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Emergence and function of cortical offset 
responses in sound termination detection
Magdalena Solyga, Tania Rinaldi Barkat*

Department of Biomedicine, Basel University, Basel, Switzerland

Abstract Offset responses in auditory processing appear after a sound terminates. They arise in 
neuronal circuits within the peripheral auditory system, but their role in the central auditory system 
remains unknown. Here, we ask what the behavioral relevance of cortical offset responses is and 
what circuit mechanisms drive them. At the perceptual level, our results reveal that experimentally 
minimizing auditory cortical offset responses decreases the mouse performance to detect sound 
termination, assigning a behavioral role to offset responses. By combining in vivo electrophysi-
ology in the auditory cortex and thalamus of awake mice, we also demonstrate that cortical offset 
responses are not only inherited from the periphery but also amplified and generated de novo. 
Finally, we show that offset responses code more than silence, including relevant changes in sound 
trajectories. Together, our results reveal the importance of cortical offset responses in encoding 
sound termination and detecting changes within temporally discontinuous sounds crucial for speech 
and vocalization.

Editor's evaluation
The work demonstrates specific neurophysiological cortical mechanisms for offset responses that 
are interesting in themselves. Two referees highlighted issues with the behavioural experiments that 
have been addressed in the revision. Reviewer #2 makes another minor suggestion that he authors 
might consider before publication of the final version.

Introduction
Offset- responsive neurons are present through the whole auditory pathway starting from the cochlear 
nucleus (CN; Ding et al., 1999; Suga, 1964; Young and Brownell, 1976) to the superior paraolivary 
nucleus (SPN; Dehmel et al., 2002; Kulesza et al., 2003), the inferior colliculus (IC; Akimov et al., 
2017; Kasai et al., 2012), the medial geniculate body (MGB; Anderson and Linden, 2016; He, 2001; 
He, 2002; Yu et al., 2004), and the auditory cortex (ACx; Qin et al., 2007; Recanzone, 2000; Scholl 
et al., 2010; Takahashi et al., 2004). Multiple mechanisms have been proposed to produce offset 
responses (Bondanelli et  al., 2019; Bondanelli et  al., 2021; Kopp- Scheinpflug et  al., 2018; Xu 
et al., 2014). Generally, it is thought that signals from the cochlea can generate offset responses in 
both the CN (Suga, 1964) and the SPN (Kopp- Scheinpflug et al., 2011), but strong offset responses 
have mainly been described in the SPN. This structure is considered specialized for offset response 
generation based on the strong inhibitory signal it receives during the sound and on the precise firing 
when the sound ends. The SPN sends then strong inhibitory inputs to the IC (Kulesza and Berrebi, 
2000; Saldaña et al., 2009), which might further convey the signal to MGB. Offset responses in MGB 
and the ACx are generally thought to be driven by excitatory/inhibitory inputs from IC rather than by 
other neural mechanisms (Kopp- Scheinpflug et al., 2018). Recently, Bondanelli et al. argued for a role 
of recurrent A1 connectivity in shaping offset responses in cortex, and suggested that cortical offset 
responses could be generated at a higher level of recurrency (Bondanelli et al., 2021). However, de 
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novo generation or amplification of offset responses in MGB and ACx have not been demonstrated 
experimentally yet (Bondanelli et al., 2019; He, 2003; Kasai et al., 2012; Yu et al., 2004).

The perceptual significance of offset responses has been difficult to assess. They have been postu-
lated to play a role in sound duration selectivity (He, 2002; Qin et al., 2009), in gap detection (Syka 
et al., 2002; Threlkeld et al., 2008; Weible et al., 2014a; Weible et al., 2014b), or in perceiving 
communication calls (Eggermont, 2015; Felix et  al., 2018; Kopp- Scheinpflug et  al., 2018). For 
example, Qin et al. showed that onset- only neurons in the primary ACx of cats could not discrimi-
nate duration and suggested that sustained and offset responses underlie discrimination of sound 
duration (Qin et al., 2009). In another study, Weible et al. demonstrated that the cortical postgap 
neural activity in mice is related to detecting brief gaps in noise (Weible et al., 2014b). Recently, it 
was shown that A1 transient offset responses contribute critically to encoding and perceiving sound 
duration (Li et al., 2021). Whether the increased neuronal activity of sound offset responses accounts 
for other perceptual skills is unclear.

Compared to onset responses, offset responses in the central auditory pathway are typically less 
prevalent (Phillips et al., 2002; Pollak and Bodenhamer, 1981; Sołyga and Barkat, 2019). They 
are generally weaker and slower than onset responses (Qin et al., 2007). At the cortical level, offset 
responses have been shown to cluster within the anterior auditory field (AAF) – a primary region of 
the ACx – where they have been observed in twice as many cells as in the primary auditory cortex (A1) 
(Sołyga and Barkat, 2019). Offset responses are also highly influenced by different sound parame-
ters. For example, the amplitude, duration, frequency, fall- time, and spectral complexity of the sound 
have all been reported to influence auditory offset responses (He, 2002; Scholl et al., 2010; Sołyga 
and Barkat, 2019; Takahashi et al., 2004). However, no study has yet systematically addressed these 
influences. The involvement of the different nuclei of the central auditory system, as well as their 
cellular and circuit mechanisms, are thus poorly understood.

We combined behavioral experiments with optogenetics, electrophysiological recordings, and 
antidromic stimulation to better understand the role of cortical offset responses in sound percep-
tion and the properties that distinguish them from the subcortical ones. Our results reveal that AAF 
is highly specialized for processing information on sound termination and that minimizing its offset 
responses decreases the mouse performance to detect when a sound ends. By studying the influ-
ence of different sound parameters on AAF and MGB offset responses, we demonstrate that cortical 
offsets are inherited, amplified, and sometimes even generated de novo. First, we found that AAF, 
unlike MGB, shows a significant increase in offset response amplitudes with sound duration. Then, we 
report that white noise (WN) bursts – unlike pure tones – only evoke offset responses in AAF but not 
in MGB. Finally, we show that offset responses are present in AAF whenever a frequency component is 
removed from multifrequency stimuli and therefore may have a further role than solely coding silence.

Taken together, our findings suggest a particular involvement of AAF offset responses in sound 
termination processing and point to the importance of this cortical subfield for advanced processing 
such as tracking sound duration or detecting changes in frequency and level within temporally discon-
tinuous sounds.

Results
Cortical offset responses improve sound termination detection
The perceptual significance of cortical offset responses has been difficult to assess. Indeed, confounds 
about perceiving a sound and its termination are intricately linked. Changing the neuronal activity 
of sound offset responses to evaluate its contribution in sound termination detection has not been 
tested. To assess the behavioral relevance of auditory offset responses, we developed a sound termi-
nation detection task in which mice expressing channelrhodopsin- 2 (ChR2) in parvalbumin- positive 
(PV+) cells learned to detect the end of 9 kHz pure tones (PT; Figure 1a). As, at the cortical level, tran-
sient offset responses cluster within AAF rather than A1 (Sołyga and Barkat, 2019) and are absent 
in the averaged population activity of A1 neurons in response to 9 kHz PT in awake preparations 
(Figure 1—figure supplement 1), we decided to focus on AAF to assess the behavioral relevance of 
cortical offset responses. During the training, animals were placed in a cardboard tube with a speaker 
10 cm away from their left ear. A piezo sensor attached to a licking spout was used to measure sound 
termination detection during the task. To accelerate the learning process, mild air puffs were given 
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Figure 1. Preventing anterior auditory field (AAF) offset responses decreases the ability of a mouse to detect sound termination. (a) Illustration of the 
head- fixed behavioral setup. A piezo sensor attached to the licking spout measured behavioral response to the detection of sound termination (left). 
Schematic of the behavioral paradigm of offset detection task. The animal had to detect the termination of 9 kHz pure tone (PT) played with three 
different durations: 1, 1.5, and 2 s within a reward window of 1 s. (b) Licking traces of 15 consecutive trials for 1 example training session. Violet bar 
indicates sound, green – reward window. During training sessions, sounds were presented at 80 dB SPL. (c) Licking traces of 15 consecutive trials for 1 
example test session. Violet bar indicates sound, green – reward window, blue – laser window. During test sessions, sounds were presented at 60 dB 
SPL. Additionally, in half of the trials, a laser light was applied for 200 ms following sound termination. (d) Definition of calculated offset detection index 
(ODI). (e) Schematic of laser manipulation. The laser light was used for 200 ms following sound termination in animals expressing channelrhodopsin- 2 
(ChR2) in parvalbumin- positive (PV+) cells. (f) Population activity (mean ± standard error of mean [SEM]) of PV+ (n = 336 cells) or all other cells (n = 
2249 cells) following sound termination in laser- on (blue) and laser- off (black) trials, 28 sessions, 6 animals. Inset: zoom in. (g) ODI for an example session 
during the offset detection task. Blue and black lines represent the ODI for laser- on and laser- off trials, respectively. (h) The overall difference in ODI 
for laser- off and laser- on trials at the end of the training (mean ± SEM), ***p = 0.0005, n = 28 sessions, 6 animals, 1 sample Wilcoxon test. (i) Schematic 
of control experiment: a PT of 9 kHz was used, and the laser was applied for 200 ms following sound termination in wild- type animals. (j) Population 
activity (mean ± SEM) following sound termination in laser- on (blue) and laser- off (black) trials in putative fast (left, n = 103 cells, 14 sessions, 3 animals) 
and regular spiking neurons (right, n = 930 cells, 14 sessions, 3 animals). (k) ODI for an example session during offset detection task. Blue and black 
lines represent the ODI for laser- on and laser- off trials, respectively. (l) Difference in ODI for control animals in laser- off and laser- on trials at the end of 
the training (mean ± SEM), p = 0.24, n = 14 sessions, 3 animals, 1 sample Wilcoxon test. (m) Schematic of the experiment with laser suppression during 
the sound presentation: a 9 kHz PT was played, and the laser was applied for 200 ms following sound onset in animals expressing ChR2 in PV+ cells. (n) 
Population activity (mean ± SEM) in laser- on (blue) and laser- off (black) trials of PV+ cells (left, n = 269 cells, 20 sessions, 4 animals) and other cells (right, 
n = 1414 cells, 20 sessions, 4 animals). (o) ODI for an example session during offset detection task. Blue and black lines represent the ODI for laser- on 

Figure 1 continued on next page
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when mice licked to sound onset. The duration of the tones was varied randomly (1, 1.5, or 2 s) to 
avoid a putative expected behavioral response at a fixed delay after sound onset. Mice were initially 
trained with a tone played at 80 dB SPL (sound pressure level) (Figure 1b, Figure 1—figure supple-
ment 2a). A reaction time window was set to 3 s during initial training sessions and progressively 
shortened to 1 s in the final training sessions. Sound durations during initial training (1–4 days) were 
shorter (0.5, 1, and 1.5 s) and then switched to final durations (1, 1.5, and 2 s). The chance level of licks 
was calculated in a late window following the end of the reward window (Figure 1—figure supple-
ment 2b, d, h). An increase in correct offset detection (hit rate), a decrease in reaction time over the 
training sessions (Figure 1—figure supplement 2b), and a significant difference between hit rate and 
licks at the chance level (Figure 1—figure supplement 2e–g) reflected successful learning after which 
animals were moved to the test phase (Figure 1c). Both offset detection index (ODI) (Figure 1d, see 
methods) and hit rate (Figure 1—figure supplement 3) were used to evaluate behavioral perfor-
mance in the sound termination detection task.

After this training phase, animals underwent a craniotomy. On the following days, they were tested 
with tones played at 60 dB SPL. All our behavioral experiments with optogenetic manipulations were 
coupled with electrophysiological recording. For all behavioral sessions, we first identified AAF based 
on the tonotopic gradient obtained with electrophysiological recordings. We then placed an optical 
fiber above AAF (above the dura) and titrated the laser (473 nm) power to remove offset responses. 
Finally, we performed the behavioral session with these specific optogenetic parameters (optic fiber 
placement and laser power). We confirmed at the end of each session that offset responses were 
removed during the laser- on trials. No optical shield was used. In half of the trials (pseudorandomized 
each day), a laser light (473 nm) was delivered above AAF for 200 ms starting at sound termination 
(Figure 1e) to activate PV+ cells (Figure 1f) and to significantly reduce offset responses in non- PV+ 
cells (Figure 1f). Comparing the animals’ performance during laser- on and laser- off trials showed that 
preventing AAF offset responses significantly decreased the performance to detect sound termination 
(Figure 1g, h, Δ ODI (off–on) = 0.23 ± 0.06). Interestingly, reaction times were significantly longer in 
laser- on compared to laser- off trials (Figure 1—figure supplement 4). To control that the light itself, 
without ChR2, was not causing any change in behavioral performance, we repeated the same experi-
ments in wild- type animals (Figure 1i). The laser alone had no effect, neither at the neural (Figure 1j) 
nor at the behavior level (Figure 1k,l, Δ ODI (off–on) = 0.15 ± 0.11). Finally, we have performed exper-
iments in PV- ChR2 animals where the laser light was applied for 200 ms during the sound presentation 
and evaluated the animals' performance in the sound termination detection task (Figure 1m). The 
laser light was applied for 200 ms starting 200 ms after sound onset. The laser light activated PV+ 
cells in AAF, which in turn suppressed the activity of other AAF cells (Figure 1n). The laser presenta-
tion during the ongoing sound did not result in any significant change in the animals’ performance 
(Figure 1o, p, Δ ODI (off–on) = −0.02 ± 0.12). These experiments demonstrate that offset responses 
in AAF are behaviorally relevant in the sound termination detection task.

Larger offset responses correlate with better detection of sound 
termination
Previous studies illustrated how offset responses in the ACx of rats and cats strongly depend on the 
fall- time of a sound (Qin et al., 2007; Takahashi et al., 2004). We used a faster fall- ramp to evoke 
higher amplitude offset responses and asked whether the amplitude of offset responses and the 

and laser- off trials, respectively. (p) Difference in ODI for laser- off and laser- on trials at the end of the training (mean ± SEM), p = 0.67, n = 20 sessions, 4 
animals, 1 sample Wilcoxon test.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Averaged poststimulus time histogram (PSTH; mean ± standard error of mean [SEM]) of anterior auditory field (AAF) (a) and A1 
(b) neuron responses to 0.5 s long pure tone (PT; 9 kHz) played at 60 dB SPL.

Figure supplement 2. A detailed description of the sound termination detection task in parvalbumin (PV)- channelrhodopsin- 2 (ChR2) mice.

Figure supplement 3. Evaluation of animal’s behavior in sound termination detection task based on hit rate.

Figure supplement 4. Comparison of reaction times in sound termination detection task for trials with fast (0.01 ms) and slow (10.0 ms) fall- ramp and 
trials without and with laser stimulation.

Figure 1 continued
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animal’s ability to detect sound termination are correlated. We used a similar experimental paradigm 
as in Figure 1, where the animal had to detect the end of the 9 kHz tone played at 60 dB SPL with, this 
time, a fall- ramp of 10 or 0.01 ms. As expected from previous studies, fast fall- ramps (0.01 ms) lead 
to significantly higher offset responses than longer ones (10.0 ms), as tested during awake passive 
recordings (Figure 2a, Figure 2—figure supplement 1) or when animals were performing a behav-
ioral task (Figure 2b). We confirmed that the sounds with a 0.01 ms fall- ramp are not causing an addi-
tional artificial onset response (Figure 2—figure supplement 2). Using an ultrasensitive microphone, 
we recorded acceleration traces of 9 kHz PT played at 60 dB SPL with 0.01 and 1 ms rise- and fall- ramp 
(Figure 2—figure supplement 2a, b). For the fast fall- ramp, we detected a weak spectral splatter 
present for less than 0.5 ms and covering the frequency range between 6 and 30 kHz (Figure 2—
figure supplement 2c, d). We then investigated if this spectral splatter could trigger any significant 
onset response that would be mixed with the actual offset responses. First, we asked if neurons with a 
best frequency (BF) within the spectral splatter frequency range displayed a more significant response 
to sound termination. We did not observe any increased offset response in those neurons compared 
to neurons with other BF (Figure 2—figure supplement 2e), indicating that putative onset responses 
to the splatter could not be significant. Then, we asked if offset responses evoked by fast and slow 
ramps correlated. If offset responses were rather onset responses to the spectral splatter instead 
of actual offset responses, no correlation between these onset responses and the offset responses 
triggered by a slow ramp would be expected. We showed that the offset responses to fast and slow 
ramps correlated highly (Figure 2—figure supplement 2f, ρ = 0.71, p < 0.0001, Spearman correla-
tion), suggesting that our protocol allows us to identify actual offset responses. Finally, we asked if the 
responses at sound termination would influence the onset responses of a tone played shortly after. 
As offset and onset responses are driven by different sets of synapses (Scholl et al., 2010), we would 
expect the onset responses of the second sound to be affected by the first sound only if the response 
at sound termination were onset responses to the artifact, but not if they were actual offset responses. 
We found that onset responses were suppressed by preceding onset responses but not affected by 
preceding offset responses (Figure 2—figure supplement 2g), even when the interval was as short as 
50 ms. This suggests that the offset responses we recorded are driven by different synapses that onset 
responses and cannot be onset responses.

The analysis of ODI showed that mice could correctly detect when sounds ended for tones with 
both short and long ramps and no significant difference in ODI between the two ramps were observed 
at the end of the test sessions (Figure 2c–e, Δ ODI (0.01–10 ms) = −0.01 ± 0.05). However, at the 
beginning of the test sessions, mice were better at detecting sound offset when the ramp was fast. This 
suggests that sounds terminated with a fast fall- ramp, triggering a more significant offset response, 
were possibly easier to detect at the beginning of the sessions when the task was still new and more 
difficult than after exposure to more trials. This result is in line with previous findings showing cortical 
involvement in challenging but not easy tasks (Ceballo et al., 2019; Christensen et al., 2019; Dalmay 
et al., 2019; Kawai et al., 2015). There was no significant difference in the reaction times for both 
tested ramps (Figure 1—figure supplement 4).

To confirm that more prominent offset responses help mice detecting sound termination, we 
performed another behavioral experiment with optogenetics, this time manipulating offset responses 
evoked by fast ramp (Figure 2f). As previously shown (Figure 1d, e), the laser significantly activated 
PV+ cells, resulting in the suppression of high amplitude offset responses in non- PV+ cells (Figure 2g). 
Minimizing high amplitude offset responses in AAF significantly decreased the performance to detect 
sound termination (Figure 2h,i, Δ ODI (off–on) = 0.25 ± 0.09). To control that the light itself, without 
ChR2, was not causing any changes in behavioral performance, we repeated the same experiments 
in wild- type animals (Figure 2j). The laser alone had no effect, neither at the neural (Figure 2k) nor 
at the behavior level (Figure 2l and m, Δ ODI (off–on) = −0.04 ± 0.09). Finally, we performed experi-
ments in PV- ChR2 animals where the laser light was applied for 200 ms during the sound presentation 
(Figure 2n). The laser light activated PV+ cells in AAF, which in turn suppressed the activity of other 
AAF cells (Figure 2o). The laser presentation during the ongoing sound did not result in any signifi-
cant change in the animals’ performance (Figure 2p, q, Δ ODI (off–on) = 0.06 ± 0.14). Together, these 
experiments confirm that changing offset responses, but not sustained activity, in AAF influences 
behavioral performance. They demonstrate that the animal uses the neuronal activity following sound 
termination in AAF to detect sound termination.

https://doi.org/10.7554/eLife.72240
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Figure 2. Larger offset responses correlate with better detection of sound termination. (a) Sounds used in the behavioral task (0.01 or 10 ms fall- ramp) 
and poststimulus time histogram (PSTH; mean ± standard deviation [STD]) of responses they evoked in acute anterior auditory field (AAF) recordings. 
(b) PSTH (mean ± standard error of mean [SEM]) averaged over AAF neurons (n = 169, 2 animals) during sound termination detection task (green line: 
0.01 ms fall- ramp; red line: 10.0 ms fall- ramp). (c) Offset detection index (ODI) of example session during offset detection task. Green and red lines 
represent the ODI for short (0.01 ms) and long (10 ms) offset ramps. (d) The difference in ODI for sounds with short and long fall- ramps through the 
behavior session, n = 28 sessions, 10 animals. Green and red shaded areas indicate that offset detection was better for short or long ramps, respectively. 
(e) Comparison of ODI for 0.01 and 10.0 ms ramp at the end of the session (p > 0.99, n = 28 sessions, 10 animals, 1 sample Wilcoxon test). (f) Schematic 
of experimental design: a 9 kHz pure tone (PT) with 0.01 ms fall- ramp was used, and the laser was applied for 200 ms following sound termination 
in animals expressing channelrhodopsin- 2 (ChR2) in parvalbumin- positive (PV+) cells. (g) The activity of PV+ cells (mean ± SEM) following sound 
termination in laser- on (blue) and laser- off (black) trials (left), n = 336 cells, 28 sessions, 6 animals. The activity of other cells (mean ± SEM) following 
sound termination in laser- on (blue) and laser- off (black) trials (right), n = 2249 cells, 28 sessions, 6 animals. (h) ODI within an example session during 
offset detection task. Blue and black lines represent ODI for laser- on and laser- off trials, respectively. (i) Difference in ODI for laser- off and laser- on trials 
at the end of the training (mean ± SEM), **p = 0.0095, n = 28 sessions, n = 6 animals, 1 sample Wilcoxon test. (j) Schematic of control experiment: a 
sound of 9 kHz with 0.01 ms fall- ramp was used, and the laser was applied for 200 ms following sound termination in wild- type animals. (k) Population 
activity (mean ± SEM) following sound termination in laser- on (blue) and laser- off (black) trials in fast (left), n = 103 cells, 14 sessions, 3 animals, and 
regular spiking neurons (right), n = 930 cells, 14 sessions, 3 animals. (l) ODI for an example session during offset detection task. Blue and black lines 
represent ODI for laser- on and laser- off trials, respectively. (m) Difference in ODI for control animals in laser- off and laser- on trials at the end of the 
training (mean ± SEM), p = 0.41, n = 14 sessions, 3 animals, 1 sample Wilcoxon test. (n) Schematic of the experiment with laser suppression during the 
sound presentation: a 9 kHz PT with 0.01 ms fall- ramp was played, and the laser was applied for 200 ms following sound onset in animals expressing 

Figure 2 continued on next page
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The activity of AAF neurons in a sound termination detection task can 
be predictive of the animal’s performance
As the suppression of auditory offset responses in AAF affects performance, we asked if AAF activity 
during a single trial could be predictive of the animal’s behavior. We used a logistic regression model 
to predict the mouse’s action from the single- trial population activity (cross- validated, L2 penalty, see 
methods). We examined the classifier accuracy for the model trained and tested on the spontaneous, 
onset, sustained, offset, and late response (Figure 3a) from an equal number of hit and miss trials 
from all experiments with fast ramp. The decoding performed on the ‘late’ phase served as a control, 
confirming that specific patterns of activity within individual neurons reflect action of the animal, hence 
leading to better decoding. We compared the classifier accuracy trained on different response types 
and found that offset and late responses allowed for significantly better action decoding than spon-
taneous or sustained responses (Figure 3c, Spont.: 59.8% ± 1.4%, Onset: 63.1% ± 1.5%, Sustained: 
60.8% ± 1.5%, Offset: 66.4% ± 1.5%, Late: 76.7% ± 1.2%). These results suggest that AAF offset 
responses can be informative on the animal’s decision emphasizing the behavioral relevance of AAF 
offset responses. However, the classifier accuracy was not significantly different between the offset 
and onset windows, suggesting that perceiving a sound and its termination are intricately linked.

AAF is highly specialized for processing information on sound 
termination
Knowing that offset responses in AAF are behaviorally relevant and influence sound termination 
perception, we next asked what mechanisms drive these cortical offset responses and what proper-
ties distinguish them from subcortical ones. We performed awake electrophysiological recordings in 
AAF and MGB and analyzed the response profile dynamics of cells within both regions. We recorded 
multiunit activity evoked by 50 ms PT with varying frequency (4–48.5 kHz) and sound level (0–80 dB 
SPL) presented with randomized interstimulus intervals (ISIs) (500–1000 ms).

Figure 3. The activity of anterior auditory field (AAF) neurons can be predictive of animal performance. (a) Averaged poststimulus time histogram 
(PSTH; mean ± standard error of mean [SEM]) of AAF neuron responses to 1 s long pure tone (PT; 9 kHz) played at 60 dB SPL during hit (blue) and miss 
(red) trials, n = 5076 cells, 59 sessions, 12 animals. (b) Classification accuracy based on offset responses (mean ± SEM) for real and shuffled data. (c) 
Comparison of classifier accuracy of decoders trained and tested on spontaneous activity, onset, sustained, offset, and the late response of AAF neurons 
(mean ± SEM): spont. vs offset: p = 0.027; offset vs sustained: *p = 0.037; spont. vs. late: ****p < 0.0001, n = 48 sessions, 12 animals, Friedman test with 
multiple comparisons.

ChR2 in PV+ cells. (o) Population activity (mean ± SEM) in laser- on (blue) and laser- off (black) trials of PV+ cells (left), n = 269 cells, 20 sessions, 4 animals, 
and other cells (right), n = 1414 cells, 20 sessions, 4 animals. (p) ODI for an example session during offset detection task. Blue and black lines represent 
the ODI for laser- on and laser- off trials, respectively. (r) Difference in ODI for laser- off and laser- on trials at the end of the training (mean ± SEM), p = 
0.74, n = 20 sessions, 4 animals, 1 sample Wilcoxon test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Offset responses evoked by sounds terminated with different fall- ramps emerge already in medial geniculate body (MGB).

Figure supplement 2. Properties of 9 kHz pure tones played at 60 dB SPL with different rise- and fall- ramps.

Figure 2 continued
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K- Means clustering of spike- sorted unit (SU) activity was used to identify cells with distinct temporal 
dynamics. The clustering method was performed on the averaged poststimulus time histogram (PSTH) 
in both MGB (n = 779 SU, 6 animals) and AAF (n = 346 SU, 6 animals) recordings pooled together. 
The analysis time window for the clustering was chosen to emphasize the offset rather than the onset 
responses (25–75 ms, bin size: 5 ms). Davies–Bouldin evaluation was used to determine the optimal 
number of clusters (Figure 4—figure supplement 1). Nine clusters were identified, reflecting five main 
temporal categories of auditory evoked responses: onset- only, late- onset, onset–offset, sustained, 
and suppressed (Figure 4). Few clusters with the same temporal dynamic pattern were detected (e.g., 
D–G) resulting from various latencies, width, and the ratio of offset/onset responses. These clusters 
were merged for further analysis. In MGB, both onset- only and onset–offset cells represented the 
most prominent clusters: 40.1% and 33.0%, respectively (Figure 4b). Cells with these two temporal 
response patterns also revealed separate anatomical clusters within MGB (Figure 4—figure supple-
ment 2; He, 2002). Suppressed responses were found in 12.3%, late- onset responses in 10.2%, and 
sustained in 4.4% of cells. In AAF, most cells were onset–offset responsive (83.2%). Other categories 
were represented in much smaller proportions: onset- only (3.2%), late- onset (6.1%), and sustained 
(7.5%). In contrast to MGB, no suppressed cells were recorded in AAF. The overrepresentation of 
onset–offset responses in AAF compared to the preceding nucleus of the auditory pathway indicates 
that AAF is highly specialized in processing information on sound termination.

Figure 4. Anterior auditory field (AAF) has significantly more offset- responsive neurons than its input nucleus. (a) 
Results of k- means clustering performed on both medial geniculate body (MGB; n = 779, 6 animals) and AAF (n 
= 346, 6 animals) neuron’s responses (time window: 25–75 ms, bin size: 5 ms) evoked by 50 ms pure tone (PT) with 
varied frequency (4–48.5 kHz) and sound level (0–80 dB SPL) presented with randomized interstimulus interval 
(ISI; 500–1000 ms). Graphs represent the mean signal of cells belonging to each cluster. Data represent mean 
± STD. The blue shaded bars represent the tone. (b) Representation of cells with distinct temporal dynamic of 
responses in MGB (onset- only [A]: 40.1%, late- onset [B]: 10.2%, sustained [C]: 4.4%, onset–offset [D- G]: 33.0%, and 
suppressed [H- I]: 12.3%) and AAF (onset- only [A]: 3.2%, late- onset [B]: 6.1%, sustained [C]: 7.5%, and onset–offset 
[D- G]: 83.2%). See also Figure 4—figure supplements 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Davies–Bouldin index for a different number of clusters.

Figure supplement 2. 2D representation of temporal dynamics of medial geniculate body (MGB) cells recorded 
during 4 experiments with a 64- channel electrode (16 × 4).

https://doi.org/10.7554/eLife.72240
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Onset–offset-responsive cells are the main inputs from MGB to AAF
As AAF contains cells with mainly onset–offset responses – unlike MGB or A1 (Sołyga and Barkat, 
2019), we asked whether these cortical offset responses were inherited from MGB cells or whether 
they arose de novo in AAF. We combined in vivo electrophysiological recordings in MGB (n = 1548 SU, 
5 animals) with antidromic stimulation of AAF, followed by PT stimulation to characterize the temporal 
dynamics of cells projecting from MGB to AAF (Figure 5a, Figure 5—figure supplement 1). A stim-
ulating electrode was inserted into the previously functionally identified AAF (see methods). Pulse 
trains of monophasic square pulses were used for the electric stimulation (Figure 5b). We identified 
MGB cells directly connected to AAF by analyzing the percentage and latency of responses to the first 
stimulation pulse in each train. MGB cells that fired as a response to AAF stimulation in at least 50% of 
the trials with a first spike latency of 1–3 ms and a trial- to- trial latency jitter lower than 0.3 ms (Serkov 
et al., 1976) were considered to be sending direct inputs to AAF (Figure 5c). These MGB cells were 
clustered mainly as onset–offset cells (82%). We also identified some sustained (9%) and onset (9%) 
cells projecting from MGB to AAF, but their representation was significantly lower (Figure 5d, e). 
These results indicate that offset responses in AAF are mainly inherited from MGB. Whether further 
processing of these offset responses within the cortex took place was, however, still unclear.

Figure 5. Onset–offset- responsive cells are the main inputs from medial geniculate body (MGB) to anterior auditory field (AAF). (a) Illustration 
of experimental setup to perform an antidromic stimulation of MGB neurons projecting to AAF. The stimulation tip was placed in AAF after field 
identification (based on functional tonotopy). Monophasic electric pulses were delivered with 50 Hz at 30 µA. A 64- channel electrode was inserted in 
MGB to record antidromic activity. (b) Example MBG unit spike raster of antidromic activity for 20 trials (5 pulses in each trial). The blue line represents 
the increasing current injected during electric stimulation. (c) The number of recorded antidromic spikes in MGB neurons, where at least one spike 
following stimulation was detected in the time window from 1 to 5 ms after stimulation (top). Latency (middle) and jitter (bottom) of first antidromic 
spikes in MGB cells which were detected in at least half of the electric stimulation trials. (d) Poststimulus time histogram (PSTH) of auditory responsive 
MGB cells projecting to AAF identified during the antidromic experiment. Three main temporal categories of auditory evoked responses were 
identified: onset–offset, sustained and onset. MGB cells were considered AAF input if (1) antidromic spikes were detected in more than 50% of trials and 
(2) antidromic spikes jitter was lower than 0.3 ms. (e) Illustration of temporal dynamic and proportion of MGB cells projecting to AAF.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Response dynamics of medial geniculate body (MGB) cells recorded during antidromic stimulation experiments.

https://doi.org/10.7554/eLife.72240
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Offset responses increase with sound duration mainly in AAF
Given the presence of offset responses in MGB and AAF, we next asked whether their properties were 
similar in both regions. To reveal differences in offset processing, we decided to check how offset 
responses in MGB and AAF were affected by different sound properties such as sound duration, 
spectral content, or temporal complexity. We first addressed the dependence of offset responses on 
sound duration (Scholl et al., 2010; Sołyga and Barkat, 2019). We recorded responses in MGB and 
AAF offset cells (clustering based on Figure 4) to 60 dB SPL tones with durations varying between 50 
and 500 ms and ISIs varying between 50 and 2000 ms (Figure 6a, d). For MGB, the tone frequency 
was dependent on the offset BF of neurons in each session (because of narrow offset tuning of MGB 
neurons); for AAF, a fixed PT of 9 kHz was used (as most of the widely tuned cells were responding 
to this frequency). The correlation between sound duration and offset spike rate evoked by tones in 
onset–offset cells was very weak in MGB but much stonger in AAF (Figure 6b, e). In MGB, population 
responses showed almost no difference in offset spike rate evoked by tones when durations changed 
between 50 and 500 ms (Figure 6b). In AAF, however, differences in tone duration were significantly 
reflected by increased offset spike rates for the longest sounds (Figure 6e).

To explore whether the dependence of offset responses on sound duration was a result of AAF 
computations in layer 2/3 (L2/3) or was already present in the input layer 4 (L4), we compared the 

Figure 6. Offset responses increase with sound duration mainly in anterior auditory field (AAF). (a) Raster plot of an example medial geniculate 
body (MGB) neuron’s response to pure tone (PT; frequency chosen based on offset tuning) with sound duration varying between 50 and 500 ms and 
interstimulus interval (ISI) between 50 and 2000 ms (top) and poststimulus time histogram (PSTH; mean ± STD) averaged over all neurons population 
(bottom). The blue shaded bars represent the tone. (b) MGB neurons offset responses (mean ± standard error of mean [SEM]) to PT with increasing 
duration across all ISI of 2000 ms (correlation between sound duration and response rate: PT, ρ = 0.05, p = 0.019, n = 307 SU, 6 animals, Spearman 
correlation). Comparison of offset responses: 50 vs 100 ms: n.s. p = 0.080; 50 vs 150 ms: n.s. p = 1; 50 vs 250 ms: p = 0.032; 50 vs 350 ms: n.s. p = 0.70; 50 
vs 500 ms: n.s. p = 0.91, Dunn’s multiple comparisons test. (c) Distribution of peak- to- trough times (p2t) of MGB neurons. (d) Raster plot of an example 
AAF neuron’s response to PT (9 kHz) played at 60 dB SPL with sound duration varying between 50 and 500 ms and ISI between 500 and 2000 ms (top), 
and PSTH (mean ± STD) averaged over all neurons population (bottom). The blue shaded bars represent the tone. (e) AAF neurons offset responses 
(mean ± SEM) to PT with increasing duration across ISI of 2000 ms (correlation between sound duration and response rate: PT, ρ = 0.25, p < 0.0001, n 
= 285 SU, 6 animals, Spearman correlation). Comparison of offset responses: 50 vs 100 ms: n.s. p = 0.57; 50 vs 150 ms: n.s. p > 0.99; 50 vs 250 ms: n.s. 
p = 0.082; 50 vs 350 ms: p = 0.041; 50 vs 500 ms: p < 0.0001, Dunn’s multiple comparisons test. (f) Distribution of p2t of AAF neurons. (g) Comparison 
of offset spike rate in L2/3 and L4 neurons in AAF for sounds with duration varying between 50 and 500 ms and longest tested ISI of 2000 ms (mean ± 
SEM), L2/3: ρ = 0.26, p < 0.0001, n2/3 = 87, L4: ρ = 0.24, p < 0.0001, n4 = 198, Spearman correlation. (h) Comparison of offset spike rate of fast spiking and 
regular spiking (RS) neurons in AAF for sounds with duration varying between 50 and 500 ms and longest tested ISI of 2000 ms (mean ± SEM), FS: ρ = 
0.29, p = 0.0001, nFS = 28, RS: ρ = 0.24, p < 0.0001, nRS = 257, Spearman correlation.

https://doi.org/10.7554/eLife.72240
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dependence of offset responses on sound duration in these layers (Figure  6g). Our recordings 
spanned the range of 150–600 µm from the pia surface, corresponding mainly to L2/3 (150–300 µm) 
and L4 (300–500 µm) (Meng et al., 2017). A significant correlation was present both in L2/3 and L4, 
suggesting that the increase in offset response amplitude with sound duration is not unique to one 
layer.

As MGB does not contain fast- spiking (FS) interneurons (Bartlett, 2013), we then asked whether 
their presence in AAF could be driving the dependence of offset responses on sound duration in 
this cortical region (Figure  6c, f). We distinguished putative FS and RS neurons based on the 
peak- to- trough times (p2t) of their spike waveforms (Figure 6f). FS units were defined as having a 
p2t smaller than the minimum between the two peaks of the p2t distribution (0.55 ms), in accor-
dance with previous studies (Moore and Wehr, 2013). The unimodal distribution of p2t in MGB 
confirmed the lack of FS in this region (Figure 6c). We found a significant correlation between 
offset spike rate and sound duration in FS and RS neurons (Figure 6h), ruling out the possibility 
that one of these cell populations is alone driving the dependence of offset responses on sound 
duration in AAF.

Together, these results reveal an essential difference between AAF and MGB offset encoding and 
demonstrate a clear amplification of the dependence of offset responses on sound duration in AAF 
as compared to MGB.

Offset responses to WN stimulation are present in AAF but not in MGB
Next, we compared offset responses in MGB and AAF evoked by sounds with different spectral 
complexity. We recorded responses in both regions to 500 ms PT, and WN bursts played at 60 dB SPL 
(for MGB, the PT frequency was chosen based on offset BF of neurons in each session; for AAF, a fixed 
PT of 9 kHz was used). Our results showed very distinct neuronal activity patterns in response to WN 
or the spectrally less complex PT, both in MGB and in AAF (Figure 7). In MGB, 500 ms WN evoked 
no offset responses above spontaneous activity, unlike PT of the same length (Figure 7a, c). In AAF, 
however, both PT and WN did evoke offset responses (Figure 7b, d). The lack of offset responses 
evoked by WN in MGB, and their significant presence in AAF, revealed offset responses generated 
de novo in the cortex.

We then asked whether offset responses to WN stimulation differed between different neuronal 
populations of AAF. We found that responses to WN were significantly more sustained in L4 than in 
L2/3 (Figure 7e, calculated in a window of 100–500 ms following sound onset), despite having similar 
offset responses in both layers (Figure 7f). It seemed that responses to WN stimulation, even if not 
present among MGB inputs, arose already in AAF input layer. Next, we compared offset responses 
evoked by PT and WN in putative FS and regular spiking (RS) neurons (Figure 7g, h). As expected, 
offset responses were more prominent and faster in FS than RS neurons following PT termination 
(Figure  7I, Figure  7—figure supplement 1a, b). However, there was not a significant difference 
in spike rate and latency between FS and RS neurons following WN termination (Figure 7—figure 
supplement 1c). The comparison of ratios of offset/onset responses between cell and sound types 
showed that the ratio for FS neurons was significantly smaller than the ratio for RS neurons with WN 
stimulation (Figure 7i). This relative decrease of offset responses in FS neurons could reduce inhibition 
and result in enhanced activity of excitatory cells, leading to offset responses generated de novo in 
AAF. These findings suggest that FS neurons could play an important role in the cortical processing 
of WN offset responses.

The PSTHs of AAF neurons responding to PT and WN stimulation indicated that WN evoked more 
sustained activity than PT (Figure  7b). More specifically, WN gave rise to sharp onset responses 
followed by suppression, and then an activity rebound at around 200  ms followed by a second 
suppression phase and another rebound. Could this specific response of neurons to WN stimulation 
influence the strength of AAF offset responses? Comparing the firing rate of FS and RS cells in AAF 
50 ms before the sound termination revealed that they were significantly stronger for WN than PT 
stimulation (Figure 7j). This extended firing could affect the generation of offset for WN stimulation. 
Offset responses evoked by WN were not increasing as a function of sound duration in neither MGB 
nor AAF (Figure 7—figure supplement 2).

Studying offset responses evoked by WN bursts revealed two fascinating differences between 
MGB and AAF processing. First, offset responses to WN stimulation are not present in MGB but are 

https://doi.org/10.7554/eLife.72240
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Figure 7. Offset responses to white noise (WN) stimulation are present in anterior auditory field (AAF) but not in medial geniculate body (MGB). (a) 
Normalized poststimulus time histogram (PSTH) of MGB neurons to 500 ms pure tone (PT) or WN bursts, bin size: 5 ms. Data are sorted by descending 
spike rate at the PT offset. (b) Normalized PSTH of AAF neurons to 500 ms PT or WN bursts, bin size: 5 ms. Data are sorted by descending spike rate 
at the PT offset. (c) Comparison of MGB offset responses evoked by PT and WN for onset–offset cells. Data represent mean ± standard error of mean 
(SEM), PT vs spont. rate: **p = 0.0079; WN vs spont. rate: p > 0.99, PT vs WN: **p = 0.0037, n = 307, Friedman test with multiple comparisons. (d) 
Comparison of AAF offset responses evoked by PT and WN for onset–offset cells. Data represent mean ± SEM, PT vs spont. rate: ****p < 0.0001; WN 
vs spont. rate: ****p < 0.0001, PT vs WN: ****p < 0.0001, n = 285, Friedman test with multiple comparisons. (e) Comparison of sustained responses 
(calculated in the window: 100–500 ms) for AAF cells from L2/3 and L4 evoked by 500 ms WN stimulation (mean ± SEM), ***p = 0.0003, n2/3 = 87, n4 = 
198, Mann–Whitney test. (f) Comparison of offset responses for AAF cells from L2/3 and L4 evoked by 500 ms WN stimulation (mean ± SEM), p = 0.30, 
n2/3 = 87, n4 = 198, Mann–Whitney test. (g, h) Averaged PSTH of fast (n = 29) and regular (n = 249) spiking AAF neuron’s response to PT and WN bursts 
played at 60 dB SPL with sound duration 500 ms and interstimulus interval (ISI) between 500 and 2000 ms. (i) Ratio of offset/onset responses evoked by 

Figure 7 continued on next page
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present in AAF. Second, cells in AAF seem to follow ongoing WN stimulation with a bursting activity 
happening every ~200 ms.

Offset responses encode more than just silence
The precise detection of fast changes in sound frequency and level is crucial for gap detection and 
vocalization (Kopp- Scheinpflug et al., 2018; Sollini et al., 2018). We asked if offset responses in MGB 
and AAF could encode more than silence – that is, sound termination – such as important changes 
within temporally discontinuous sounds (Lu et al., 2001). We recorded responses to a multi- frequency 
component sound in MGB (n = 275 SU, 6 animals) and AAF (n = 284 SU, 6 animals). The complex 
sound consisted of three frequency components (20, 14, and 9 kHz) played at 60 dB SPL, which had 
a common onset but ended at different time points (300, 400, and 500 ms). The offset responses 

Figure 8. Offset responses encode more than just silence. (a) Raster plot of an example MGB neuron’s response to three- component stimuli. 
(b) Averaged poststimulus time histogram (PSTH; mean ± STD) of MGB neuron’s response to three- component stimuli, n = 275, n = 6 animals. 
(c) Normalized PSTH of MGB neuron’s response to three- component stimuli, bin size: 5 ms. Data are sorted by descending spike rate at the first 
component termination. (d) Raster plot of an example AAF neuron’s response to three- component stimuli. (e) Averaged PSTH (mean ± STD) of AAF 
neuron’s response to three- component stimuli, n = 284, n = 6 animals. (f) Normalized PSTH of AAF neuron’s response to three- component stimuli, bin 
size: 5 ms. (g) Comparison of spiking rate of MGB neurons following removal of each frequency component. Data represent mean ± standard error of 
mean (SEM), Spont. vs 20 kHz: **p = 0.0011, Spont. vs 14 kHz: ****p < 0.0001, Spont. vs 9 kHz: ****p < 0.0001, n = 275, n = 6 animals, Friedman test with 
multiple comparisons. (h) Comparison of spiking rate of AAF neurons following removal of each frequency component. Data represent mean ± SEM, 
****p < 0.0001, n = 284, n = 6 animals, Friedman test with multiple comparisons.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Distinct spectral and temporal tuning properties of medial geniculate body (MGB) and anterior auditory field (AAF) cells.

500 ms PT or WN in fast spiking and regular spiking (RS) AAF neurons (mean ± SEM), p = 0.020, nFS = 28, nRS = 246, Mann–Whitney test. (j) Spike rate 
preceding sound offset (calculated in window: 450–500 ms) in AAF neurons for longest ISI of 2000 ms (mean ± SEM), RS: ****p < 0.0001, n = 257; FS: **p 
= 0.0013, n = 28, Wilcoxon test.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Offset processing in fast spiking (FS) and regular spiking (RS) anterior auditory field (AAF) neurons.

Figure supplement 2. Offset responses to white noise (WN) stimulation do not increase with sound duration.

Figure 7 continued
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evoked by removing one or two frequency components demonstrate that neurons can encode the 
disappearance of a frequency component in an ongoing sound, especially in AAF (Figure 8a–f). A 
single MGB neuron usually encoded the removal of one or two frequency components. In contrast, 
most AAF neurons encoded the removal of all frequency components. However, at the population 
level, the termination of all three components was significantly encoded in both MGB and AAF activ-
ities (Figure 8g, h). Interestingly, removing the first frequency component (20 kHz) evoked the most 
negligible offset response, which, in MGB, was close to spontaneous activity. Removal of the last 
component (9 kHz), followed by silence, evoked the highest offset response within MGB neurons. 
In contrast, the highest offset response was present in AAF after the removal of the second compo-
nent (14 kHz). AAF neurons seem to have a stronger ability to integrate information over spectrally 
and temporally complex ongoing sounds and not only to respond to silence. This ability to encode 
important changes within continuous sound could be crucial for processing temporally discontinuous 
sounds, making AAF an interesting field to study the encoding of vocal calls.

Discussion
As the auditory system very robustly represents timing information, it is a model of choice to study 
neural offset responses evoked by the disappearance of a stimulus. In this study, we show that mini-
mizing AAF offset responses decreases the mouse performance to detect sound termination, thus 
revealing their importance at the behavioral level. By combining in vivo electrophysiology recordings 
in AAF and MGB of awake mice, we also demonstrate that AAF inherits, amplifies, and sometimes 
even generates de novo offset responses. These results are of high importance for all studies on 
sensory processing, as the mechanisms determining specificities in cortical vs thalamic processing 
revealed by our studies could be shared between the different sensory areas.

The functional significance of offset responses was long under debate (Saha et al., 2017). Here, 
we show that minimizing AAF offset responses significantly decreases the performance of mice to 
detect sound termination (Figures  1 and 2). In addition, sounds terminating with a fast fall- ramp 
and triggering a more significant offset response seems to be easier to detect at the beginning of a 
behavioral session when the task is still new and more challenging than after exposure to more trials. 
A possible explanation for this dependence on task difficulty could be related to the distinct involve-
ment of the ACx during more or less challenging tasks. Previous studies have shown that the cortex 
could be required for challenging tasks, but less so for easier tasks or when the task is learned well 
(Ceballo et al., 2019; Christensen et al., 2019; Dalmay et al., 2019; Kawai et al., 2015). When the 
task is easy or familiar, high and low amplitude offset responses seem to be informative about sound 
termination to a similar extent. We also used logistic regression to show that AAF activity during a 
single trial could be predictive of the animal’s performance (Figure 3). The neural activity during hit 
trials in AAF could be influenced by the animal’s general motivation (Fritz et al., 2003), motor- related 
inputs (Schneider, 2020), or reward expectations (De Franceschi and Barkat, 2021).

Another approach to understanding the behavioral role of auditory offset responses could be to 
study where AAF is projecting and what could be the use of offset responses in these areas. It was 
recently shown that A1 transient offset responses to noise stimulation underlie the perception of 
sound duration (Li et al., 2021). As AAF supplies ∼45% of the cortical input to A1 (Lee and Winer, 
2008) and the modulation of acoustic information between A1 and AAF in the cat’s ACx was shown 
to be dominated by a unidirectional AAF to A1 pathway (Carrasco and Lomber, 2009), it would be 
interesting to understand if A1 offset responses originate from AAF. Very recently, Bondanelli et al. 
argued for a role of recurrent A1 connectivity in shaping offset responses in cortex, including the fact 
that the offset response carries information about stimulus type (Bondanelli et al., 2021). The high 
level of information exchange between A1 and AAF raises the question of whether these mechanisms 
in A1 depend on AAF activity. It was also previously shown that offset responses in the secondary 
ACx are plastic and enhance the representation of a newly acquired, behaviorally relevant sound 
category (Chong et al., 2020). Whether the activity of AAF neurons is crucial for this plasticity to 
happen remains to be elucidated. Only recently, Nakata et al. revealed direct AAF connections to the 
secondary motor cortex, the primary somatosensory cortex, the insular ACx, and the posterior pari-
etal cortex (Nakata et al., 2020). What role auditory offset responses in these fields play and whether 
they provide any information for association with the somatomotor system remain unanswered.

https://doi.org/10.7554/eLife.72240


 Research article      Neuroscience

Solyga and Barkat. eLife 2021;10:e72240. DOI: https:// doi. org/ 10. 7554/ eLife. 72240  15 of 24

Spectrotemporal tuning properties of auditory neurons differ during the presentation of natural and 
synthetic stimuli (David et al., 2007; Theunissen et al., 2001). Natural sounds also commonly start 
abruptly, but their termination is obscured by sound reverberations and therefore stops less sharply 
than synthetic stimuli. In many of our experiments, we used a short 0.01 ms sinusoidal fall- ramp while 
keeping the rise- ramp at 4 ms. Our quantification of the spectral splatter (Figure 2—figure supple-
ment 2) confirms that the neuronal responses measured at sound termination are not affected by the 
weak and short spectral splatter caused by a fast fall- ramp. In the future, the role of offset responses 
in detecting sound termination should be studied in natural environments, using, for example, vocal-
ization calls (Chong et al., 2020). This would elucidate whether the auditory system, and MGB or AAF 
more specifically, evolved to meet the challenges of detecting naturally terminating sounds.

Our results demonstrate that cortical offset responses are not only inherited from the periphery 
(Figures 4 and 5) but also amplified by sounds with longer duration (Figure 6). Could the presence 
of FS interneurons in AAF, but not in MGB (Bartlett, 2013), be driving the dependence of offset 
responses on sound duration in this cortical region? The strength of the correlation between offset 
responses and sound duration was similar between FS and RS cells in AAF (Figure 6). However, FS 
neurons showed a significantly larger amplitude of offset responses in comparison to RS neurons. AAF 
was previously shown to have more PV+ cells than the other auditory primary region A1 (Reinhard 
et al., 2019). Mechanistically, we suggest that such a prominent PV network in AAF and the strong 
offset responses they exhibit could be crucial for evoking duration- dependent offset responses in 
AAF but not in A1 (Sołyga and Barkat, 2019) or MGB (Figure 6). With our antidromic experiments, 
we also showed that some of AAF cells receive inputs from sustained MGB cells (Figure 5). Whether 
or not the inputs from these cells are involved in the duration dependence of offset response in AAF 
should be explored further.

What could be the role of the cortex in tracking subtle differences in sound duration? At the 
behavioral level, one could speculate that the amplitude of offset responses would be needed to 
better track subtle differences in sound duration, especially for sounds shorter than 500 ms, covering 
a spectrum of most mouse calls (Geissler and Ehret, 2002). Additionally, the lack of increase in 
offset response amplitude with the duration of WN bursts (Figure 7—figure supplement 2) suggests 
that a stimulus has to contain a spectral structure to evoke duration- dependent offset responses (Li 
et al., 2021). Nevertheless, if the increase in the amplitude of offset responses with sound duration 
is a carrier of useful information or just a result of cortical cells being unable to handle short sounds 
remains unclear.

The spectral complexity of sounds is significantly modulating offset responses in the central audi-
tory system in several ways. First, the lack of offset responses to WN in MGB onset–offset cells and 
their presence in AAF reveals offset responses generated de novo in the cortex (Figure 7). How could 
the differences in offset responses to WN stimulation be explained? The large spectral integration 
of thalamic inputs (Figure 8—figure supplement 1) in individual cortical neurons (Liu et al., 2007; 
Vasquez- Lopez et al., 2017) should not play a role, as no firing upon WN termination was observed 
in the thalamus. Interestingly, offset responses to WN stimulation were present in AAF both in L4 and 
L2/3, suggesting that it is a general property of AAF network to generate offsets de novo and not 
only an exclusive property of the superficial layer. What mechanisms could drive offset responses to 
WN in AAF? FS and RS neurons exhibit similar offsets responses to WN stimulation, thus not allowing 
us to speculate on their particular involvement in de novo generated offset responses. The potential 
role of other types of cortical neurons, like the somatostatin interneurons previously suggested to be 
involved in offset response generation (Liu et al., 2019), remains to be elucidated. It is also possible 
that information on sound termination arises from nonlemniscal areas projecting to AAF. Such possible 
projections and their potential contributions have not been described yet.

Second, the activity during WN stimulation in AAF shows a clear pattern of bursting activity. A 
transient onset is followed by a suppression phase, then rebound activity around 200 ms, followed 
by another suppression and rebound phase. Does this reflect an internal clock allowing AAF to follow 
sound duration irrespectively from inputs coming from MGB? What could be the role of such bursting 
activity in AAF and how could it be generated? Bursts are thought to be emitted by many subcortical 
and cortical areas of the brain, but their hypothesized functions differ across brain areas (Zeldenrust 
et  al., 2018). It has previously been shown in marmosets that the ACx can use a combination of 
temporal and rate representation to encode a wide range of complex, time- varying sounds (Lu et al., 
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2001). The offset responses and bursting activity we observe in the mouse AAF could play these 
multiple roles in encoding different temporal features such as ongoing sound and its termination. If 
the bursting and offset activity observed in AAF is a common feature of other primary sensory cortices 
is unclear.

Finally, we demonstrate that offset responses to WN or PT are strikingly different in the central 
auditory system (Figure 7). This could have multiple origins. First, the significantly increased activity 
of AAF neurons preceding WN termination could result in a decreased ability of neurons to respond 
properly to the end of the sound (Figure 7j). Second, the lack of proper inhibition – excitation balance 
(Figure 7i) could decrease the offset responses evoked by WN burst. WN stimulation is widely used 
in auditory research, especially for gap in noise detection (Syka et al., 2002; Threlkeld et al., 2008; 
Weible et al., 2014a; Weible et al., 2014b) and for offset response studies (Anderson and Linden, 
2016). It is an attractive auditory stimulus to study purely temporal information as it ensures an effec-
tive stimulation of the auditory system irrespectively of neuronal tuning. However, one has to be 
careful about generalizing results obtained with this stimulus to all auditory inputs. Our observations 
indicate that different mechanisms might be at play when WN or PT, and by extension natural sounds, 
are heard.

The experiments with multifrequency component sounds show that within both MGB and AAF, 
offset responses indicate not only when a sound ends but also all important changes that occur within 
a temporally discontinuous sound (Figure 8), emphasizing their possible relevance for behavior and 
perception. The temporal integration of offset responses is crucial for the perceptual grouping of 
communication sounds, in which rapid changes in intensity and frequency occur (Sollini et al., 2018). 
Our results suggest that this integration is accentuated in the cortex, making it an interesting hub to 
look for the mechanisms that might explain impairments in sound offset sensitivity, and by extension, 
deficits in temporal processing arising both in aging and disease. A deeper knowledge of the cellular 
and circuit mechanisms of cortical offset responses could be crucial to develop new strategies to 
prevent abnormal auditory perceptual grouping.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional  
information

Chemical compound, drug Ketamin Vetoquinol
ATCvet- Code: QN01A 
× 03

Chemical compound, drug Xylazin hydrochlorine Provet AG
ATCvet- Code: 
QN05CM92

Chemical compound, drug Lidocain Streuli ATCvet- Code: QN01BB02

Chemical compound, drug Bupivicaine Sintetica ATCvet- Code: N01BB01

Strain, strain background  
(Mus musculus) Wild- type (C57BL/6J) Janvier C57BL/6JRj

Strain, strain background  
(M. musculus) PV- Cre Jackson Stock #017320

PValb- Cre  
knock- in line

Strain, strain background  
(M. musculus) Ai32 line Jackson Stock #024109 ChR2- lox

Software, algorithm

Active X and  
RPvdsX data  
acquisition software

Tucker- Davis 
Technologies https://www. tdt. com

Software, algorithm MATLAB Mathworks
https://www. 
 mathworks. com/

Software, algorithm Kilosort Github CortexLab
https:// github. com/ cortex- lab/ Kilosort 
(Pachitariu et al., 2019)

Software, algorithm phy Github CortexLab
https:// github. com/ cortex- lab/ phy 
(Buccino et al., 2021)

https://doi.org/10.7554/eLife.72240
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https://github.com/cortex-lab/Kilosort
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Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional  
information

Software, algorithm
Logistic regression 
model Github Neuromatch

https:// github. com/ 
NeuromatchAcademy/ course- content/ 
blob/ master/ tutorials/ README. md# 
w1d4--- generalized- linear- models 
(Fiquet et al., 2020)

 

Other Electrodes Neuronexus

AA4 × 8- 5 mm- 50- 200- 
177- A32
A1 × 32- 5 mm- 25- 177- A32
A4 × 16- 5 mm- 50- 200- 
177- A64

 Continued

Surgical procedures
All experimental procedures were carried out in accordance with Basel University animal care and 
use guidelines and were approved by the Veterinary Office of the Canton Basel- Stadt, Switzerland 
(protocol cantonal number 2748). To target the opsins to PV+ interneurons, we used PV- Cre (Cre was 
targeted to the Pvalb locus) knock- in line with C57BL/6J background (JAX stock number 017320, 
Jackson Laboratories, ME, USA). This strain drives the expression of Cre in PV+ interneurons of the 
cortex with the minimal leak. We crossed this line to the Ai32 line (JAX stock number 024109 with 
C57BL/6 background), which encodes the light- gated depolarizing cation channel channelrhodop-
sin- 2 conjugated to e- YFP after a floxed stop cassette under the CAG promoter. Wild types were 
C57BL/6J mice (Janvier, France). Thirty- nine mice were used in this study. Mice were a mixture of 
males and females and aged between 7 and 12 weeks of age at the time of behavioral training or 
electrophysiological recording.

Awake electrophysiology recordings and behavior experiments were performed on adult (7–12 
weeks) male and female C57BL/6J mice (Janvier, France). For surgeries, mice were anesthetized with 
isoflurane (4% for induction, 1.5–2.5% for maintenance), and subcutaneous injection of bupivacaine/
lidocaine (0.01 and 0.04 mg/animal, respectively) was used for analgesia. A custom- made metal head 
post was fixed with super glue (Henkel, Loctite) on the bone on top of the left hemisphere and used 
to head- fix the animals. Their body temperature was kept at 37°C with a heating pad (FHC, ME, 
USA), and lubricant ophthalmic ointment was applied on both eyes. Craniotomy (~2 × 2 mm2) was 
performed with a scalpel just above the right ACx and covered with silicone oil and silicone casting 
compound (Kwik- Cast, World Precision Instruments, Inc, FL, USA) during the 2 hr recovery period from 
the anesthesia.

Recordings
The electrophysiological recordings were performed in awake mice (AAF: n = 6; MGB: n = 5). Mice 
were head- fixed and placed in the cardboard tube for recordings inside a soundbox. Extracel-
lular recordings were conducted in AAF (identified based on the functional tonotopy: ventrodorsal 
increase in BF) and MGB (centered 0.8 mm anterior and 2 mm lateral to Lambda). Multichannel 
extracellular electrodes with 32 channels (A4  × 8- 5  mm- 50- 200- 177- A32 or A1 × 32- 5  mm- 25- 
177- A32 Neuronexus, MI, USA) or 64 channels (A4 × 16- 5 mm- 50- 200- 177- A64, Neuronexus, MI, 
USA) were inserted orthogonally to the brain surface with a motorized stereotaxic micromanip-
ulator (DMA- 1511, Narishige, Japan) at a constant depth (AAF: the tip of the electrode at 556 
± 9  µm from pia; MGB: the tip of the electrode at 3575 ± 300  µm from pia). Responses from 
extracellular recordings were digitized with a 32- or 64- channel recording system (RZ5 Bioamp 
processor, Tucker Davis Technologies, FL, USA) at 24,414 Hz. Sorted units were identified from raw 
voltage traces using kilosort (Pachitariu et al., 2016; CortexLab, UCL, London, England) followed 
by manual corrections based on the interspike interval histogram and the consistency of the spike 
waveform (phy, CortexLab, UCL, London, England). All sorted data were used, independently 

https://doi.org/10.7554/eLife.72240
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of whether the clusters were classified as single or multiunit. Further analysis was performed in 
MATLAB (Mathworks, MA, USA).

Auditory stimulation
Sounds were generated with a digital signal processor (RZ6, Tucker Davis Technologies, FL, USA) at 
200 kHz sampling rate and played through a calibrated MF1 speaker (Tucker Davis Technologies. FL, 
USA) positioned 10 cm from the mouse’s left ear. Stimuli were calibrated with a wide- band ultrasonic 
acoustic sensor (Model 378C01, PCB Piezotronics, NY, USA).

Antidromic stimulation
To identify temporal dynamics of cells projecting from MGB to AAF, in vivo electrophysiology record-
ings in MGB were combined with antidromic stimulation of AAF (n = 5 animals). First, mice were 
anesthetized with an intraperitoneal injection of ketamine/xylazine (80 and 16 mg/kg, respectively), 
and subcutaneous injection of bupivacaine/lidocaine (0.01 and 0.04 mg/animal, respectively) was used 
for analgesia. Ketamine (45 mg/kg) was supplemented during surgery as needed. For surgery, mice 
were head- fixed, and their body temperature was kept at 37°C with a heating pad (FHC, ME, USA). 
Two separate craniotomies (~2 × 2 mm2) were performed with a scalpel above the right MGB and 
ACx and covered with silicone oil. AAF was mapped with electrophysiology recordings based on the 
ventrodorsal increase in BF to identify the target area for stimulus pipette insertion. Then both crani-
otomies were covered with silicone casting compound (Kwik- Cast, World Precision Instruments, Inc, 
FL, USA) during the 2 hr recovery period from the anesthesia. Electric stimulator (Master- 8, A.M.P.I., 
Israel) was connected to a stimulation isolator (ISO- Flex, A.M.P.I., Israel), which was then connected to 
the wire electrode. The wire electrode was fixed in pulled capillary glass (tip: <10 µm) filled with saline 
and then inserted into AAF (~300 µm). Monophasic square wave pulse was generated with electronic 
stimulator as pulse train (pulse duration: 0.1 ms; frequency: 50 Hz; train number: 20); intensity: 30 μA 
(similar to the method described in Peng et al., 2017). At the same time, electrophysiology record-
ings with 64- channel electrode were performed in MGB. As described in the recordings section, spike 
sorting was performed using kilosort (Pachitariu et al., 2016), followed by manual corrections in phy, 
and further analysis in MATLAB. To ensure the absence of electrical artifacts, the mean cluster wave-
form from raw data was calculated for each antidromic- identified cluster. Clusters containing any high 
amplitude electric artifacts were removed from the analysis.

Offset detection task
Headlplate implant. Mice were implanted with a custom- made metal head post at 7–8 weeks after birth 
under isoflurane anesthesia (4% induction, 1.2–2.5% maintenance). Local analgesia was provided with 
subcutaneous injection of bupivacaine/lidocaine (0.01 and 0.04 mg/animal, respectively). A head post 
and a ground screw were fixed to the skull with dental cement (Super- Bond C&B; Sun Medical, Shiga, 
Japan). The portion of the skull above the target recording site was left free from cement and covered 
with a thick layer of Kwik- Cast Sealant (WPI, Sarasota, FL, USA). Postoperative analgesia was provided 
with an intraperitoneal injection of buprenorphine (0.1 mg/kg). After recovery from the surgery for a 
couple of days, mice were food restricted. Training. Mice were then placed in the cardboard tube and 
adapted to the head restraint. The speaker was placed 10 cm away from the left ear of the animals. 
Next, they were taught to associate a sound offset with reward availability. Mice were trained to detect 
sound offset of PT (9 kHz) played at 80 dB SPL (training) with varied duration (1, 1.5, and 2 s). The rise- 
ramp of the tones was always fixed to 10.0 ms, while at the offset fast (0.01 ms) or slow (10.0 ms) ramp 
was used and varied randomly. During the beginning of the training, mice had to lick within 3 s after 
sound offset to receive a drop of soya milk as a reward, and the trial was considered a correct hit. If the 
animal did not lick within and after the tone trial was considered as missed. If the mice licked while the 
tone was ongoing, they received a mild air puff oriented toward the right eye and a time out (2–3 s) 
until the subsequent trial could start. These trials were removed from the analysis as the target (sound 
offset) could not be correctly delivered. Sounds were delivered without preceding cues at random ISIs 
ranging from 3 to 5 s. Licks were detected with a piezo sensor attached to the reward spout. Within 
consecutive training days, the reward window was shortened down to 1 s. Craniotomy. Once animals 
performed at least 30% of correct hits, they were considered initially trained and had a craniotomy 
performed under ketamine/xylazine (80 mg/kg) and AAF mapping on the same day. Recordings. On 
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the following day, mice were moved on to a tasting phase where behavior training was coupled with 
acute electrophysiology recordings in AAF. During the testing phase, tones were played at 60 dB SPL, 
and laser (473 nm) was added unilaterally above the right AAF and activated continuously for 200 ms 
following sound termination in half of the trials (pseudorandomized each day). All experiments were 
performed in a soundproof box (IAC acoustics, Hvidovre, Denmark) and monitored from outside the 
soundbox with a camera (C920, Logitech, Switzerland). The laser power was set around 4.2 mW and 
was adjusted every day to cause a robust suppression of offset or sustained responses in PV− cells. 
The testing phase was carried out for up to 6 days. Behavioral control and data collection were carried 
out with custom- written programs using a complex auditory processor (RZ6, Tucker Davis Technology, 
FL, USA) and further analyzed with MATLAB (MathWorks, MA, USA).

Data analysis
All data analysis was performed using custom- written MATLAB (2019) (Mathworks) code. Original 
spike data and code are available on Dryad (https:// doi. org/ 10. 5061/ dryad. 41ns1rnfg).

Tuning receptive fields
To determine BF and tuning receptive fields (TRFs), we used PT (50  ms duration, randomized ISI 
distributed equally between 500 and 1000 ms, two repetitions, 4 ms cosine on, and 0.01 ms cosine 
fall- ramps) varying in frequency from 4 to 48.5 kHz in 0.1- octave increments and in level from 0 to 
80 dB SPL in 5 dB increments. TRFs, best frequency, and spiking rates were calculated in fixed time 
windows: onset: 6–56 ms, offset: 56–106 ms. TRFs were smoothed with a median filter (4 × 4 sampling 
window) and thresholded to 0.2 of peak amplitude. Onset and offset BF was defined as the frequency 
that elicited maximal response across all sound levels. Onset and offset peak latency was determined 
as the time point in which the smooth PSTH (kernel = hann (9)) collapsed across all tested stimuli 
showed a maximum response (binning size: 5  ms). Spontaneous activity was calculated based on 
activity preceding sound onset (150–50 ms, binning size: 5 ms).

Tone duration responses
To study responses to tones with different durations, we used 10 repetitions of PT (AAF: 9 kHz; MGB: 
frequency adapted to offset BF of recorded neurons) with 4 ms cosine on and 0.01 ms cosine fall- 
ramps, which were varied in duration (50, 100, 150, 250, 350, and 500 ms), ISI (the gap between two 
stimuli of 50, 100, 250, 500, 1000, and 2000 ms) and played at 60 dB SPL. For AAF, the frequency was 
fixed to 9 kHz because 9 kHz PT evoked significant offset responses in almost all tested AAF. Offset 
spike rates were calculated in a fixed time window of 6–56 ms following sound termination.

Spectral complexity
To study offset responses in MGB and AAF evoked by sounds with different spectral complexity, we 
recorded responses in both regions to 500 ms PT and white WN bursts played at 60 dB SPL with 
4 ms cosine on and 0.01 ms cosine fall- ramps (for MGB the PT frequency was chosen based on offset 
BF of neurons in each session; for AAF, a fixed PT of 9 kHz was used). WN bursts were not fixed 
but consisted of randomly chosen noise samples. Offset spike rates were calculated in a fixed time 
window of 6–56 ms following sound termination.

Sound rise- to fall-time study
To study the dependence of onset and offset responses on the temporal profile of a tone, we varied 
rise- and fall- time at sound onset and offset (0.01, 1, 2, 4, 10, 50, 100, and 200 ms). PTs (AAF: 9 kHz; 
MGB frequency adapted to offset BF of recorded neurons) were played at 60 dB SPL for 500 ms and 
repeated 50 times. The peak amplitude of offset responses was defined in the first 100 ms after stim-
ulus onset or offset.

Offset detection in ongoing sound
To check if offset responses encode changes within ongoing sound, we used tone consisting of three 
frequency components (20, 14, and 9 kHz) played at 60 dB SPL and repeated 60 times. All frequency 
components had common onset but were terminated at different time points (300, 400, and 500 ms). 

https://doi.org/10.7554/eLife.72240
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Offset spike rates were calculated after every component removal in fixed windows: 306–356 ms; 
406–456 ms; 506–556 ms.

Sound termination detection task
Both the ODI and the hit rates were used to evaluate the animal’s behavior in the sound termination 
detection task. ODI was defined as:

 ODI = Hit+Correct Rejection
Miss+False Alarm   

where Hit was calculated as the percent of 1- s long trials in which the mouse licked between 1 
and 2 s (during the reward window), Miss as the percent of 1- s long trials in which the mouse did not 
lick between 1 and 2 s (during the reward window), False Alarm as the percent of 2- s long trials in 
which the mouse licked between 1 and 2 s (during the last 1 s of sound), and Correct Rejection as 
the percent of 2- s long trials in which the mouse did not lick between 1 and 2 s (during the last 1 s of 
sound). Trials with early onset licks (happening within 1 s following sound onset) and trials with 1.5 s 
long sounds were not taken into account for calculation of ODI. Similarly, trials with licks before sound 
termination were discarded from the hit rate analysis (Figure 1—figure supplement 2c). To compare 
ODI (Figures 1 and 2) or hit rate (Figure 1—figure supplement 3) for trials with and without laser or 
for different tested ramps, a moving average was calculated with a window size of 10 trials. The data 
for each condition were calculated separately. For the average, 10 adjacent trials were taken, and only 
the behavior corresponding to a specific condition were used (meaning that each average is made of 
a maximum of 10 trials but usually of less). This allows a comparison of performance over time across 
the tested conditions.

Decoding population activity
The logistic regression model was used to decode animal performance from neural responses 
(code from Neuromatch Academy W1D4, https:// academy. neuromatch. io/). Spontaneous activity 
(50–100 ms before sound onset), onset response (0–50 ms from sound onset), sustained response 
(500–450  ms before sound offset), offset response (0–50  ms from sound offset), or late response 
(500–550 ms after sound offset) were used to train and test the model. Logistic regression was imple-
mented using the sklearn function LogisticRegression with the lbfgs solver and L2 regularization to 
avoid over- fitting. Eightfold cross validation was performed by leaving out a random 12.5% subset of 
trials to test the classifier performance, and remaining trials were used to train the classifier. A range 
of regularization values was tested (0.0001–10,000 log spaced), and the one that gave the smallest 
error on the validation dataset was chosen as the optimal regularization parameter. The classifier 
accuracy was computed as the percentage of testing trials in which the animal’s choice was accurately 
predicted by the classifier and summarized as the average across the 10 repetitions of trial subsam-
pling. The spiking activity of each neuron was z- scored before running the logistic regression model. 
Trial labels were shuffled to confirm that decoding is not working for random data. This procedure 
was repeated 10 times. Then the average across the 10 repetitions was used to assess the classifier 
accuracy for randomized data. To remove all the sessions with a too small number of trials or too few 
offset cells, only the sessions with a significant difference in classification accuracy between real and 
shuffled data based on the late response (0.5 s after sound offset) were used.

Statistical analysis
Sample size was determined based on standards established by previous publications studying 
single- neuron activity with in vivo recording, which have been adequate to demonstrate signifi-
cant population effects. A traditional power analysis is not possible because noise properties of 
neural data are difficult to estimate a priori. Based on norms for the field, we acquired data from 
at least five animals, except for Figure 2b (n = 2 animals), and numbering at least 14 behavioral 
sessions or 50 neurons per group, except for the number of putative FS neurons in Figures 6 and 
7 (n = 28). Statistical tests were performed with GraphPad Prism software version 7.03 (GraphPad 
Software, USA). The standard error of the mean was calculated to quantify the amount of variation 
between responses from different populations. PSTHs display (1) mean ± STD if they represent 
one condition, (2) mean ± standard error of mean if they represent more than one condition on 
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the same panel. A nonparametric, unpaired Mann–Whitney test was used to calculate whether 
there were any significant differences between medians of recordings in AAF and MGB. Wilcoxon 
paired test was used to compare differences between paired values obtained in different treat-
ments. Friedman test with multiple comparisons was used to compare many conditions. Two- way 
ANOVA was used to test the main effects of sound duration and intervals on offset responses and 
their interaction effect. Dunn’s multiple comparisons test was used to perform multiple pairwise 
comparisons. Spearman correlation tests were used to test for significant associations between 
pairs of variables measured with ranking. The effects were named significant if the p value was 
smaller than 0.05 (*), 0.01 (**), 0.001 (***), or 0.0001 (****), for a confidence interval of 95%, 99%, 
or 99.9%, respectively.
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