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A B S T R A C T   

Endometrial cancer, a leading gynecological malignancy, is profoundly influenced by the uterine 
microbiota, a key factor in disease prognosis and treatment. Our study underscores the distinct 
microbial compositions in endometrial cancer compared to adjacent non-cancerous tissues, 
revealing a dominant presence of p_Actinobacteria in cancerous tissues as opposed to p_Firmicutes 
in surrounding areas. Through comprehensive analysis, we identified 485 unique microorganisms 
in cancer tissues, 26 of which correlate with patient prognosis. Employing univariate Cox 
regression and LASSO regression analyses, we devised a microbial risk scoring model, effectively 
stratifying patients into high and low-risk categories, thereby providing predictive insights into 
their overall survival. We further developed a nomogram that incorporates the microbial risk 
score along with age, grade, and clinical stage, significantly enhancing the accuracy of our clinical 
prediction model for endometrial cancer. Moreover, our study delves into the differential immune 
landscapes of high-risk and low-risk patients. The low-risk group displayed a higher prevalence of 
activated B cells and increased T cell co-stimulation, indicative of a robust immune response. 
Conversely, high-risk patients showed elevated tumor immune dysfunction and exclusion scores, 
suggesting less favorable outcomes in immunotherapy. Notably, the efficacy of IPS-CTLA4 and 
PD1/PD-L1/PD-L2 blockers was substantially higher in the low-risk group, pointing to a more 
responsive immunotherapeutic approach. In summary, our research elucidates the unique mi-
crobial patterns in endometrial cancer and adjacent tissues, and establishes both a microbial risk 
score model and a clinical prediction nomogram. These findings highlight the potential of uterine 
microbiota as a biomarker for customizing treatment strategies, enabling precise interventions for 
high-risk patients while preventing overtreatment in low-risk cases. This study emphasizes the 
microbiota’s role in tailoring immunotherapy, offering a novel perspective in the treatment and 
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prognosis of endometrial cancer. Significantly, our study’s expansive sample analysis from the 
TCGA-UCEC cohort, employing linear discriminant analysis effect size methodology, not only 
validates but also enhances our understanding of the microbiota’s role in endometrial cancer, 
paving the way for novel diagnostic and therapeutic approaches in its management.   

1. Introduction 

Endometrial carcinoma (EC) is a form of cancer affecting the inner epithelial lining of the uterus and stands as the second most 
prevalent gynecological cancer among women. In 2020, it was estimated that there were 417,367 new cases of EC, resulting in 97,370 
deaths [1]. EC primarily manifests as two main types: Type I and Type II. Type I EC is linked to environments with elevated estrogen 
levels and is often associated with high hormone receptor levels and obesity. Type I EC accounts for 80% of all EC cases. In contrast, 
Type II EC is more common in older, non-obese women, carries a poor prognosis, and constitutes 10–20% of all EC cases. Notably, Type 
II EC shows no significant correlation with estrogen stimulation [2,3]. Remarkably, bacterial cells make up approximately 1–3% of a 
human’s body weight; this is comparable in quantity to human cells [4]. Recent studies have identified the presence of bacteria in 
tumor tissues, challenging the previous notion of tumors being sterile. In 2020, Knight et al. reported the existence of microbial RNA 
and DNA in 33 types of cancer, with unique microbial communities associated with each type of cancer [5]. These microorganisms 
within tumors are now recognized as crucial contributors to tumor development, drug resistance, and the tumor microenvironment [6, 
7]. 

Presently, it is acknowledged that bacteria can infiltrate tumor cells through various pathways, including the digestive tract, 
lymphatic system, and bloodstream. The composition, attributes, and diversity of microorganisms within tumors are closely inter-
twined with the gut microbiota [8,9]. Numerous studies have linked microbial imbalances to various diseases, including breast cancer, 
EC, ovarian cancer, and inflammatory bowel disease [10–13]. Several female health conditions are associated with disruptions in the 
microbiota of the reproductive tract, which plays a vital role in regulating the barrier function of the reproductive tract. This un-
derstanding demonstrates that the uterus is not a sterile cavity [14]. To date, multiple studies have explored the microbial composition 
of EC. For instance, Walther-António et al. identified a close association between Atopobium vaginae and Porphyromonas sp. With EC, 
particularly under high pH conditions [15]. In another study, Lu et al. found that Micrococcus was correlated with inflammation in EC 
patients, who also exhibited reduced microbiota diversity compared to those with benign uterine lesions [16]. However, Walsh et al. 
reported contrasting results, indicating that the main known risk factor for EC was an increased microbiome diversity in the repro-
ductive tract [17]. Disruptions in the microbiota of the female reproductive tract are closely linked to the onset and progression of 
gynecological cancers. Thus, targeted interventions to modulate the microbiota hold promise for enhancing primary and secondary 
prevention strategies for gynecological cancers. 

A distinctive aspect of the current study in relation to previous research is the extensive scale of our sample analysis. We utilized 
microbiota data from the TCGA-UCEC cohort to investigate potential correlations between the abundance of microbiota and patient 
outcomes in EC. Our analysis encompassed a significantly larger sample size compared to earlier studies, thus yielding a compre-
hensive dataset that provides unique insights and strengthens the validity of our conclusions regarding the role of the microbiota in EC. 
By employing linear discriminant analysis effect size (LEfSe) methodology, we identified distinct variations in the microbiota between 
EC and adjacent cancer tissues. Our methodology encompassed both univariate Cox regression and LASSO regression analyses to assess 
the prognostic relevance of diverse microbiota biomarkers. In addition, we developed a risk factor calculation model based on our 
findings. Furthermore, our research investigated the influence of the microbiome on the response to immune therapy and immune 
checkpoint expression in tumor cells. This study aimed to unravel the intricate interactions between tissue-resident microbiota and 
tumors, potentially laying the groundwork for novel diagnostic and prognostic approaches in the management of EC. 

2. Materials and methods 

2.1. Prognostic microorganism screening and identification 

In this study, we screened prognostic microorganisms identified in EC patients and data obtained from the Cancer Genome Atlas 
Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) database, which includes microbiome abundance data (http://ftp.microbio. 
me/pub/cancer_microbiome_analysis/TCGA/Kraken/Kraken-TCGA-Voom-SNM-Plate-Center-Filtering-Data.csv), microbiome clin-
ical data (http://ftp.microbio.me/pub/cancer_microbiome_analysis/TCGA/Kraken/Metadata-TCGA-Kraken-17625-Samples.csv), and 
gene expression data (https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-UCEC.htseq_fpkm.tsv.gz). The survival data 
and clinical data from the TCGA-UCEC were obtained from the paper published by Liu et al. [18]. The microsatellite instability (MSI) 
score was downloaded from the cBioPortal website (https://www.cbioportal.org/study/clinicalData?id=ucec_tcga_pan_can_atlas_ 
2018). Information relating to the tumor mutation burden (TMB) and homologous recombination deficiency (HRD) score in the 
TCGA was collated from PubMed Identifier (PMID) 29617664. The Ensembl database (http://www.ensembl.org/info/data/ftp/index. 
html) was used to acquire human gtf files (Homo_sapiens.GRCh38.99.gtf.gz). In addition, an immune cell gene set was retrieved from 
the List of Pan-cancer Immune Metagenes (PMID 28052254). 
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2.2. Bacterial microbiota atlas and LEfSe analysis 

As microbial community samples are obtained from both the genome and transcriptome levels, they are merged by the TCGA_ID of 
the sample (taking the maximum value). The microbial abundance of each sample was obtained from the microbiome and the relative 
abundances of identified taxa were displayed from kingdom to genus levels. Box plots showed the relative abundance of the top 10 
microbes. The LEfSe method was then used to detect particular enhanced microbial biomarkers in EC samples and paracancerous 
samples by Tutools (https://www.cloudtutu.com), a free online data analysis platform. The threshold score of linear regression 
analysis (LDA) was set at 3.0 to identify the main characteristic microorganisms. LEfSe analysis necessitates the input of a species’ 
taxon, and each taxon must be associated with relevant information; a few species with no registered taxonomic information were 
removed and only the species with complete taxonomic information for each taxon were preserved for analysis. 

2.3. Construction and validation of potential prognostic-related microbial markers 

The TCGA-UCEC trial collected tumor samples that were subsequently divided into training and testing cohorts at a 5:5 ratio. 
Univariate Cox regression analysis was conducted using the survival (v3.2-7) and survminer (v0.4.8) packages in the R environment; 
this allowed us to assess the association between overall survival (OS) and the abundance of characteristic microbial markers in the 
training dataset. Microbial signatures linked to OS in EC patients were identified, with a significance threshold of P < 0.05. Subse-
quently, we employed LASSO Cox regression analysis, utilizing the “glmnet (v4.0-2)” package in R, to identify the most pertinent 
prognostic microbiological markers and construct a risk score model. To enhance the precision of the model, a 10-fold cross-validation 
method was employed to select the lambda parameter. The risk score for each sample was determined using the formula: Rscorei =
∑n

j=1 abundance ji × βj, where “abundance” represents the microbial marker’s abundance, “β” signifies the marker’s regression co-
efficient derived from LASSO regression, “RScore” is the sum of the product of abundance and coefficient for each significant marker in 
a given sample, “i” denotes the sample, and “j” corresponds to the microbial marker. To assess the effectiveness of the model, we 
computed risk scores for each patient and categorized them into high-risk and low-risk groups based on the median cutoff. Kaplan- 
Meier (KM) survival curves were plotted using OS and progression-free interval (PFI) data, and p-values were calculated. A statisti-
cally significant difference between the high and low-risk groups was determined when P < 0.05. The sample risk score served as the 
model’s prediction outcome, and the area under the ROC curve (AUC) was calculated based on survival data. The ROC curve was 
generated using the training dataset, and the prognostic microbial biomarkers exhibited diagnostic efficacy exceeding 0.6 for the AUC 
at 2, 4, 6, and 8 years. To validate the performance of the model, risk scores were calculated in the validation set using the same 
formula applied in the training set. This validation process included plotting KM survival curves and ROC curves to ensure the reli-
ability of the novel model. 

2.4. Nomogram construction 

A nomogram integrates multiple predictive variables to accurately estimate the individual probability of clinical events and 
provide a quantitative tool for predicting outcomes in patients with a disease of interest [19]. This entire process involves the use of 
well-packaged R packages for analysis. Integrating this with the additional information, a nomogram assimilates various predictive 
variables to accurately determine the individual likelihood of clinical events, serving as a quantitative instrument for forecasting 
outcomes in patients with specific diseases. First, we used the “rms (v6.1-0)” and “survival (v3.2-7)” packages in R to generate a 
nomogram according to independent prognostic factors. Then, we performed Cox proportional hazards regression analysis by function 
cph using the following covariates: age, grade, and clinical stage. Then, survival probabilities were calculated using the Surv function. 
Finally, we generated a nomogram to predict OS at the 2-, 4-, 6-, and 8-year stages using the function nomogram; this was displayed by 
the plot method. In addition, we computed the C-index for both the training and validation datasets and generated statistical charts to 
illustrate the results. 

2.5. Prognostic signature-related immune cells and function 

Next, we explored disparities in tumor-immune cell infiltration and immune functionality in both normal and EC tissues. By 
applying single-sample gene set enrichment analysis, we computed enrichment scores for 28 immune infiltrating cell types in cancer 
samples by utilizing the GSVA R package (version 1.34.0). Following this, we standardized the data using the scale function and 
generated box plots to illustrate distinctions between the low- and high-risk score cohorts. Furthermore, we determined the enrichment 
scores for immune function in the samples, standardizing the data with the scale command in R, and presenting the findings with box 
plots. To assess differentially expressed immune checkpoints, we procured MSI score data from the cBioPortal database. Variations in 
MSI across groups were calculated, and violin plots were constructed to provide a visual representation of data distributions. Infor-
mation on TMB and HRD scores for tumor samples was sourced from PMID: 29617664. To gauge the prognostic significance of these 
scores, we obtained tumor immune dysfunction and exclusion (TIDE) scores from an online database. In addition, we retrieved 
immunophenoscores (IPS) data from the TCGA-UCEC cohort through the TCIA database. For insights into immune checkpoint 
expression disparities between groups, we referenced PMID: 32814346, quantified the variations in immune checkpoint expression, 
and illustrated these distinctions with box plots. 
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3. Results 

3.1. Population classification 

Table 1 presents the characteristics of the 239 participants whose samples were included in the TCGA-UCEC dataset, including 90 
patients over 65 years old and 149 patients aged 65 years or younger. 

3.2. Screening and verification of prognostic microorganisms 

Microbiome data arising from EC samples and control tissues were compiled using the TCGA_ID number. We collected 239 cancer 
samples and 116 paracancerous samples. The average abundance was then aggregated based on kingdom, phylum, class, order, family, 
and genus; then, the top 10 microorganisms were selected for presentation. Analysis revealed that the proportion of each grade was 
uniformly distributed in cancer and paracancerous samples (Fig. 1A-F). 

3.3. Application of the LEfSe method to identify significant microbial biomarkers 

Next, LEfSe analysis was performed on cancer and paracancer samples; this identified a total of 827 microbial markers with sig-
nificant differences between the two groups. Of these markers, 417 belonged to the tumor group and had a higher LDA, while the 
remaining 411 belonged to the normal group with a lower LDA (Fig. 2A and Supplementary Table 1). The cladogram generated by 
LEfSe and shown in Fig. 2B demonstrated that the p_Actinobacteria and p_Bacteroidetes phyla played an important role in the EC group, 
while the p_Firmicutes and p_Euryarchaeota phylum played a key role in the paracancerous group. There were 827 differential microbial 
markers encompassing various taxonomic levels. Following integration, a total of 485 differential microorganisms were identified at 
the genus level. 

3.4. Construction and validation of a prognostic signature 

We initiated our analysis by conducting univariate Cox regression to investigate the connection between individual microbial 
indicators and the survival rates of patients with EC. We calculated the hazard ratios (HR) for each bacterial marker to ascertain their 
potential roles in the progression and prognosis of EC patients. Initially, we divided the data randomly into two sets, with a 50:50 ratio. 
The training set comprised 120 samples, while the validation set contained 119 samples. Subsequently, employing information on 485 
distinct microbial markers at the genus level and OS data, we performed univariate Cox regression analysis to pinpoint microbial 
markers significantly linked to survival. By applying a correlation threshold, we identified 26 microbial markers that exhibited a 
significant association with prognosis, as illustrated in Fig. 3A. Our analysis of these microbial markers revealed that six markers 
exhibited an HR greater than 1, thus indicating that an increase in their abundance might be correlated with a poor prognosis in EC 
patients. Conversely, 20 markers exhibited an HR less than 1, suggesting that a reduction in their abundance could be linked to a poorer 
prognosis, as depicted in Fig. 3B and Supplementary Table 2. To further investigate the significance of microbial markers with notable 
p values, we conducted KM survival curve analyses, as depicted in Fig. 3C. 

3.5. LASSO Cox regression analysis 

Next, we performed LASSO Cox regression analysis and integrated microbial markers to formulate a prognostic model. Subse-
quently, we computed risk scores for the training dataset. Using LASSO regression to reduce the dimensionality of the results obtained 
from univariate Cox regression analysis, we identified ten microbial markers to establish a risk-scoring model. The risk score was 
generated using the following equation: Risk Score = g_Marinobacterium * (− 0.3314) + g_Nitrobacter * (− 0.1936) + g_Mycetocola * 
(− 0.1220) + g_Zobellia * (− 0.1203) + g_Ottowia * (− 0.0935) + g_Leifsonia * (− 0.0608) + g_Cyclobacterium * (− 0.0106) + g_Nitri-
liruptor * 0.1306 + g_Saccharicrinis * 0.2628 + g_Buchnera * 0.3265 (Fig. 4A). Based on their risk scores, we classified the samples into 
high- and low-risk groups and plotted a KM curve using OS data (Fig. 4B). Our analysis revealed a significant disparity in survival 

Table 1 
Clinical information relating to samples from the TCGA-UCEC dataset.  

Clinical data of TCGA-UCEC tumor samples (239) 

Age >65 90 
≤65 149 

Grade G1 71 
G2 79 
G3 84 
High Grade 5 

Clinical_stage Stage I 163 
Stage II 17 
Stage III 46 
Stage IV 13  
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curves between the two groups (P < 0.0001). Nonetheless, the distinction based on PFI data was found to be non-significant (Fig. 4B, P 
= 0.24). Subsequently, we employed the risk score as a predictive model and calculated the AUC value in conjunction with survival 
data. The calculated AUC values for the model at 2, 4, 6, and 8 years all exceeded 0.6, signifying robust predictive performance 
(Fig. 4C). 

3.6. Model testing on the validation set 

Subsequently, the model’s performance underwent further validation using the validation dataset. The sample risk scores were 
computed following the previously outlined procedure, and the division into high-risk and low-risk groups was determined using the 
median as the cutoff threshold. KM survival curves were generated based on OS data, revealing a statistically significant distinction 
between the two groups (Fig. 5A, P = 0.022). In addition, the KM survival curves stratified by PFI also revealed a significant difference 
(Fig. 5A, P = 0.017). Utilizing the sample risk scores as model predictions, the AUC values for 2, 4, 6, and 8-year survival predictions all 
exceeded 0.6 when correlated with actual survival outcomes, thus demonstrating strong model performance (Fig. 5B). 

3.7. Construction and validation of a nomogram model 

Subsequently, we utilized the risk score, age, grade, and clinical stage data from both the training and validation datasets to 
construct nomograms intended to guide clinical decision-making (Fig. 6A, B). In addition, we generated ROC curves based on these 
nomograms. Our analysis revealed that the AUC for 2, 4, 6, and 8-year predictions exceeded 0.65 in both the training and validation 

Fig. 1. A comprehensive comparison of microbiota distribution between normal and EC samples. The distribution of microbiota proportions in 
normal and EC samples was analyzed at the kingdom (A), phylum (B), class (C), order (D), family (E), and genus (F) levels. Each panel visually 
depicts the relative abundance of the microbiota at its respective taxonomic level, thus offering a detailed insight into the microbial differences 
between normal and EC tissues. 
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sets. Notably, the predictive performance of the nomogram for the training set closely resembled that of the risk score alone, as 
depicted in Fig. 6C. However, when validated with the independent validation set, the nomogram exhibited significantly superior 
prognostic performance when compared to the risk score alone, as illustrated in Fig. 6C. Furthermore, we computed the C-Index for 
both the nomogram and the risk score within both the training and validation sets. In both cases, the C-Index exceeded 0.5, indicating 
favorable predictive performance. It is worth noting that the C-Index of the nomogram in the training set (0.8327 [95% CI: 
0.7813–0.8842]) was marginally lower than that of the risk score (0.9027 [95% CI: 0.8719–0.9335]). However, in the validation set, 
the nomogram exhibited significantly superior performance (C-Index: 0.7698 [95% CI: 0.7101–0.8295]) compared to the risk score (C- 
Index: 0.6029 [95% CI: 0.5383–0.6675], as shown in Fig. 6D. Furthermore, we conducted comprehensive analysis of both the training 
and validation sets using single-factor and multi-factor regression models that incorporated the risk score, age, grade, and clinical stage 
groupings. Our findings consistently demonstrated that the risk score stood out as a highly significant prognostic factor in both datasets 
and outperformed other clinical feature groupings in predicting patient outcomes (Fig. 6E, F). 

3.8. Microbial communities with unique characteristics and associations with hosts 

Next, we conducted statistical analysis on the correlation between the abundance of microbial biomarkers within the model and 
protein-coding gene expression in EC samples. Analysis indicated that there was a correlation between the characteristic model of 
microbial species abundance in EC samples and sample gene expression. First, we obtained 19597 protein-coding genes; then, based on 
a correlation threshold, we identified 422 groups of significantly correlated combinations, including 397 protein-coding genes. The 
correlation heatmap showed that in the model, the proportion of positive correlation between microbial species (g_Nitriliruptor, 
g_Saccharicrinis, and g_Buchnera) and related genes was higher, while the proportion of negative correlation between other micro-
organisms and related genes was higher (Fig. 7A and Supplementary Table 3). Subsequently, we conducted an analysis of host gene 
functional enrichment for the 397 protein-coding genes. The Gene Ontology enrichment analysis was divided into three components: 
biological processes (BPs), cellular components (CCs), and molecular functions (MFs). The enriched pathways for BPs were mainly 
ribonucleoprotein complex biogenesis, ncRNA processing, mRNA processing, and RNA splicing. The enriched pathways for CCs were 
mainly the mitochondrial inner membrane, mitochondrial protein-containing complex, and mitochondrial matrix. The enriched 
pathways for MFs were mainly GTP binding and guanyl nucleotide binding. The enriched pathways identified by KEGG analysis were 
mainly pathways associated with neurodegeneration-multiple diseases, Huntington disease, and Alzheimer’s disease (Fig. 7B). 

Fig. 2. Comparative analysis of bacterial taxa in paracancerous control and EC samples. (A) LEfSe analysis revealed distinct bacterial taxa abun-
dances between paracancerous control samples and EC samples. Horizontal bars illustrate the effect size for each taxon, with green denoting taxa 
enriched in the control group and yellow denoting taxa enriched in the EC group. (B) A cladogram showing the microbial taxa exhibiting substantial 
differences in abundance between paracancerous and EC samples. In the cladogram, taxonomic hierarchies were sorted from inside to outside (from 
genus to kingdom). 
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3.9. Immune cells and functionality associated with prognostic signature models 

To assess immune cell infiltration and demonstrate functional immune disparities, we employed gene set variation analysis to 
probe the association between risk scores and immune infiltration among high- and low-risk EC patients. Notable variations were 
identified (35.7%; 10/28) in the proportions of immune infiltrating cell types between the high-risk and low-risk cohorts (Fig. 8A). 
Analysis showed that the high-risk group exhibited a notably greater abundance of memory B cells compared to the low-risk cohort. 
Conversely, the low-risk group showed significantly elevated proportions of activated B cells, activated CD8 T cells, CD56dim NK cells, 
macrophages, MDSCs, monocytes, natural killer T cells, and plasmacytoid dendritic cells in comparison to the high-risk group. 
Furthermore, we conducted supplementary analyses to scrutinize the discrepancies in the scores of thirteen immune cell-associated 
functions between the high-risk and low-risk groups. These analyses revealed that four immune cell-related functions, encompass-
ing cell cycle regulation, checkpoint mechanisms, T cell co-stimulation, and type II IFN response, exhibited significantly higher 
enrichment scores within the low-risk group (Fig. 8B). 

3.10. Differences in immune therapy indicators and checkpoint expression 

We conducted a comprehensive statistical analysis to compare the expression levels of immune indicators and checkpoints between 
two distinct risk groups: high-risk and low-risk. Our analysis revealed that there were no statistically significant differences observed in 

Fig. 3. Univariate Cox regression analysis was employed to identify microbial markers linked to patient survival. (A) A volcano plot visualizing the 
predictive significance of differential microbial markers based on their abundance, providing a comprehensive overview of those with potential 
relevance for patient survival. (B) The forest plot shows the hazard ratios, confidence intervals, and statistical significance of each microbial marker, 
as determined by univariate Cox regression analysis, offering insights into their individual impact on survival outcomes. (C) KM survival curves are 
shown for the selected microbial markers, thus demonstrating their distinct survival probabilities over time. These curves are accompanied by p- 
values, highlighting their statistical significance in the context of patient survival. 

Fig. 4. Comprehensive visualization of model parameters and performance. (A) The panel illustrates the tuning parameter lambda (λ) determined 
through a 10-fold cross-validation process, showcasing the profiles of LASSO coefficients for 26 microbial markers. (B) In addition, the figure also 
included KM curves, thus providing a visual representation of survival probabilities over time for high- and low-risk groups. (C) ROC curves are 
presented, demonstrating the model’s predictive accuracy in distinguishing between high- and low-risk groups within the training set. 
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MSI, TMB, or HRD between these two risk groups. To evaluate a patient’s potential response to immune checkpoint blockade therapy, 
we employed the TIDE score, a recognized biomarker. A lower TIDE score signifies a reduced likelihood of immune escape, suggesting 
a more favorable response to immunotherapy [20]. Therefore, we utilized the TIDE score (accessible at http://tide.dfci.harvard.edu/) 
to assess the prognostic relevance of our immune response prediction signature for the success of immunotherapy within both low-risk 
and high-risk EC subgroups. Our study revealed a significant variation in TIDE scores between the high-risk and low-risk groups 
(Fig. 9A, P < 0.01). This variation suggests that high-risk group members might have less positive outcomes from immunosuppressive 
treatments compared to their low-risk counterparts. Moreover, individuals in the low-risk group appeared to be more responsive to 
immunotherapy. In addition, the scores for IPS-CTLA4 and PD1/PD-L1/PD-L2 blockers were substantially higher in the low-risk group 
(P < 0.05), suggesting a greater potential benefit from immune therapy for these patients (Fig. 9A). In summary, the microbiome-based 
risk score model effectively categorizes patients, pinpointing those likely to gain from immunotherapy. We also observed substantial 
distinctions in the expression levels of 17 out of 64 immune checkpoints between the high-risk and low-risk groups. Of these, three 
checkpoints exhibited significantly higher expression in the high-risk group, while the remaining 14 showed significantly higher 
expression in the low-risk group, which included notable markers, including CD27 and TNFSF14 (Fig. 9B). 

4. Discussion 

Mounting evidence underscores the critical role of the tumor microbiome in influencing cancer progression and metastasis, as well 
as modulating patient responses to immunotherapy, which consequently impacts survival outcomes. The microbial communities 
within the tumor microenvironment are crucial in shaping immune responses [21,22]. The links between specific bacteria, such as 
Atopobium vaginae and Porphyromonas sp., and EC, particularly under high pH conditions, pose intriguing questions about the vaginal 
and uterine microbiota’s role in gynecological health [15]. We observed a significant correlation between microbiota variations and 
EC, highlighting the role of the microbiome in cancer development and progression. The expansive sample size of the TCGA-UCEC 
cohort enhances the credibility of our findings, including the identification of distinct microbial communities in EC and adjacent 
non-cancerous tissues. This discovery not only reinforces the concept of the uterus as a non-sterile environment but also suggests 
microbial imbalances as key factors in EC onset and development. Our study provides groundbreaking insights into the complex in-
teractions between the microbiota and EC, opening new paths for understanding and managing this prevalent gynecological 
malignancy. 

In an innovative approach, we employed single-factor Cox regression analysis, revealing an association between increased Nitri-
liruptor bacterial abundance and poorer EC prognosis. In addition, LASSO regression analysis led to the generation of a risk scoring 
model for EC, incorporating the Nitriliruptor microbiome. Previous research has linked Nitriliruptor to colorectal cancer (CRC), 
revealing a strong correlation between Nitriliruptor abundance and the expression of host genes in advanced-stage CRC [23,24]. 
Moreover, a forest plot derived from univariate COX regression analysis demonstrated that a higher abundance of Blautia bacteria 
correlated with a poorer clinical prognosis in EC patients (HR, 3.923; 95% CI: 1.505–10.225; P = 0.019). Previous research has linked 
the increased presence of Blautia sp. In the intestines of early-stage breast cancer patients to clinical staging and histological prognostic 
grading, with significantly higher levels observed in clinical stage groups II/III compared to clinical stages 0/I. Moreover, Blautia sp. 
Has also been associated with worse clinical outcomes and advanced clinical stages, potentially due to its involvement in estrogen and 
phytoestrogen metabolism [25]. Given the strong estrogen environment in the majority of EC cases, our results suggest that Blautia 
bacteria might serve as a microbial marker for EC patients, partly by participating in the estrogen signaling pathway. Notably, in our 
current study, Elizabethkingia microorganism emerged as a prognostic marker in EC patients (HR, 2.998; 95% CI: 1.224–7.343; P =
0.044), as determined by univariate Cox proportional hazard regression analysis in the TCGA-UCEC cohort. A previous case report 
described a 56-year-old patient with nasopharyngeal carcinoma, who developed bacterial encephalitis complicated by an 

Fig. 5. KM survival analyses and time-dependent ROC curves derived from the risk score in the validation datasets. (A) KM curves demonstrating 
survival probabilities for high- and low-risk groups over time in the validation set. (B) ROC curves illustrating the diagnostic performance of the risk 
score in distinguishing between high- and low-risk groups within the validation set. 
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Elizabethkingia miricola infection, which was successfully treated with antibiotics [26]. Elizabethkingia miricola is commonly linked to 
adverse outcomes in patients with other comorbidities [27]. Moreover, this aligns with findings from previous studies, which have 
underscored that microbiome-induced inflammation can accelerate tumorigenesis by activating tumor-associated inflammatory 
signaling pathways [28,29]. 

Our study revealed significant disparities in immune cell infiltration and immune function between high-risk and low-risk mi-
crobial groups in EC patients. Analysis revealed a notably higher proportion of tumor-infiltrating immune cells, including activated B 
cells, activated CD8+ T cells, macrophages, mast cells, MDSCs, monocytes, natural killer T cells, and plasmacytoid dendritic cells, in 
the low-risk group compared to the high-risk group. Prior research has emphasized the pivotal role of B cell antigen presentation in 
activating tumor-specific CD8+ T cells [30]. Moreover, an association between infiltrating CD8+ T cells and prognosis has been 
observed in various solid malignancies, including colorectal and ovarian cancer [31]. The lower infiltration of CD8+ T cells has been 
linked to a poorer prognosis and is essential for disrupting tumor-associated blood vessels [32]. Analysis also indicated an elevated 
number of B cells and activated B cells in non-metastatic tumors, with their infiltration in primary tumors correlating with improved 
survival rates in colorectal cancer patients with liver metastasis. In mouse models, tumor-infiltrated activated B cells in colorectal 
cancer reduce liver metastasis, while increased tumor infiltration of activated B cells diminishes CRC development and liver metastasis 
[33]. Our study identified a significant increase in activated B cells and activated CD8+ T cells in the low-risk EC group, suggesting a 
more potent anti-tumor effect and a more favorable prognosis. Moreover, our findings emphasize the importance of the immune 
landscape in EC for developing personalized treatment strategies to improve patient outcomes, including immunotherapy response 
prediction, the variation in TIDE scores and higher scores for immune checkpoint blockers (such as IPS-CTLA4 and PD1/PD-L1/PD-L2) 
in the low-risk group suggesting that these patients are more likely to benefit from immunotherapy. This is pivotal for tailoring 
treatment strategies, as it indicates a higher potential for a positive response to immune checkpoint blockade therapy in low-risk EC 
patients. Furthermore, the microbiome-based risk score model effectively categorizes EC patients into high-risk and low-risk groups. 
This stratification is crucial for personalizing treatment approaches, particularly in deciding who may benefit most from immuno-
therapy. Thus, the observed distinctions in immune function and cell infiltration between high-risk and low-risk groups hold 
considerable implications for immunotherapy strategies. 

The present study highlighted the potential of microbes to enhance both anti-tumor immunity and the efficacy of immunotherapy. 
By applying the TCGA dataset on EC microbiomes, our findings not only identify disparities in microbiota composition between tumor 
and normal tissues but also generate a survival model based on microbiota abundance. Subsequently, we utilized the risk score, age, 
grade, and clinical stage data from both the training and validation datasets to construct nomograms intended to guide clinical 
decision-making. This represents a significant step in applying the insights from our study on microbiome-based risk scoring, trans-
forming them into practical tools for clinicians. Research on microbial signatures associated with EC not only provides a fresh pathway 
for personalized medicine but also revolutionizes the personalization of gynecological oncology treatment. By harnessing microbiota 
data to develop survival models and construct these nomograms, clinicians can improve the prediction of patient outcomes, enabling 
them to customize treatment strategies more effectively. This approach opens up new possibilities for impacting the screening, risk 
assessment, treatment, and monitoring of EC patients. The integration of microbiota profiling, alongside traditional clinical parameters 
in these nomograms, could significantly alter the standard of treatment for EC, paving the way for more efficient and tailored treatment 
plans. Novel approaches, such as probiotic and microbiota transplants, will provide a new frontier in EC therapy by modifying the 
composition of the endometrial microbiota. These alternative treatments present a promising yet complex challenge, potentially 
revolutionizing our approach to uterine microorganism modulation and thereby enhancing treatment efficacy and patient outcomes in 
the battle against EC. Our study, while comprehensive in its approach to understanding the role of microbiota in EC, has several 
limitations that must be acknowledged. The observational nature of our research implies a limitation in establishing causality between 
microbiota changes and cancer progression. We also recognize that our findings are derived from a specific dataset (TCGA-UCEC 
cohort), which may limit the generalizability of our results to all EC populations. Overall, the robust prognostic performance of the 
microbiome-based risk score model underscores its significance for future investigations into microbial communities in cancer pa-
tients. These findings offer fresh insights into the intricate relationship between microbiota and tumors. The molecular mechanisms 
uncovered hold promise for uncovering innovative therapeutic targets and biomarkers for EC patients. 

5. Conclusion 

This study illuminates the significant impact of uterine microbiota on EC, revealing distinct microbial patterns in cancerous and 
adjacent tissues. Our findings, employing extensive data analysis and risk score modeling, highlight the potential of microbiota as a 
biomarker for tailoring EC treatment strategies. The research underscores the crucial role of microbiota in immunotherapy efficacy, 
offering novel insights for personalized medicine in gynecological oncology. 

Fig. 6. Comprehensive nomograms for predicting OS in EC Patients. Detailed nomograms for predicting OS in EC patients, separately presented for 
the training (A) and validation (B) datasets. (C) ROC curves for evaluating the predictive accuracy of the nomograms in both the training and 
validation sets. (D) C-Index values for the nomograms and corresponding risk scores, presented for both the training and validation datasets. 
Analysis of independent prognostic factors in the EC patient cohorts, with results shown for the training (E) and validation (F) datasets. 
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Fig. 7. Comprehensive analysis of microbial species and host gene correlations. (A) Correlations between the expression levels of host genes and the 
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identifying and categorizing the biological processes, pathways, and functions associated with the genes that showed significant correlations with 
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Fig. 8. Comprehensive analysis of immune cell enrichment and functional disparities in EC. (A) Variations in immune cell enrichment scores, 
comparing the high-risk and low-risk patient cohorts in EC. (B) Significant disparities in 13 functional scores related to immune cell activity; each 
functional score was calculated based on its association with immune cell activity (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 
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