal component analysis was used on each imaging modality separately, to identify the main spatial distributions of

pathology. A latent growth curve model was applied across the whole sample on longitudinal cognitive scores to estimate the rate

of annual decline in each participant. We regressed the individuals’ estimated rate of cognitive decline on the neuroimaging compo-

nents and examined univariable predictive models with single-modality predictors, and a multi-modality predictive model, to iden-

tify the independent and combined prognostic value of the different neuroimaging markers. Principal component analysis identified

a single component for the grey matter atrophy, while two components were found for each PET ligand: one weighted to the anter-

ior temporal lobe, and another weighted to posterior temporo-parietal regions. Across the whole-sample, the single-modality mod-

els indicated significant correlations between the rate of cognitive decline and the first component of each imaging modality. In

patients, both stepwise backward elimination and Bayesian model selection revealed an optimal predictive model that included

both components of 18F-AV-1451 and the first (i.e. anterior temporal) component for 11C-PK11195. However, the MRI-derived at-

rophy component and demographic variables were excluded from the optimal predictive model of cognitive decline. We conclude

that temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in patients with symptom-

atic Alzheimer’s disease pathology. This indicates the added value of PET biomarkers in predicting cognitive decline in Alzheimer’s

disease, over and above MRI measures of brain atrophy and demographic data. Our findings also support the strategy for targeting

tau and neuroinflammation in disease-modifying therapy against Alzheimer’s disease.
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Introduction
The pathological hallmarks of Alzheimer’s disease are

tau neurofibrillary tangles and amyloid-b plaques, but neu-

roinflammation has also emerged as a key process in

Alzheimer’s disease and other neurodegenerative disorders

(Pasqualetti et al., 2015; Ransohoff, 2016; Schain and

Kreisl, 2017). The differential role of these pathologies in

predicting clinical progression of Alzheimer’s disease remains

to be ascertained. This represents a critical step to develop

new prognostic markers and test the effect of novel disease-

modifying therapies that target different pathologies in

Alzheimer’s disease.

The aggregation of misfolded tau protein is associated

with synaptic dysfunction and neuronal loss, and correlates

with clinical severity in the Alzheimer’s disease clinical spec-

trum (Nelson et al., 2012; Spires-Jones and Hyman, 2014).

A significant presence of amyloid-b plaques is also indicative

of likely cognitive decline in mid- and later-life, although the

association of both neurodegeneration and cognitive impair-

ment has been found stronger with the distribution and bur-

den of neurofibrillary tangles than it is for neuritic plaques

(Nelson et al., 2012; Spires-Jones and Hyman, 2014).

Microglia activation and neuroinflammation represent a

third key determinant in the aetiopathogenesis of

Alzheimer’s disease and in its progression (Heneka et al.,

2015; Mhatre et al., 2015; Calsolaro and Edison, 2016), in-

dependently or synergistically with tau and amyloid

pathology.

Each of these processes can now be quantified and local-

ized in vivo using brain imaging, such as PET imaging with

radioligands targeting tau pathology, amyloid burden, and

microglial activation (see Chandra et al., 2019 for a review).

The PET ligand 18F-AV-1451 is sensitive to cortical tau ac-

cumulation in Alzheimer’s disease, and has high affinity for

the characteristic paired helical tau filaments (Xia et al.,

2013; Marquié et al., 2015; Lowe et al., 2016). 18F-AV-

1451 PET studies have shown marked tau accumulation in

the entorhinal cortex in patients with mild cognitive impair-

ment (MCI) that extends to temporo-parietal regions in

Alzheimer’s disease (Hall et al., 2017). 18F-AV-1451

bindings also correlates with Braak staging of neurofibrillary

tau (Schöll et al., 2016; Schwarz et al., 2016), and post-mor-

tem patterns of Alzheimer’s disease pathology (Sander et al.,

2016; Lowe et al., 2020; Smith et al., 2019). This is also in

keeping with evidence that tau deposition is evident as a

continuum from normal ageing through MCI to Alzheimer’s

dementia (Schöll et al., 2019), and correlates with cognitive

impairment (Brier et al., 2016; Cho et al., 2016b; Johnson

et al., 2016; Ossenkoppele et al., 2016; Pontecorvo et al.,

2017). In addition, PET imaging supported the previous evi-

dence of a stronger association of cognitive deficits with tau

burden than with amyloid-b (Brier et al., 2016; Johnson

et al., 2016).

The PET ligand 11C-PK11195 is a well-established marker

for microglial activation via its binding to the 18-kDa trans-

locator protein (TSPO), a mitochondrial membrane protein

that is overexpressed in activated microglia (Scarf and

Kassiou, 2011). Results with this ligand in Alzheimer’s dis-

ease have been variable (for a review see Chandra et al.,

2019), but this may be due to small sample sizes and incon-

sistent methods between previous in vivo studies. 11C-

PK11195 has shown high binding in temporo-parietal

regions and cingulate cortex in patients with Alzheimer’s dis-

ease (Stefaniak and O’Brien, 2015), while neuroinflamma-

tion in these regions is inversely associated with cognitive

performance in MCI and Alzheimer’s dementia (Edison

et al., 2008; Okello et al., 2009a; Fan et al., 2015a;

Passamonti et al., 2018, 2019). However, inflammation

does not correlate well with amyloid burden (Yokokura

et al., 2011), suggesting an independent role of microglia ac-

tivation in leading to cognitive deficits.

There are extensive data on atrophy in Alzheimer’s dis-

ease, measured in terms of volume loss in vivo by MRI, at

MCI and dementia stages of progressive Alzheimer’s disease

pathology. For example, MRI measures of medial temporal

lobe volumes correlate with disease severity, and are predict-

ive of future conversion from MCI to Alzheimer’s disease

(Frisoni et al., 2010; Leung et al., 2013; Jack et al., 2015).

However, cell loss and atrophy are relatively late features in

a cascade of pathology, and it is not clear how MRI com-

pares with measures of molecular pathology as a prognostic
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marker, especially in view of marked age-related structural

changes (Raz et al., 2005; Walhovd et al., 2011).

In this study, we test the ability of baseline in vivo meas-

ures of tau pathology, microglia activation, and brain atro-

phy to predict the rate of cognitive decline in patients with

Alzheimer’s disease pathology, ranging from MCI (with bio-

marker evidence of amyloid pathology) to clinically probable

Alzheimer’s disease (with dementia). Our hypothesis was

that the PET biomarkers of tau pathology and neuroinflam-

mation are strong predictors of cognitive impairment and

decline, and that whereas MRI may be predictive in isola-

tion, the prognostic information of MRI is better captured

by direct PET measures of molecular pathology (Bejanin

et al., 2017; Mattsson et al., 2019). This hypothesis builds

on evidence that tau burden relates to age-related cognitive

decline (Schöll et al., 2016; Aschenbrenner et al., 2018;

Maass et al., 2018), and progression of dementia over 6 to

18 months in patients with Alzheimer’s disease (Koychev

et al., 2017; Pontecorvo et al., 2019). In contrast to past

studies that assessed the relationship between longitudinal

PET markers and clinical changes in Alzheimer’s disease

(Fan et al., 2015b, 2017, Chiotis et al., 2018; Jack et al.,

2018; Southekal et al., 2018; Cho et al., 2019), we studied

how a multi-modal and cross-sectional assessment of distinct

pathologies is able to predict longitudinal decline in

Alzheimer’s disease, examining the individual or combined

prognostic contribution of tau pathology, neuroinflamma-

tion, and brain atrophy in predicting cognitive decline.

The better characterization of the factors predicting de-

cline in Alzheimer’s disease will help to develop enhanced

prognostic and outcome measures for clinical trials targeting

more than one pathology. Although previous findings sup-

port the use of MRI and PET imaging in the diagnosis and

monitoring of disease progression, the prognostic value of

these in vivo measures and their combined effect in predict-

ing clinical decline in Alzheimer’s disease remains undeter-

mined. Previous studies that have evaluated the predictive

values of neuroimaging markers in Alzheimer’s disease have

typically assessed different neuroimaging modalities in isola-

tion rather than exploiting the mechanistic and prognostic

values that are offered by multi-modal neuroimaging. We

therefore assessed the independent and combined predictive

effects of baseline neuroimaging biomarkers for tau path-

ology (18F-AV-1451 PET), neuroinflammation (11C-

PK11195 PET) and brain atrophy (structural MRI) on longi-

tudinal cognitive changes over a period of 3 years in the clin-

ical spectrum of Alzheimer’s disease. Given the published

evidence of dominant involvement of temporal and parietal

brain regions in early neurodegeneration, tau pathology, and

neuroinflammation in Alzheimer’s disease (Garibotto et al.,

2017; Jagust, 2018; Whitwell, 2018), we decided a priori to

focus our analyses on these regions. Pathology may occur in

frontal and occipital regions, but for typical amnestic pheno-

types, we considered this to be of secondary importance. In

the temporo- parietal regions there is a hierarchical evolution

in tau pathology and atrophy from MCI to Alzheimer’s

dementia, recapitulating neuropathological staging and cor-

relating with clinical severity (for a review see Jagust, 2018).

We predicted: (i) a significant association between

baseline measures of each neuroimaging technique and

longitudinal decline in cognition; (ii) partially inde-

pendent and additive effects of MRI and PET measures

on cognitive decline, assessed with all modalities to-

gether in a single multivariate model; and (iii) that the

molecular markers of baseline tau and neuroinflamma-

tion PET would be more informative than structural

MRI on longitudinal cognitive deterioration in

Alzheimer’s disease.

Material and methods

Participants

We recruited 26 patients: 12 with a clinical diagnosis of

probable Alzheimer’s dementia and 14 with amnestic MCI

and a positive amyloid PET scan as biomarker of

Alzheimer’s disease (Klunk et al., 2004). Probable

Alzheimer’s dementia was diagnosed according to the

National Institute on Aging-Alzheimer’s Association guide-

lines (McKhann et al., 2011) and confirmed in all patients

during follow-up. Given the long-term and intensive nature

of the longitudinal project, all patients at baseline had 412/

30 on the Mini-Mental State Examination (MMSE) to be eli-

gible to participate in the study. MCI patients had MMSE

score 424/30, and memory impairment not ascribable an-

other diagnosis (Albert et al., 2011). We also included 29

healthy controls with MMSE 426/30, absence of memory

symptoms, no signs of dementia, or any other significant

medical illnesses.

All gave informed consent according to the Declaration of

Helsinki. The NIMROD protocol [Neuroimaging of

Inflammation in Memory and Related Other Disorders

(Bevan-Jones et al., 2017)] was approved by the NIHR

National Research Ethic Service Committee and East of

England (Cambridge Central).

During the first visit, demographic information and medic-

al history were collected. All participants underwent a base-

line neuropsychological assessment, followed by an MRI

scan and one, two or three PET scans depending on the

group. The clinical examination and neuropsychological bat-

tery were repeated annually for three follow-up visits (for

details see Bevan-Jones et al., 2017). The revised

Addenbrooke’s Cognitive Examination (ACE-R) (Mioshi

et al., 2006) was used to assess the cognitive performance at

each visit. All patients diagnosed with Alzheimer’s dementia

deteriorated significantly in the follow-up clinical visits com-

pared to the study baseline. Six of 14 patients with MCI

were clinically diagnosed as converting to Alzheimer’s dis-

ease and/or presented MMSE 424/30 by the end of the

study (3 years), and three further patients subsequently.
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Imaging data acquisition and
preprocessing

All subjects underwent 3 T MRI performed on a Siemens

Magnetom Tim Trio or Verio scanner (Siemens). A T1-

weighted MPRAGE image was acquired for each participant

(repetition time = 2300 ms, echo time = 2.98 ms, field of

view = 240 � 256 mm2, 176 slices of 1-mm thickness, flip

angle = 9�).

MCI and Alzheimer’s dementia subjects had both dynamic
18F-AV-1451 PET and 11C-PK11195 PET, while, to minim-

ize radiation exposure in healthy individuals, control sub-

jects were divided into two groups: 14 underwent 18F-AV-

1451 PET, while another 15 underwent 11C-PK11195 PET.

PET scanning was undertaken on a GE Advance PET scan-

ner (GE Healthcare) and a GE Discovery 690 PET/CT

(Supplementary Table 1). Patients with MCI also underwent

40–70 min post-injection 11C-PiB PET to quantify the dens-

ity of fibrillar amyloid-b deposits for classification of amyl-

oid-b status. The emission protocols were: 90 min dynamic

imaging following a 370 MBq 18F-AV-1451 injection; 75

min of dynamic imaging starting concurrently with a 500

MBq 11C-PK11195 injection; and 550 MBq 11C-PiB injec-

tion followed by imaging from 40–70 min post-injection (for

details see Passamonti et al., 2017, 2018). All images were

reconstructed with PROMIS 3D filtered back-projection

(Kinahan and Rogers, 1989), with the Colsher filter apo-

dized with a transaxial Hann filter cut-off at the Nyquist fre-

quency. Corrections for dead time, randoms, normalization,

scatter, attenuation, and sensitivity were included in the

image reconstruction process. 11C-PiB scans were classified

as positive if the average standardized uptake value ratio

(SUVR) across the cortex using a cerebellar grey matter ref-

erence region was 41.5 (Villemagne et al., 2013). This

threshold was chosen to minimize false positives (Jack et al.,

2008; Villemagne et al., 2011). Only MCI patients with

positive amyloid-b status were included in this study, and

were combined with patients with Alzheimer’s dementia as

these two groups are thought to represent a continuum of

the same clinical and pathological spectrum (Okello et al.,

2009b).

Structural imaging data were processed in SPM12. The

T1-weighted images were segmented into grey matter, white

matter and CSF and used to determine regional grey matter,

white matter and CSF volumes, and to calculate brain vol-

ume (grey + white matter) and total intracranial volume

(TIV = grey matter + white matter + CSF) in each partici-

pant. The grey and white matter segments from 33 subjects

were used to create an unbiased template (11 controls,

11 patients with MCI and 11 patients with Alzheimer’s de-

mentia, matched for age and sex across the groups) using

the DARTEL pipeline in SPM12. The images from the

remaining 22 participants were warped to the template to

bring all participants into the same space. Segmented images

were then warped to MNI space. The images were matched

to the Hammers atlas [(Hammers et al., 2003; Gousias

et al., 2008) modified to include brainstem parcellation and

the cerebellar dentate nucleus in MNI152 2009c space] to

perform a region of interest analysis. The atlas comprised 83

cortical regions. The group template was warped to the

ICBM MNI152 2009c template using the ‘Population to

ICBM’ function, applied to the Hammers atlas in DARTEL

template space, followed by linear transformation to MNI

space. These steps place the regions of interest in the same

space as the individual normalized MRI images. Individual

regional grey matter volumes were then extracted using the

‘spm_summarise’ function.

For each subject, the aligned PET image series for each

scan was rigidly co-registered to the T1-weighted MRI

image. Prior to kinetic modelling, regional PET data were

corrected for CSF contamination by dividing by the mean re-

gion grey plus white matter fraction determined from SPM

tissue probability maps smoothed to PET spatial resolution.

For 11C-PK11195, supervised cluster analysis was used to

determine the reference tissue time-activity curve and non-

displaceable binding potential (BPND) was calculated in each

region of interest using a simplified reference tissue model

that includes correction for vascular binding (Yaqub et al.,

2012). For 18F-AV-1451, BPND was assessed in each region

of interest with the simplified reference tissue model (Gunn

et al., 1997) using superior cerebellar cortex grey matter as

the reference region. For more details about the data prepro-

cessing steps, see Passamonti et al. (2017, 2018).

The number of regions was reduced from 83 to 15 a priori

regions of interest by (i) combining left and right regional

values in bilateral regions (cf. Passamonti et al., 2017,

2018); and (ii) focusing on 15 bilateral temporo-parietal

regions, related to Alzheimer’s disease pathology

(Supplementary Table 2). Regional grey matter volumes

were corrected for total intracranial volume. For both 11C-

PK11195 and 18F-AV-1451, a volume-weighted mean of left

and right regional BPND values was calculated for each bilat-

eral region of interest.

Statistical analyses

Descriptive statistics

Continuous variables (age, education, ACE-R) were com-

pared between groups with an independent-samples t-test,

and categorical variables (sex) with the chi-square test. The

effect size of each t-test comparison was computed to quan-

tify differences between the two groups (Cohen’s d4 0.8,

valuable difference).

Principal components analysis

The standardized values determined for the 15 bilateral

regions of interest from each imaging dataset were included

in three principal component analyses (PCAs), run separately

for grey matter volumes, 11C-PK11195 and 18F-AV-1451

BPND values. This reduces dimensionality and the problem

of multiple comparisons, identifying a limited number of

components that best explain the data variance. We applied

an orthogonal varimax rotation to maximize interpretability

and specificity of the resulting components. We retained
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components with eigenvalues 41. To test whether correc-

tion for CSF affected the PCA results, we applied the same

analyses on 18F-AV-1451 PET and 11C-PK11195 regional

data not corrected for CSF partial volume.

The individual component scores were corrected for the

time interval in months between the baseline cognitive as-

sessment and each scan. Median (mean and standard devi-

ation, SD) of the time interval between the baseline cognitive

assessment and the imaging scans were: 1.0 (1.75± 2.50)

months for MRI, 7.5 (7.18± 5.68) months for 18F-AV-1451

PET and 2 (6.12± 9.07) months for 11C-PK11195 PET. The

residuals extracted for each component were included in a

multiple regression on cognitive decline as independent

variables.

LGCM for cognitive data

ACE-R scores at follow-up were annualized to the nearest

whole year, using the absolute difference in scores between

the baseline and the following visits, divided by the time

interval in days between tests and multiplied by 365 (1

year), 730 (2 years) or 1095 (3 years). A latent growth curve

model (LGCM) was fitted on longitudinal annualized ACE-

R scores across all subjects (n = 55), to obtain (i) the inter-

cept; (ii) the slope, quantifying the rate of change and its

form (i.e. linear or non-linear); and (iii) the relation between

intercept and slope. A linear slope for the longitudinal ACE-

R scores was estimated, and used in further analyses.

Addition of a non-linear (quadratic) term to the model did

not improve the estimation of slope (Supplementary mater-

ial). The estimated parameters are based on the individuals’

trajectory, indicating average change and individual differ-

ence. Covariates can be added to the model to assess their

associations with both intercept and slope. Three time points

and 5–10 cases per parameter are required for a standard

LGCM (Bentler and Chou, 1987; Newsom, 2015). LGCM

was implemented in Lavaan software (Rosseel, 2012) using

full information maximum likelihood estimation with robust

standard errors for missingness and non-normality. We con-

sidered four indices of good model fit (Schermelleh-Engel

et al., 2003): (i) the chi-square test with the P-value (good

fit: 40.05); (ii) the root-mean-square error of approxima-

tion (RMSEA, acceptable fit: 50.08, good fit: 50.05); (iii)

the comparative fit index (CFI, acceptable fit: 0.95–0.97,

good fit: 40.97); and (iv) the standardized root mean-

square residual (SRMR, acceptable fit: 0.05–0.10, good fit:

50.05). From the model fitting, variables ‘intercept’ and

‘slope’ were created extracting the individual estimated val-

ues for each subject in the model. T-tests and ANOVA

tested for group differences in initial cognitive performance

and annual change.

One-step prediction procedure: LGCMs with

predictors

Across all subjects, we tested the predictive value of each

imaging method on cognitive decline, applying five LGCMs

with each scan-specific component’s values (corrected for

months from the baseline) as predictor of cognitive intercept

and slope. Models were tested separately for MRI (n = 55),
11C-PK11195 PET (n = 41) and 18F-AV-1451 PET (n = 40).

Then, in patients (n = 26), the individual scores of all five

imaging components were included as predictors in the

LGCM on longitudinal ACE-R, estimating the combined

predictive effect of imaging modalities.

The one step procedure is a simple approach to our re-

search questions, but brings estimation challenges with a

modest sample size. Therefore, we next applied a two-step

prediction procedure: (i) extracting individual slope values

from the initial LGCM for cognitive data across all the

population; and (ii) including these values as dependent vari-

ables in linear regression models with brain imaging compo-

nents as predictors. We present both frequentist and

Bayesian analyses to ensure inferential robustness and allow-

ing us to quantify evidence in favour of the null hypothesis

(of no predictive value).

Two-step frequentist prediction: linear regression

models on LGCM parameters

First, across all subjects, the residual values of each scan-spe-

cific PCA component (corrected for months from the base-

line) were included as single predictors in separated

univariable linear regression models with the individual

slope values extracted from the initial LGCM as dependent

variable. The significance level was set at P5 0.01 corrected

for multiple comparisons (Bonferroni correction a = 0.05/

5). Next, the individual scores of the imaging methods’ com-

ponents were included as independent variables in a multi-

variable regression analysis on patients alone (n = 26), who

underwent all three imaging scans. This model was fit to

examine the individual, as well as combined, ability to ex-

plain variance in cognitive decline using brain marker com-

ponents as well as age, education, and sex as independent

variables. The model used stepwise backward selection

(entry criterion a = 0.05 and elimination criterion a = 0.1;

see the Supplementary material for comparable models

applied with the estimated intercept as dependent variable).

A complementary post hoc ‘exploratory’ linear regression

analysis included the interaction term between PET inde-

pendent variables, to test whether their interaction was pre-

dictive of cognitive decline. In supplementary analyses, we

applied a ‘reduced’ multivariable linear regression analysis

with slope as dependent variable and only the first compo-

nent of each imaging method as predictors to test that the

different number of components between MRI and PET did

not affect the estimation. These supplementary analyses

were performed with and without the interaction terms be-

tween tau and inflammation measures. Given the challenges

of stepwise model selection, and the limitations of sample

size to utilize more advanced methods (e.g. regularized

model fitting), we ran the analysis using Bayesian method-

ology, to ensure inferential robustness of our findings and

confidence in the null results.
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Two-step Bayesian prediction: linear
regression models on LGCM
estimated parameters

We applied a Bayesian multiple regression analysis with

brain components and demographic variables as predictors,

and the estimated slope values as dependent variable. This

approach was used to test whether there was evidence for

the absence of independent variables’ effect for those compo-

nents excluded from the final models (as opposed to fre-

quentist type II error). In the model comparisons, adopting a

uniform prior over the models, we considered as final model

the one with the highest Bayes Factor compared to the null

model (BF10). Then, we used a reduced Bayesian linear re-

gression, mirroring the reduced model applied with the fre-

quentist approach, which included only the first component

of each imaging method as predictors of slope.

One- and two-step prediction procedures

See Supplementary Fig. 1 for a schematic representation of

statistical analyses with one-step and two-step prediction

procedures. All PCAs and regression models were performed

in SPSS Statistics version 25 (IBM); all Bayesian analysis in

JASP version 0.10.2 (JASP team) and all LCGMs used R

version 3.6.1 (R Core Team).

Data availability

Anonymized data may be shared by request to the senior au-

thor from a qualified investigator for non-commercial use

(sharing of some data is subject to restrictions according to

participant consent and data protection legislation).

Results

Descriptive statistics

Significant differences between patient and control groups

were found for education [t(48.4) = 2.4, P = 0.02, d = 0.64]

and ACE-R scores [t(33.3) = 8.6, P50.001, d = 2.37].

There were no significant group differences in age [t(53) =

–1.7, P = 0.09, d = –0.47] and sex [v2(1) = 0.17, P = 0.68]

(Table 1). Individual ACE-R scores at baseline and at each

follow-up are shown in Fig. 1. See Supplementary Table 3

for demographics in patient and control subgroups.

Principal component analysis of
grey matter volumes, 18F-AV-1451
BPND and 11C-PK11195 BPND

For grey matter volumes, the PCA on the preselected 15

Alzheimer’s disease-specific cortical regions identified only

one component that encompassed all the temporo-parietal

regions and explained 74% of the variance (Fig. 2, left).

Two principal components were detected for 18F-AV-1451

BPND data, explaining 91% of the total variance (83% first

component; 8% second component). The first component

was loaded onto the posterior temporal and parietal regions,

while the second component was weighted to the anterior

temporal lobe, amygdala, insula and hippocampus (Fig. 2,

middle). For 11C-PK11195 BPND data, two principal compo-

nents were identified, and these explained together the 76%

of data variance (56% for the first component; 20% for the

second component). The first component involved anterior

and medial temporal lobe, while the second component was

mainly loaded onto the posterior temporo-parietal regions

and insula (Fig. 2, right). The loadings are shown in

Supplementary Table 4. Using PET data without CSF correc-

tion yielded qualitatively similar results.

Simple correlations between MRI and PET component

scores across subjects were significant for the MRI compo-

nent versus the first 11C-PK11195 component (R = –0.459,

P = 0.003, significant after Bonferroni correction), but not

the second 11C-PK11195 component (R = –0.154,

P = 0.337). The MRI component was weakly associated

with the first (R = –0.319, P = 0.045, uncorrected) and the

second (R = –0.329, P = 0.038, uncorrected) 18F-AV-1451

components. In patients, correlations between 18F-AV-1451

and 11C-PK11195 components were not significant, even

uncorrected.

Annual rate of cognitive decline

The linear LGCM of longitudinal ACE-R scores fitted the

data adequately [v2(8) = 10.93, P = 0.206; RMSEA = 0.09

(0.00–0.21), CFI = 0.99, SRMR = 0.04]. Three of four

model fit indices were ‘acceptable’ or ‘good’ by Schermelleh-

Engel et al. (2003) guidelines, although the RMSEA

(40.08) was not. To exclude a large single source of misfit,

we inspected the standardized residual matrix, and con-

firmed no single standardized residual greater than

r = 0.099. We therefore considered the overall model fit suf-

ficient. The mean of the intercept was 86.40 [standard error

(SE) = 1.44, z-value = 60.02, fully standardized estimate

(Std Est) = 8.28, P5 0.001] and average cognition declined

over time [slope, estimate (est) = –3.01, SE = 0.80, z-value

= –3.75, Std Est = –0.54, P50.001]. The intercept signifi-

cantly covaried with the slope [est = 38.51, SE = 9.24,

z-value = 4.17, Std Est (correlation) = 0.67, P5 0.001],

such that individuals with higher (better) baseline perform-

ance showed less steep decline. As expected, patients signifi-

cantly differed from controls in their intercept [t(31.8) =

9.39, P5 0.001] and slope [t(25.9) = 6.42, P5 0.001] indi-

cating a faster and more severe cognitive decline (Fig. 3).

Across three groups, ANOVA confirmed group differences

in the intercept [F(2) = 63.44, P5 0.001; mean (SD) for:

controls = 94.18 (3.27); MCI-positive patients = 81.25

(6.17); Alzheimer’s patients = 73.60 (8.96)] and slope [F(2)

= 53.74, P5 0.001; mean (SD) for: controls = 0.40 (0.82);

MCI-positive patients = –3.56 (3.08); Alzheimer’s patients =

–10.62 (5.71)], with post hoc confirmation of differences be-

tween each pair of groups (all P50.005).
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One-step prediction LGCM with

predictors

The LGCM including MRI fitted the data adequately

[v2(10) = 18.33, P-value = 0.05, RMSEA = 0.13 (0.01–

0.23), CFI = 0.98, SRMR = 0.03]. Inspecting the standar-

dized residual matrices, none were greater than r = 0.105.

Individual differences in the summary brain measure were

strongly and positively associated with both slope (path Std

Est = 0.58, P50.001) and intercept (path Std Est = 0.67,

P50.001). This suggested that individuals with greater grey

matter volumes showed better baseline performance, and

slower longitudinal decline, than those with smaller

volumes.

The LGCM of the posterior 18F-AV-1451 component fit-

ted the data adequately [v2(10) = 16.30, P-value = 0.09,

RMSEA = 0.12 (0.00–0.22), CFI = 0.98, SRMR = 0.03],

and no single standardized residual was greater than

r = 0.101. Here too, both the slope (path Std Est = –0.62,

P = 0.001) and intercept (path Std Est = –0.53, P50.001)

were strongly governed by individual differences in the first

component. In contrast, in the model with only the anterior
18F-AV-1451 component [v2(10) = 21.75, P-value = 0.01,

RMSEA = 0.17 (0.07–0.27), CFI = 0.96, SRMR = 0.05],

there was no association between the scores on the neural

component and either the intercept (path Std Est = –0.12,

P = 0.431) or the slope (path Std Est = –0.39, P = 0.057). In

this model, no single standardized residual was greater than

r = 0.148.

Finally, the LGCM with the anterior 11C-PK11195 com-

ponent fitted the adequately [v2(10) = 16.32, P-value =

0.09, RMSEA = 0.13 (0.00–0.23), CFI = 0.97, SRMR =

0.02], and no single standardized residual was greater than

r = 0.056. Individual differences in the 11C-PK11195 compo-

nent governed both slope (Std Est = –0.51, P = 0.002) and

intercept (Std Est = –0.43, P5 0.001) correlated with

Component 1. In the model with the posterior 11C-PK11195

component as regressor, [v2(10) = 9.33, P-value = 0.50,

RMSEA = 0.00 (0.00–0.17), CFI = 1.00, SRMR = 0.03],

the slope resulted significantly correlated with the

Figure 1 Longitudinal cognitive changes in patients and controls, as measured by the ACE-R. Points represent annualized ACE-R

scores at baseline, and 1-year, 2-year and 3-year follow-ups for each subject in control (blue) and patient (red) groups.

Table 1 Demographic and clinical characteristics for the patient and control groups

MCI + /AD patients Healthy controls Group difference

n 26 29

Sex, female/male 12/14 15/14 v2(1) = 0.17, P = 0.68

Age, years, mean ± SD 72.1 ± 8.7 68.3 ± 7.2 t(53) = –1.7, P = 0.09, d = –0.47

Education, years, mean ± SD 13.1 ± 3.2 14.9 ± 2.6 t(48.4) = 2.4, P = 0.02, d = 0.64

ACE-R Baseline, mean ± SD 77.8 ± 9.1 94.4 ± 4.0 t(33.3) = 8.6, P 5 0.001, d = 2.37 *

Disease duration, years, mean ± SD 3.6 ± 2.1 – –

*Significant difference between patients and controls (P-value 5 0.05) with effect size d4 0.8 for t-test.

AD = Alzheimer’s disease.
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component (Std Est = –0.45, P = 0.009), but not the inter-

cept (Std Est = –0.010, P = 0.951). No single standardized

residual was greater than r = 0.108.

In patients, an LGCM including the components of

all three imaging methods did not fit the data well [v2(18) =

34.76, P-value = 0.01, RMSEA = 0.17 (0.08–0.26), CFI =

0.92, SRMR = 0.04], but no single standardized residual was

greater than r = 0.119. With this caveat, cognitive decline

(slope) was predicted by baseline posterior 18F-AV-1451

(path Std Est = –0.49, P = 0.025) and anterior 11C-PK11195

(path Std Est = –0.40, P = 0.017) components’ scores, but

not the posterior 11C-PK11195, the MRI (path Std Est =

0.10, P = 0.52) or the anterior 18F-AV-1451 (Std Est = –0.22,

P = 0.23) components.

Two-step prediction: linear
regression

Across all subjects, the rate of cognitive decline (slope from

LGCM) was significantly associated with: (i) the MRI

weighting (Std Beta = 0.61, P5 0.001); (ii) the posterior
18F-AV-1451 (Std Beta = –0.60, P5 0.001); and (iii) anter-

ior 11C-PK11195 (Std Beta = –0.47, P = 0.002). All these

results survived Bonferroni’s correction. Correlations of

slope with the anterior 18F-AV-1451 (Std Beta = –0.36,

P = 0.022), and the posterior 11C-PK11195 (Std Beta =

–0.39, P = 0.012) did not survive correction for multiple

comparisons (P5 0.01). Strikingly, these parameter esti-

mates remained effectively unchanged even when

Figure 2 Principal components of the multimodal imaging. Regional weights of the structural MRI component (left), and rotated re-

gional weights of 18F-AV-1451 components (middle) and the 11C-PK11195 components (right). Components were identified applying three inde-

pendent principal component analyses on 15 temporo-parietal regions. For structural MRI, regional grey matter (GM) volumes were included in

the analysis, while for each PET tracer, the binding potential values in those regions were considered, separately for each modality. The colours

represent the region-specific weights (range: from –1 to 1) on each component (Supplementary Table 4).

Figure 3 LGCM to test the initial values (intercept, ‘i’) and

longitudinal changes (slope, ‘s’) in scores of the ACE-R

across all sample. Circles indicate latent variables, rectangles indi-

cate observed variables, and triangles denote intercepts

(1 = population means on the parameters). Thick single-headed

arrows indicate regressions while thick double-headed arrows indi-

cate variance and covariance (grey for intercept and black for

slope). Values in Roman are standardized parameter estimates, and

values in italics are unstandardized parameter estimates (with

standard errors in parentheses). The annual rate of change was

positively associated with performance at baseline (lower initial

cognitive scores were associated with a higher annual rate of cogni-

tive changes).
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simultaneously including age, sex and education as covari-

ates in the models (Supplementary Table 5). See Fig. 4 for a

graphical representation of the significant associations be-

tween individual scores (x-axis) of imaging-specific principal

components and slope in ACE-R scores (y-axis) extracted by

LGCM. Model summary and coefficients for all univariable

models with slope as dependent variable across the whole

population are reported in Table 2. See Supplementary

Table 6 for results from analysis of patients only.

In patients, the final model of multiple regression on cog-

nitive slope (adjusted R2 = 0.418, SE = 4.18; P = 0.001)

included both 18F-AV-1451 components (component 1: Est

= –2.57, SE = 0.71, P = 0.002; component 2: Est = –1.64,

SE = 0.74, P = 0.038), and the anterior 11C-PK11195 (com-

ponent 1: Est = –1.92, SE = 0.74, P = 0.017) as predictors

(Fig. 5 and Table 3). Of note age, education, sex, the MRI

component, and the posterior 11C-PK11195 component

were excluded from the final model.

Model summary and coefficients for both the initial model

(adjusted R2 = 0.389, SE = 4.43; P = 0.027), the full model

with only brain predictors (adjusted R2 = 0.474, SE = 4.12;

P = 0.002), and the final model are reported in

Supplementary Table 7. Either in the initial model with

covariates or in the full model with only brain measures as

predictors, the posterior 18F-AV-1451 component and the

anterior 11C-PK11195 component showed the highest esti-

mated coefficients (Supplementary Table 7). The interaction

between the imaging components in the final model was not

significant (P4 0.05 uncorrected). In addition, the reduced

multiple regression analysis, with the first component of

each imaging method only, included the 18F-AV-1451

component (Est = –2.42, SE = 0.77, P = 0.004) and the
11C-PK11195 component (Est = –1.71, SE = 0.80,

P = 0.042) in the final model (adjusted R2 = 0.366, SE =

4.52; P = 0.002), while the MRI component was discarded.

Again, the interaction between the imaging components was

not significant (P4 0.05 uncorrected).

Two-step Bayesian prediction

With all brain components and demographic variables as

candidate predictors of cognitive decline, model comparison

using Bayes factors indicated that the best model included

both 18F-AV-1451 components [component 1: mean (SD) =

–2.15 (0.65); component 2: mean (SD) = –1.37 (0.68)], and

the anterior 11C-PK11195 component [mean (SD) = –1.61

(0.68)] as predictors (BF10 = 46.56; R2 = 0.52). Hence, the

best model in this statistical framework did not contain

structural MRI data. See Table 3 for details on the final

model and Supplementary Table 8 for a list of models eval-

uated and the corresponding BF10. The reduced Bayesian re-

gression analysis with only the first component of each

imaging method as predictor was in accord with the fre-

quentist approach. The best model identified with BF10 crite-

ria was the one with only the posterior 18F-AV-1451 and

the anterior 11C-PK11195 components only as predictors of

slope (BF10 = 20.81; R2 = 0.42), but not the MRI

component.

Discussion
This study demonstrates the independent and combined

value of neuroimaging biomarkers for tau pathology (18F-

AV-1451 PET), neuroinflammation (11C-PK11195 PET) and

brain atrophy (structural MRI), in predicting longitudinal

cognitive decline in patients with Alzheimer’s disease.

Baseline markers for tau pathology, neuroinflammation and

atrophy in temporo-parietal regions individually predicted

cognitive decline, across the spectrum of severity MCI to

Alzheimer’s dementia. But, in a multivariable model, cogni-

tive decline was only associated with higher baseline tau

pathology in posterior temporo-parietal regions and

increased neuroinflammation in the anterior temporal struc-

tures. Bayesian analysis confirmed the evidence against the

Figure 4 Imaging predictors of cognitive decline. Regression analyses with annual change in scores of the ACE-R (Slope ACE-R, y-axis)

and individual baseline scores for each modality-specific principal component (x-axis): structural MRI (left), 18F-AV-1451 PET (middle), and 11C-

PK11195 PET (right). Different colours represent different diagnostic groups: red circles = patients with Alzheimer’s disease; red squares =

patients with amyloid-positive MCI; controls = blue triangles.
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predictive value of MRI atrophy over and above the PET

markers of tau pathology and neuroinflammation.

We used PCA to derive the most parsimonious neuroana-

tomical patterns of pathology that explain most of the imag-

ing variance across the cohort. It is highly efficient for

reducing data dimensionality and the problem of multiple

comparisons. The PCA indicated two sets of regions (i.e.

components) of co-varying tau pathology and neuroinflam-

mation, in anterior versus posterior temporo-parietal

regions. We focused on these regions because of their close

association with Alzheimer’s disease (Garibotto et al., 2017;

Jagust, 2018; Whitwell, 2018), but whole-brain regional

data are available on request for other, exploratory, analy-

ses. In patients, the degree of neuroinflammation and tau

pathology did not correlate in either anterior or posterior

temporo-parietal cortex. Previous studies have considered

the in vivo association between these two pathological proc-

esses in prodromal and early Alzheimer’s disease. Significant

associations between tau and neuroinflammation measures

have been reported in fronto-temporal regions (Dani et al.,

Table 2 Results for the univariable regression models on slope across all populations

Model Estimate SE Std Beta t-value P Adjusted R2 (SE) F P

MRI (n = 55) (Intercept) –3.01 0.58 –5.23 0.000 0.358 (4.27) 31.18 50.001*

MRI component 3.48 0.63 0.61 5.58 0.000

AV 1 (n = 40) (Intercept) –4.31 0.73 – –5.88 0.000 0.341 (4.64) 21.22 50.001*

AV component 1 –3.43 0.74 –0.60 –4.61 0.000

AV 2 (n = 40) (Intercept) –4.31 0.85 – –5.05 0.000 0.108 (5.40) 5.72 0.022

AV component 2 –2.08 0.87 –0.36 –2.39 0.022

PK 1 (n = 41) (Intercept) –4.15 0.80 – –5.19 0.000 0.204 (5.13) 11.26 0.002*

PK component 1 –2.72 0.81 –0.47 –3.36 0.002

PK 2 (n = 41) (Intercept) –4.15 0.84 – –4.96 0.000 0.128 (5.36) 6.87 0.012

PK component 2 –2.36 0.90 –0.39 –2.62 0.012

AV = 18F-AV-1451; PK = 11C-PK11195.

P = uncorrected P-values;

*Bonferroni corrected, significance threshold P5 0.01.

Figure 5 Results of the multiple linear regression in patients, with cognitive slope (annual cognitive change) extracted by the

LGCM as dependent variable, and brain components’ scores, age and education as independent variables. Solid arrows indicate

significant coefficients of brain imaging measures indicated by the stepwise backward elimination, while dashed arrows indicate variables excluded

by the final model. Values in Roman are standardized estimates, and values in italics are unstandardized beta estimates (standard errors in

parentheses).
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2018), and parahippocampal cortex (Terada et al., 2019).

Using alternative ligands for tau and inflammation, 18F-MK-

6240 and 11C-PBR28, respectively, positive correlations

were found in temporal, parietal and frontal cortex (Zou

et al., 2020). However, an earlier study failed to find signifi-

cant correlations between tau and inflammation (Parbo

et al., 2018). Larger sample sizes may be needed to clarify

the potential relationship, at different stages of disease.

The participants’ weighting on atrophy, posterior 18F-AV-

1451 and anterior 11C-PK11195 components were separate-

ly associated with more rapid cognitive decline (Fig. 4 and

Table 2). This result was confirmed by both the one- and

two-step univariable prediction approaches. This corrobo-

rates the previously reported associations between cognitive

deficits in Alzheimer’s disease and the individual effects of

tau pathology, neuroinflammation, and downstream cortical

atrophy (Femminella et al., 2016; Bejanin et al., 2017; for

reviews see Chandra et al., 2019; Melis et al., 2019).

Although cross-sectional imaging studies with different PET

ligands have reported single associations of cognitive per-

formance with in vivo tau (Brier et al., 2016; Cho et al.,

2016b; Johnson et al., 2016; Ossenkoppele et al., 2016;

Pontecorvo et al., 2017; Zou et al., 2020; for a review see

Chandra et al., 2019) and microglial activation (Edison

et al., 2008; Okello et al., 2009a; Fan et al., 2015a;

Passamonti et al., 2018, 2019; Zou et al., 2020; for a review

see Chandra et al., 2019), less is known about their relation-

ship to longitudinal cognitive decline. Previous PET studies

in Alzheimer’s dementia and MCI reported that baseline
18F-AV-1451 PET uptake correlates with cognitive decline

over a period of 6 (Koychev et al., 2017) or 18 months

(Pontecorvo et al., 2019). Conversely, microglial activation

showed progression over 14–16 months (Fan et al., 2015b,

2017), although the predictive value of baseline measures

was not reported. Other studies using 11C-PBR28 to quan-

tify neuroinflammation over a period of at least 1 year

(median 2.7 years) in MCI and Alzheimer’s disease reported

increased microglial activation as a function of a significant

worsening on the Clinical Dementia Rating scale (Kreisl

et al., 2016). Likewise, binding of 18F-DPA-714, another

TSPO PET ligand, is negatively associated with cognitive

performance (Hamelin et al., 2018).

Improving our knowledge of how baseline measures of

tau, neuroinflammation, and brain atrophy predict cognitive

decline in Alzheimer’s disease may inform future cost-effect-

iveness of studies in large and epidemiologically representa-

tive cohorts of patients. Although other studies have

assessed the predictive value of different brain markers on

longitudinal cognitive decline in Alzheimer’s disease (for

reviews see Chandra et al., 2019; Melis et al., 2019), this

study compared the three biomarkers simultaneously (i.e.

tau pathology, neuroinflammation, brain atrophy) in

patients with amyloid-positive MCI and Alzheimer’s demen-

tia. Our data indicate the added value of PET imaging over

and above MRI prognostic markers. Although brain atrophy

in isolation is predictive for cognitive decline in Alzheimer’s

disease (Jack et al., 2015), when models include tau burden,

microglial activation and atrophy jointly, only PET was pre-

dictive (Fig. 5 and Table 3). This critical result was con-

firmed by both frequentist and Bayesian analyses, with

evidence against the added value of MRI data on predicting

cognitive decline over and above PET assessments. This

aligns with cross-sectional studies that report a stronger as-

sociation of tau molecular imaging than structural MRI with

cognitive performance in patients with Alzheimer’s disease

(Bejanin et al., 2017; Mattsson et al., 2019). More specifical-

ly, in patients with MCI and Alzheimer’s dementia, Benjanin

and colleagues (2017) reported an association between re-

gional tau PET binding and cognitive impairment, which

was partly mediated by grey matter volumes. Cognition was

equally explained by brain atrophy and tau pathology, but

after accounting for grey matter values, in vivo tau

Table 3 Results of the multivariable regression models on the regression slope in patients

Frequentist regression

Final model (Stepwise backward selection) Estimate SE Std Beta t-value P Adjusted R2 (SE) F P

(Intercept) –5.41 0.87 –6.19 0.000 0.418 (4.18) 8.05 0.001

AV component 1 –2.57 0.71 –0.54 –3.60 0.002

AV component 2 –1.64 0.74 –0.33 –2.21 0.038

PK component 1 –1.92 0.74 –0.39 –2.59 0.017

Bayesian regression

Final model (BF-based selection) Mean SD 95% Credible interval R2 BF10

Lower Upper

(Intercept) –6.82 0.82 –8.502 –5.129 0.523 46.56

AV component 1 –2.15 0.65 –3.491 –0.802

AV component 2 –1.37 0.68 –2.774 0.026

PK component 1 –1.61 0.68 –3.001 –0.210

For both frequentist (top) and Bayesian (bottom) the estimated coefficients for variables included in the final (‘best’) models are reported.

AV = 18F-AV-1451; BF = Bayesian factor; PK = 11C-PK11195.
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pathology remained correlated with cognitive performance

(Bejanin et al., 2017). Likewise, Mattsson et al. (2019)

found that both 18F-AV-1451 PET and structural brain MRI

are associated with cognition in Alzheimer’s disease (span-

ning preclinical, prodromal, and dementia stages), although

associations of tau PET indices were stronger than those for

MRI markers (Mattsson et al., 2019).

Our data suggest that posterior temporo-parietal 18F-AV-

1451 binding and anterior temporal 11C-PK11195 binding

are associated with cognitive decline. In our cohort, they do

not interact in their association with cognitive decline, which

suggests an additive and independent effect of the two

pathological processes on clinical progression, rather than

synergy. In patients with Alzheimer’s disease, temporo-

parietal cortical tau PET signal is consistent with Braak stage

III and above, while in cognitively healthy older individuals,

the signal is localized to entorhinal cortex and inferior tem-

poral cortex (Cho et al., 2016a; Johnson et al., 2016; for a

review see Jagust, 2018). Post-mortem studies have likewise

reported tau deposition in the medial temporal cortex in

healthy elderly individuals and patients with Alzheimer’s de-

mentia (Jagust, 2018). Tau burden in the entorhinal, limbic,

and temporal neocortex relates to cortical atrophy in

patients with MCI and Alzheimer’s disease, although not in

cognitively normal controls (Timmers et al., 2019). These

findings suggest that tauopathy in the medial part of the

temporal lobe may be an age-related norm, rather than indi-

cative of Alzheimer’s disease cognitive decline (Femminella

et al., 2018). For this reason, tau PET binding here may be a

weaker predictor for cognitive decline than tau in the poster-

ior temporo-parietal regions. The co-occurrence with amyl-

oid-b and neuroinflammation may induce the tau spreading

from the medial temporal lobe to other cortical regions,

which may be associated with downstream neurodegenera-

tive processes and cognitive decline (Mhatre et al., 2015;

Jagust, 2018; Perea et al., 2018). This suggests a driving role

of neuroinflammation in tau spread and neurodegeneration

in Alzheimer’s disease (Yoshiyama et al., 2007; Asai et al.,

2015; Maphis et al., 2015), in which activated microglia fa-

cilitate tau spread (Maphis et al., 2015; Perea et al., 2018).

In addition, it is possible that the relationships between tau,

neuroinflammation and cognitive progression are not con-

stant, and that the PET biomarkers would have different

prognostic relevance during pre-symptomatic, prodromal

and dementia stages of Alzheimer’s disease. Larger studies,

or meta-analyses, would be required for adequate power to

test such dynamic prognostic models.

There are limitations to our study. TSPO expression in

neuroinflammation cascade is complex, and has been found

not only in activated microglia but also in other cell types,

such as astrocytes and vascular smooth muscle cells (Gui

et al., 2019). However, 11C-PK11195 is selective for acti-

vated microglia over quiescent microglia and reactive astro-

cytes (Banati, 2002), which favours its utility for imaging

activated microglia. In this context, several second-gener-

ation PET radioligands for TSPO have been developed since
11C-PK11195 (e.g. 11C-PBR28 and 18F-DPA-714), and used

in human studies (Vivash and OBrien, 2016). They are char-

acterized by higher signal-to-noise ratio and lower lipophilic-

ity than 11C-PK11195. However, they require genetic

analysis to assess a single-nucleotide polymorphism

(rs6971), which influences their binding affinity and causes

heterogeneity in PET data (Dupont et al., 2017). 11C-

PK11195 is less affected by this genetic polymorphism, espe-

cially between high and mixed affinity binders (Guo et al.,

2012; Kobayashi et al., 2018) that represent �90% of the

Caucasian population (Owen et al., 2012), although a small

difference in 11C-PK11195 binding in the CNS remains a

possibility (Fujita et al., 2017). Second, the cross-sectional

nature of our imaging assessment does not enable a medi-

ation analysis, or support inferences on the direction of caus-

ality between tau pathology, microglial activation

progression and cognitive decline. However, both processes

predict the rate of cognitive deterioration in Alzheimer’s dis-

ease. Third, the modest sample size of our cohort limited the

applicability of the one-step prediction procedure with mul-

tiple predictors, which may lead to a more precise prediction

than the two-step procedures. For the multivariable regres-

sion model the sample size was reduced to n = 26 because of

the exclusion of controls (who underwent 18F-AV-1451 or
11C-PK11195 PET, but not both, to limit radiation expos-

ure). However, both frequentist and Bayesian multivariable

approaches give similar results, aligning with those obtained

by the one-step prediction. The convergence between the

statistical models (i.e. LGCM with predictors, linear regres-

sion and Bayesian model) mitigates against sample-depend-

ant biases on the estimation of the most parsimonious

model. The replication of these findings with larger and mul-

ticentre clinical cohorts will represent an important next step

to establish the replicability and generalizability of our

results. Fourth, the interval between cognitive assessment

and imaging varied. However, we sought to mitigate this

confound by including the interval in the statistical analyses,

and note that the intervals were small compared with the 3-

year follow up.

We conclude that PET markers of regional pathological

processes are stronger predictors than atrophy, as measured

by MRI, of clinical progression in patients with symptomatic

Alzheimer’s disease. The predictive models were convergent

in identifying tau burden in posterior cortical regions and

neuroinflammation in the anterior temporal lobe as imaging

predictors of cognitive decline in the clinical spectrum of

Alzheimer’s disease. In contrast, atrophy predicted cognitive

decline only if considered individually but not over and

above the effects of tau burden and inflammation. Our find-

ings support the use of PET imaging of tau pathology and

microglial activation for prognostication and patients’ strati-

fication in clinical trials.
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