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Abstract

Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate
information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito
species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical
sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to
distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development
requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for
Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF
MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention
as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field
populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study
was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied
cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified
taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A.
gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very
promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally
accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample
preparation and short processing time. As the method does not require DNA sequence information, data can also be
reviewed at any later stage for diagnostic or functional patterns without the need for re-designing and re-processing
biological material.
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Introduction

Human malaria is exclusively transmitted by Anopheles spp.

mosquitoes. Nearly all key malaria mosquito vectors – and many

other mosquito species - are members of complexes or groups

comprising morphologically indistinguishable sibling species [1].

Exact identification is, therefore, fundamental for understanding

vector biology; and hence malaria risk factors and epidemiology.

Equally, the success of vector control interventions profoundly

relies on accurate information on mosquito populations to

establish baseline data for the optimal choice of available tools

and to monitor their effectiveness.

A widely discussed case is the Anopheles gambiae Giles 1902

species complex comprising at least seven morphologically

identical sibling species across Africa [2]. Two of the members

of this complex, A. gambiae sensu stricto (s.s.) and A. arabiensis, are

major malaria vectors in sub-Saharan Africa and are found in

sympatry over a large geographical range [3]. For malaria

epidemiology and vector control an important aspect is the fact

that these species differ in their biology. For example, A. arabiensis

is more likely to rest outdoors for blood digestion making it a lesser

target for indoor-residual spraying (IRS) with insecticides [4,5].

Correct identification has even further-reaching practical con-

sequences where a non-vector species is mistaken for a vector

species and vice versa. In some areas, for instance, A. arabiensis is

sympatric with A. quadriannulatus which - due to its strong

preference to cattle [6,7] - is generally considered an unimportant

vector species. Moreover, sympatric mosquito species may show

different levels of susceptibility to available insecticides for

mosquito control (e.g. [8,9]), thus underlining the importance of

correct taxonomic classification. Even within A. gambiae s.s. further

subdivisions are made. These subdivisions were initially defined by

karyotypes and called ‘‘chromosomal forms’’ (i.e. Mopti, Bamako,

Savanna, Bissau and Forest) [10]. The chromosomal forms can be

further grouped into two genetically differentiated ‘‘molecular
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forms’’, M and S, which were originally defined by variations in

the intergenic spacer (IGS) and internal transcribed spacer (ITS)

ribosomal DNA (rDNA) regions [11] and later found to be

separated by other genetic associations [12,13]. The M and S

forms have been found to display different ecological tolerances

and behaviours adding evidence of reproductive isolation between

them [14–18].

The current ‘‘gold standard’’ to distinguish closely related and

morphologically indistinguishable specimens is PCR diagnostics.

Common to Anopheles mosquitoes are sequence variations within

the second internal transcribed spacer (ITS2) of the rDNA

providing valuable markers for diagnostic assays [1]. PCR

protocols such as those developed to distinguish members of the

A. gambiae complex (e.g. [19–23]) are important tools in basic and

applied research. For routine screening they are, however, costly,

time-consuming and labour intensive. Species specific PCR is also

limited in its flexibility because primers target specific sequences

and other potentially important markers may easily be overlooked.

To overcome the drawbacks of classic PCR-based methods,

alternative methods have been explored more recently, notably

loop-mediated isothermal amplification (LAMP) technique [24]

and near-infrared spectroscopy (NIRS) [25,26]. The LAMP

technique is a DNA amplification process at a constant temper-

ature using strand displacement reaction, allowing for amplifica-

tion and detection of a gene in a single step. In contrast, NIRS

collects a density distribution of the near-infra-red energy

Table 1. Laboratory colonies included in the MALDI-TOF MS analysis.

Species Molecular form Colony Origin Source1

Members of the A. gambiae species complex

A. quadriannulatus s.s. SKUQUA South Africa MR4 (MRA-761)

SANGWE South Africa MR4

A. merus OPHANSI South Africa MR4 (MRA-803)

MAF South Africa MR4

A. gambiae s.s. M MALI-NIH Mali MR4 (MRA-860)

M MOPTI Mali MR4 (MRA-763)

M VK5 Burkina Faso IRD

M/S mix VKPER Benin IRD

M/S mix RSP Kenya MR4 (MRA-334)

S G3 Gambia MR4 (MRA-112)

S KISUMU1 Kenya MR4 (MRA-762)

S PIMPERENA Mali MR4 (MRA-861)

S RSP-ST Kenya MR4 (MRA-698)

S SOUMOUSSO Burkina Faso IRD

S ZANU Zanzibar MR4 (MRA-594)

S IN22C+ Isolated from G3 MR4 (MRA-115)

S (M/S hybrids in males) ASEMBO1 Kenya MR4 (MRA-186)

A. arabiensis BOBO Burkina Faso IRD

DONGOLA Sudan MR4 (MRA-856)

HARARE Mozambique MR4

KGB Zimbabwe MR4 (MRA-339)

SENN Sudan MR4 (MRA-764)

Other Anopheles species

A. stephensi STE2 India MR4 (MRA-128)

STI India Swiss TPH

A. quadrimaculatus ORLANDO USA MR4 (MRA-139)

A. minimus MINIMUS1 Thailand MR4 (MRA-729)

A. freeborni F1 USA MR4 (MRA-130)

A. farauti FAR1 Papua New Guinea MR4 (MRA-489)

A. dirus WRAIR2 Thailand MR4 (MRA-700)

A. atroparvus EBRO Spain MR4 (MRA-493)

A. albimanus STECLA El Salvador MR4 (MRA-126)

Outgroup

Aedes aegypti ROCK North America Swiss TPH

1MR4: Malaria Research and Reference Reagent Center, VA, USA. Numbers in brackets are MR4 reference numbers; IRD: Institut de Recherche pour le Développement,
Montpellier, France; Swiss TPH: Swiss Tropical and Public Health Institute, Basel, Switzerland. Numbers in brackets indicate the MR4 catalogue number.
doi:10.1371/journal.pone.0057486.t001
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absorbed by a sample, which is then explored for characteristics

that distinguish biological samples. Both methods may discrimi-

nate between the two closely related A. gambiae sibling species, A.

gambiae s.s. and A. arabiensis and are potentially valuable methods in

areas where the distinction between the two is sufficient [24–26].

A less explored avenue is the use of proteomic data as

a taxonomic tool for insects. In contrast, characterisation and

identification of microorganisms (i.e. bacteria and fungi) using

whole cell matrix assisted laser desorption/ionization time-of-flight

mass spectrometry (MALDI-TOF MS) is well established [27].

MALDI-TOF MS produces a mass spectrum that can be

compared with reference spectra for rapid species identification

and may be even more discriminating than rDNA sequence

analysis [28]. Whole cell MALDI-TOF MS requires minimal

sample preparation, has very low cost for consumables and

produces results within minutes making it ideal for high

throughput screening. Through improved hardware and advances

in data storage for reference spectra and software solutions, MS

has become a routine approach in the identification of prokaryotes

[29,30].

The use of MALDI-TOF MS for the discrimination of

arthropod species has been evaluated for the first time almost

a decade ago in fruit flies [31] and in aphids [32]. Since then the

technique has received rather little attention among entomologists

with a few recent exceptions. These include the study of Feltens

et al. [33] in Drosophila melanogaster, by far the most in depth

exploration of the method, Kaufmann et al. [34,35] in biting

midges and Karger et al. [36] in ticks.

The prospect of MALDI-TOF MS to discriminate arthropod

species motivated us to set out and further explore this technique –

together with a computational approach developed for ‘‘omics’’

data - for its use in malaria vector biology. Here, we measured

MALDI-TOF MS spectra from 32 Anopheles laboratory colonies

and 2 field populations representing 12 Anopheles species. The

Anopheles colonies included key members of the A. gambiae species

complex (i.e. A. gambiae s.s. of the M and S molecular form, A.

arabiensis, the zoophagic A. quadriannulatus and one saltwater

Figure 1. Examples of MALDI-TOF MS spectra for Anopheles gambiae sensu stricto and A. arabiensis. Examples of representative MALDI-
TOF MS spectra measured from 3 A. arabiensis (blue) and 3 A. gambiae s.s. (red) colonies. The spectra were taken from crude suspensions of heads
and thoraces in SA solution. The vertical, dashed lines indicate peaks that are characteristic (but not exclusive) for one or the other species. The left
panels show the whole spectra between 2 and 14 kDa, while the right panels zoom into two peaks. The two peaks are separated by only a few
Daltons. While the left peak is more common in A. arabiensis, the right peak is more common in A. gambiae s.s. In this representation the peak
intensities were normalised against the highest intensity measured in each spectrum.
doi:10.1371/journal.pone.0057486.g001
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species, A. merus). This first account of successful implementation of

MALDI-TOF MS to identify mosquito vectors of human disease

will hopefully prove useful in the field and pave the way for many

more related applications in vector biology and entomology.

Materials and Methods

Mosquitoes
All mosquito specimens used in the present study were female

imagines (adults) with an age of at least two days post eclosure

from the pupa. The specimens were either obtained from

laboratory colonies or were collected in the field. Specimens from

laboratory colonies (Table 1) were either sampled from our own

colonies at the Swiss Tropical and Public Health Institute (Swiss

TPH) and the Institut de Recherche pour le Développement (IRD;

Montpellier and Burkina Faso) or obtained from the Malaria

Research and Reference Reagent Center (MR4), VA USA. Field

collections were carried out in West Africa in Ladji, Benin

(6u219109’N, 2u249309’E) and Soumousso, Burkina Faso

(11u019469’N, 4u029459’W, see [37]). In Benin, mosquitoes were

sampled as larvae in the field and raised to imagines in the

laboratory, whereas in Burkina Faso specimens were collected as

resting females using aspirators inside human dwellings during the

rainy season, in June 2010. In both cases, individual mosquitoes

were morphologically identified as members of the A. gambiae

species complex [38] and shipped to Swiss TPH in 70% ethanol.

As found in biting midges [34] our preliminary tests showed that

mosquitoes gave sufficient mass spectrometry (MS) signals even if

kept for several months in ethanol (data not shown). Only the

heads and thoraces were subjected to MS measurements as

abdomens potentially introduce strong bias due to interference by

remaining blood meals or changes in physiological status which

might interfere with the overall signal – although we cannot fully

exclude also some interference with e.g. Plasmodium parasites in the

salivary glands. The abdomens were kept for molecular typing as

described below.

Molecular Typing
While the MR4 material was regarded as bona fide, IRD and

Swiss TPH A. gambiae laboratory stock and field-caught specimens

were genotyped according to the protocol of Wilkins et al. [20]

with additional primers for simultaneous species and rDNA typing

[39] using 1 ml of DNA extracted from the isolated abdomens.

DNA was extracted from manually ground (plastic pestles)

abdomens using the DNeasyH Blood & Tissue kit (Qiagen,

Switzerland) according to the manufacturer’s protocol and eluted

and stored in 200 ml Buffer AE. PCR products were loaded and

run on a 2% agarose gel and visualised by ethidium bromide

staining.

MS Measurements and Data Pre-processing
For the MALDI-TOF MS, dissected head and thoraces were

manually ground in a 1.5 ml Eppendorf tube containing 20 ml

formic acid (10%). Five ml of the homogenate were then

transferred into a new tube containing 7.5 ml saturated sinapic

acid (SA) solution. SA solution consisted of 60% acetonitrile and

Table 2. Laboratory colonies included to build the shrinkage discriminant analysis (SDA) models.

Colony Species Molecular form Model 11 Model 22 Model 33

SANGWE A. quadriannulatus s.s. - x

SKUQUA - x

MAF A. merus - x

OPHANSI - x

ASEMBO1 A. gambiae s.s. S x x

G3 S x x

IN22C+ S x x

KISUMU1 S x x

MALI-NIH M x x

MOPTI M x x

PIMPERENA S x x

RSP M/S mix x

RSP-ST S x x

SOUMOUSSO S x x

VK5 M x x

VKPER M/S mix x

ZANU S x x

BOBO A. arabiensis - x x

DONGOLA - x x

HARARE - x x

KGB - x x

SENN - x x

1Model 1: SDA model to discriminate between members of the A. gambiae species complex.
2Model 2: SDA model to discriminate between M and S molecular forms within A. gambiae s.s.
3Model 3: SDA model to classify specimens to their colony of a single species, i.e. A. arabiensis.
doi:10.1371/journal.pone.0057486.t002
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0.3% trifluoroacetic acid (Sigma-Aldrich, Switzerland). From the

matrix suspension 461 ml were spotted on a custom made, 48

position steel target plate (Industrietechnik MAB AG, Basel,

Switzerland) and air-dried.

Raw spectra were acquired with an AximaTM Confidence

MALDI-TOF mass spectrometer (Shimadzu-Biotech Corp.,

Kyoto, Japan) in the linear, positive mode over a m/z range of

2–30 kDa for a total of 1,000 laser shots per spotted sample. The

Figure 2. Dendrogram of hierarchical, unsupervised clustering of binary peaks (presence/absence). While the Anopheles species
(complexes) are well separated by the cluster algorithm, the sibling species of the A. gambiae complex (coloured lines) do not segregate into well
defined clusters. Specimens, both from the same species and colony, are split into different groups. The external branches represent each measured
specimen. For each colony spectra from 10 specimens were recorded and included in the cluster analysis. The labels give the names of the colonies
(Table 1). The length of the branches corresponds to the size of the Dice similarity coefficient.
doi:10.1371/journal.pone.0057486.g002
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Figure 3. Model selection and cross-validation to discriminate between species of the Anopheles gambiae complex (Model 1). (A) The
graph shows the error rate from the cross-validation plotted as a function of the number of the ranked peaks included in the SDA model that
discriminates between members of the A. gambiae species complex. The peaks were ranked (left to right) according to the correlation-adjusted t-
scores (CAT scores). The vertical, red line shows the 68 peaks chosen for the SDA model. (B) List with the 68 ranked peaks (top equals highest rank)
their corresponding CAT scores. The length and direction of the horizontal blue bars represents the CAT scores of the centroid versus the pooled
mean and show the influence of a particular peak in differentiating between the groups (Table S2). For example the top peak, M12369.6 has a strong
influence in separating A. merus from all the other species, emphasised by the length of the bar and the opposite direction from the bars of the other
species. In contrast, the tenth peak, M12527.3 has a stronger influence in separating A. gambiae s.s. from A. arabiensis. AR: A. arabiensis; GA: A.
gambiae s.s.; ME: A. merus; QD: A. quadriannulatus.
doi:10.1371/journal.pone.0057486.g003
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machine’s parameters were chosen by setting the ion source at

20 kV and the extraction delay time at 200 ns. The spectra

obtained by the spectrometer were then loaded into LaunchpadTM

2.8 software (Shimadzu-Biotech Corp., Kyoto, Japan) to create

a peak list for each sample spotted on the plate (i.e. four lists for

each mosquito specimen). The peak lists with size (m/z value) and

intensity values (arbitrary units) were then saved as ASCII text files

for further data analysis. The peak lists and additional information

are provided in Dataset S1 and Table S1. The software

parameters were set to the following values: parent peak

cleanup = ‘‘advanced scenario’’; peak width = ‘‘80 chans’’;

smoothing filter width = ‘‘50 chans’’; baseline filter width = ‘‘500

chans’’; peak detection method = ‘‘threshold apex’’. For the

‘‘threshold apex’’ peak detection, the threshold type was set as

dynamic and the threshold offset to 0.02 mV with a response

factor of 1.2. For external calibration purposes the software also

used the spectra of the Escherichia coli DH5 alpha strain which was

spotted alongside the mosquito samples on each 48-well plate. In

addition, internal reference peaks that appear to be highly

conserved in mosquitoes (i.e. m/z 2670.5, 4554.4, 5115.2,

5217.4, 5328.7, 5345.6, 5371.2, 5551.8, 5591.3, 6560.1, 7683.7,

8560.0, 9109.6, 9234.2, 9453.3, 10255.6 and 16724.8, see also

results Figure 1) were used for internal calibration within a range

of 6700 ppm.

Unsupervised Cluster Analysis
For the unsupervised cluster analysis, the peak lists, previously

saved as ASCII text files, were loaded into SARAMISTM 3.4.1.11

(AnagnosTec, Germany) to create a binary presence/absence

table for each peak in the whole data set with columns for peaks

and rows for spectra. Peaks were binned within 6800 ppm. A

custom-written macro in Excel 2002 (Microsoft) then merged the

peak lists into a single ‘‘average’’ peak list for each mosquito

specimen. Here, a peak was deemed present if it was detected in at

least three out of four lists. The consolidated table was then loaded

into the freely available PAST 2.14 software and a dendrogram

generated using the ‘‘Dice’’ multivariate clustering algorithm for

paired groups [40]. The computed output was exported in nexus

file format and displayed with the freely available FigTree 1.3.1

programme (available from http://tree.bio.ed.ac.uk) and labels

adjusted for visibility with CorelDRAW 12 (Corel Corporation,

2003).

Supervised Linear Discriminant Analysis
In addition to the unsupervised clustering approach described

above we have also taken a supervised approach using linear

discriminant analysis (LDA), an extension to the approach applied

to bacteria by Wittwer et al. [41], to find combinations of features

(i.e. peaks) that separate the ‘‘taxonomic’’ groups at three levels:

Model 1: Classify between members of the A. gambiae species

complex;

Model 2: Classify A. gambiae s.s. into M and S molecular forms;

and

Model 3: Classify laboratory colonies of the same Anopheles

species.

For constructing the LDA model we have chosen the shrinkage

discriminant analysis (SDA) procedure described in Ahdesmäki

and Strimmer [42] because it addresses well the ‘‘small n, large p’’

(i.e. few data points, many features) issue and correlation between

peaks, a typical feature of MS spectra. Here, training of the

classifier is based on James–Stein shrinkage estimates of correla-

tions and variances, where regularisation parameters are chosen

analytically without re-sampling and therefore computationally

non-intensive. The approach applies a pooled centroids formula-

tion of the multiclass LDA predictor function, in which the relative

weights of Mahalanobis-transformed predictors are given by

correlation-adjusted t-scores (CAT scores). The CAT scores allow

for simple ranking and selection of peaks.

For the supervised LDA, ASCII files containing the peak list for

each measurement (i.e. four files per specimen) were imported into

the open source statistical software package R version 2.14.1 [43].

The peaks from the original peak lists were dynamically binned

with the R package ‘‘caMaClass’’ [44], with a variable bin size

between 800–1600 ppm. Here, dynamical binning means that all

spectra (i.e. peak lists) were aligned to account for small offsets

between peak maxima that would still represent the same peak.

Peak intensities were log10-transformed and then – in line with the

unsupervised clustering approach - averaged across the four

spectra from the same individual mosquitoes if a signal was present

in at least three out of the four spectra. The functions in the R

package ‘‘sda’’ [45] were then applied for the SDA as described in

Ahdesmäki and Strimmer [42].

For all three models, only laboratory colonies relevant to the

specific taxonomic problem were included (Table 2). To build and

to test the predictive performance of the SDA model the data was

randomly split into two sets so that spectra from five specimens per

colony served as the training and validation set for furnishing the

SDA classification model and the spectra from the other five

mosquitoes per colony formed the true test set for estimating the

generalised classification error of the model.

Our approach was to minimise the number of the selected peaks

in an attempt to avoid overfitting. The minimum number of peaks

was iteratively determined by adding additional peaks with

decreasing CAT scores in a stepwise manner to the model, while

estimating the error rate from the cross-validation of each set of

predictors. The error rate was calculated as the number of failed

Figure 4. Total number of peaks versus number of diagnostic
peaks present in average spectra from the Anopheles gambiae
species complex. The number of diagnostic peaks present is
associated with the number of total peaks present in an average peak
list. The diagnostic peaks refer to the 68 selected peaks to distinguish
within the A. gambiae species complex (Model 1). The plot suggests
that the field specimens collected by aspiration (green crosses) were
generally of lower quality (i.e. showing fewer peaks) than the specimens
that were raised from the larvae; regardless whether from laboratory
(black circles) or field caught larvae (red triangles).
doi:10.1371/journal.pone.0057486.g004
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classifications over the total number of successful plus failed

classifications committed over 1,000 iterations whereby in every

iteration step, a single record from each group (e.g. one from each

A. gambiae sibling species) of the complete training set was removed

by chance and the rest used to fit the classification model.

The final classification model was eventually challenged by its

application to the specimens that were not used to build and cross-

validate the model in order to measure the generalised classifica-

tion error rate.

Results and Discussion

In total, we recorded spectra from 320 laboratory specimens,

including 32 Anopheles colonies and one Aedes aegypti colony

(Table 1), and spectra from 125 field-caught specimens that

included a mixture of sibling species and molecular forms from

two field populations, ‘‘Soumousso’’ in Burkina Faso (20 A.

arabiensis, 35 A. gambiae s.s. M form and 51 A. gambiae s.s. S form)

and ‘‘Ladji’’ in Benin (19 A. gambiae s.s. M form). MALDI-TOF

MS spectra measured from heads and thoraces suspended in SA

matrix solution produced peaks in the raw spectra with m/z values

ranging between 2 and 29.8 kDa with the majority (95% of all

peaks) lying within 2 and 15.7 kDa. On average, 121 peaks were

detected in a single raw spectrum, ranging between 48 and 187

peaks. This is in the range of MS spectra previously obtained from

biting midges using a similar approach [34]. Given that the A.

gambiae proteome encompasses approximately 13,000 proteins [46]

the number of peaks acquired with the current method suggests

that only a very limited fraction of the whole proteome is

represented. Despite the weak representation of the proteome

some peaks appeared to be more characteristic – but not exclusive

markers - for certain species even by visual inspection of the

unprocessed MS spectra (Figure 1). Intriguingly, in some instances

the peaks were separated by only a few Daltons, perhaps reflecting

single amino acid substitutions or minor post-transcriptional

modifications. Indeed, such small differences were previously

found in orthologous neuropeptides from different Drosophila

species by MALDI-TOF MS [47].

Figure 5. Model selection and cross-validation to distinguish molecular M and S forms in Anopheles gambiae sensu stricto (Model 2).
(A) Error rate of the cross-validation plotted as a function of the number of the ranked peaks included in the SDA Model 2 that classifies M and S
molecular forms among A. gambiae s.s. The peaks were ranked according to the correlation-adjusted t-scores (CAT scores). The vertical, red line shows
31 chosen peaks for the SDA model. (B) The 31 peaks listed on the left were selected on the basis of the smallest number of peaks still providing the
lowest error rate shown in (A) and were ranked according to their CAT scores (Table S3). The length and direction of the horizontal blue bars
represents the CAT scores of the centroid versus the pooled mean and shows the influence of a particular peak in differentiating between the two
molecular forms. M: A. gambiae s.s. molecular M form; S: A. gambiae s.s. molecular S form.
doi:10.1371/journal.pone.0057486.g005
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Figure 6. Model selection and cross-validation for colony authentication in Anopheles arabiensis (Model 3). (A) Error rate as a function of
the number of peaks included in the SDA model for five A. arabiensis colonies and the total error rate over all colonies. The peaks were ranked
according to the correlation-adjusted t-scores (CAT scores). The vertical, red line shows the 23 peaks chosen for the SDA model (Table S4). (B) Top 23
peaks included in SDA model after they were ranked according to CAT scores (i.e. peak with highest CAT score appears at the top of the list). The
length and direction of the horizontal blue bars represents the CAT scores of the centroid versus the pooled mean and shows the influence of
a particular peak in differentiating between the colonies.
doi:10.1371/journal.pone.0057486.g006
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Unsupervised Cluster Analysis
Previous studies that evaluated the feasibility of using whole cell

MALDI-TOF MS to distinguish between arthropod species either

identified distinct patterns, with similarity within and differences

between species, by visual examination [31,32] or hierarchical

cluster analysis [33,34,36].

Initially we also set out to use a cluster analysis approach. At

first inspection, colonies from the same species (complex) that were

reared in different laboratories over many years clustered well

together into the same super cluster (Figure 2). A good example is

A. stephensi. The individual specimens form the two colonies

included in this study segregate into two clusters and yet aggregate

into one single cluster for that species at the next higher level. This

is in contrast to the A. gambiae species complex where hierarchical

clustering failed to segregate the (four analysed) sibling species

within the complex (Figure 2). Conceivably, the intermixture

within the species complex mirrors the close relationship among

the A. gambiae sibling species. In line with the lack of distinct

hierarchical clusters there were no unique peaks that would serve

as single biomarkers to separate the sibling species.

Sibling Species Classification within the Anopheles
gambiae Complex (Model 1)

In an attempt to overcome the poor performance of the

unsupervised cluster analysis in discriminating between the A.

gambiae sibling species, a SDA classification model was evaluated as

an alternative. The model (Model 1) was trained using 110

specimens, 5 individual mosquitoes from each of 22 laboratory

colonies including 5 A. arabiensis, 13 A. gambiae s.s., 2 A. merus and 2

A. quadriannulatus colonies (Table 2). When ranked by the CAT

scores, including the top 68 peaks gave a model with zero

remaining total error rate in the cross-validation (Figure 3 and

Table S2). For estimating the generalised classification error of the

final model the other 110 specimens, not used for model building

and cross-validation, from the laboratory colonies plus an

additional set of 125 field-caught female mosquitoes were classified

using Model 1.

Model 1 correctly classified 105 out of 110 laboratory specimens

(95% accuracy), while the model’s performance for the field-

caught mosquitoes was lower with 105 out of 125 specimens

correctly identified (84% accuracy). Taking a closer look at the

field specimens it turns out that the 19 specimens reared from field

caught larvae were all accurately classified, while only 86 out of

106 specimens (i.e. 81%) caught by aspiration were correctly

identified. Altogether this means that pooling the specimens that

were processed in the same way (i.e. raised from larvae) show an

astonishing accuracy of 96% (124 out of 129). PCR and MALDI-

TOF MS scores for each specimen included in the analysis are

provided in Table S1.

There might be many – biological and technical – reasons why

the specimens from the resting collections performed less well in

the MALDI-TOF MS analysis. The specimens – unlike the adults

raised from the larval collections – were either blood fed or gravid

females or perhaps even carrying pathogens. Therefore, it is

expected that a subset of genes would be differentially expressed

due to the physiological state of the mosquito (e.g. [48–50]). Such

differential expression would potentially also affect the number

and types of masses detected in the MALDI-TOF spectra. If this

was the prime cause of poor performance of Model 1 on the

specimens from the resting collections we would predict different

masses to come up in the MS spectra. The observation in our data

set was, however, a different one. The number of peaks obtained

from these specimens was lower than from those raised from

larvae. More importantly, the number of diagnostic peaks present

in an average spectrum showed the same relationship for all types

of samples (Figure 4). It is, therefore, concluded that a major

impact on the poorer performance of Model 1 on these specimens

is a quality rather than a biological phenomenon. Indeed, some of

the spectra even showed zero peaks (Figure 4). Including the

spectra from field specimens in the model did also not improve its

performance (data not shown). Perhaps the blood in the abdomens

somehow negatively influenced the preservation of the specimens

from those resting collections. Although somewhat unfortunate for

the current study this is an aspect that can be addressed by

optimising and standardising sampling, storage and processing

procedures in future studies. A preliminary recommendation

would be to separate the abdomens from the head and thoraces

prior storage.

Biological Meaning of the Detected Peaks
An interesting question would be what peptides or proteins the

selected peaks actually represent and whether the observed

patterns have any biological meaning, but without thorough

additional investigation and access to genetic information on the

different mosquito taxa the masses themselves only lend to

speculation.

Feltens et al. [33] investigated some proteins that came up in

MALDI-TOF MS profiling in D. melanogaster using nano-high-

performance liquid chromatography electro spray ionisation

tandem MS. Most of them were identified as originating from

muscle tissues and mitochondria. As mentioned above, a caveat

underlying the MALDI-TOF MS is that the full complement of

proteins and peptides cannot be detected. Similarly, it might also

miss out on detecting differences between epicuticular lipid profiles

that have been described between A. gambiae M and S molecular

forms as well as A. arabiensis as they are below the detection range

[51].

Classification of Anopheles gambiae Sensu Stricto M and
S Molecular forms (Model 2)

Remarkably, by using the SDA approach it was possible to

come up with a SDA model (Model 2) that allows for

discriminating between the M and S molecular forms of A. gambiae

s.s. (Figure 5 and Table S3). Among the 11 laboratory colonies

(8 S and 3 M form colonies; Table 2) 50 out of 55 (91%)

individuals that were not used to build the model were still

correctly identified as either M or S form with 31 peaks in the

model (Table S1).

The model failed to discriminate between the M and S

molecular forms in the field caught specimens (classification error

rate equals 49%). While there were some quality issues as

discussed above, additional discrepancies between the rDNA

typing method and MALDI-TOF might have arisen due to non-

interchangeability between methods as found between several

rDNA methods [52,21]. It also appears that the discriminating

pattern obtained from the laboratory specimens does not well

represent the field caught mosquitoes. This may likely be

overcome by adding field specimens into the reference set for

building the SDA model.

Although the CAT scores are no direct measurement of

phylogenetic distances the computed values qualitatively match

the expectation that distances between higher taxa would generally

be greater than those of closely related taxa. When comparing the

range of CAT scores in Figure 3b (Model 1; discriminating

between A. gambiae sibling species) to those in Figure 5b (Model 2;

discriminating molecular M and S molecular forms) the observed

patterns actually meet that prediction.
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Classification of Anopheles arabiensis Laboratory Colonies
(Model 3)

The SDA Model 3 (Figure 6 and Table S4), classifying

specimens of the same species into their colonies of origin,

accurately scored 20 out of 25 specimens (80%) among the five A.

arabiensis laboratory colonies (Table S1). Though 80% accuracy

may seem low this is still quite remarkable given that the model is

based on only 5 randomly picked individuals per colony. Including

more features than the minimum 21 peaks yielded by our inclusion

criteria would actually increase accuracy even more. For example,

including an additional 7 peaks into the model provides an

accuracy of 88% (i.e. 22 correctly identified out of 25 individuals).

Including more specimens in the training set would also reduce the

classification error (data not shown).

How does the Approach Compare to Other Species
Diagnostic Tools?

Assays widely used to distinguish between members of the A.

gambiae species complex are PCR diagnostics based on sequence

variations within the ITS2 of the rDNA [53,19–21]. These assays

require several steps in processing mosquito specimens; DNA

extraction, PCR amplification and finally visualisation of the

amplicon. Altogether these steps are labour and cost intensive.

Even just the consumables for a single extraction followed by

a PCR step can easily be 100 times more expensive than the

consumables for a crude MALDI-TOF measurement - not even

mentioning the increased labour costs and processing time.

An obstacle for the use of MALDI-TOF MS, particularly in

disease endemic countries could be the large capital outlay

required for acquiring and running a spectrometer and the need

for specially trained personnel. Once a sound data basis and the

analytical tools are implemented into automated systems this

technique may, however, become an accessible tool for a wider

community and a valuable alternative for large scale screening

programmes.

For smaller projects an interesting alternative is LAMP, loop-

mediated isothermal amplification technique as it uses little

laboratory equipment and is much faster than current PCR

methods [24]. The method, however, still requires knowledge of

species specific differences to develop the assay and design of

sequence specific primers in the case of multiple species is

challenging.

MALDI-TOF MS has the great advantage that a priori

knowledge of sequence variations is not needed and once spectra

are acquired data can be revisited at any time in silico as already

demonstrated here. For example, separating A. arabiensis from A.

gambiae s.s. the same data could be used to first separate between

the species and then to further classify A. gambiae s.s. into M and S

molecular forms. Similarly this would allow for re-running the

analysis should taxonomy change in one or the other way.

Another approach that has been proposed to discriminate

between A. gambiae s.s. and A. arabiensis specimens is NIRS, near

infrared spectroscopy [25]. Similar to our approach spectra are

recorded and explored for discriminant patterns. The spectra

themselves are, however, less conducive in drawing conclusion as

to what causes them and what makes the differences between

classes due to the complex nature of the spectra. An association

between observed patterns and specific chemical components is

extremely difficult if not impossible.

In summary, combining acquisition of MALDI-TOF MS

spectra and statistical analytical tools to classify mosquito speci-

mens appears very promising for Anopheles research and routine

surveys for vector control programmes and, most importantly,

entomology in general. A strength of the SDA algorithm is also

that it takes into account peak intensities adding to the possibilities

in discriminating patterns. The taxonomic classes are separated by

patterns rather than single diagnostic peaks. It is expected that

models including more reference specimens together with better

storage and/or processing procedures will increase accuracy and

add further value to this technology ‘‘repurposed’’ from microbi-

ology. Furthermore, purification of the protein extracts might yield

larger numbers of peaks similar to those found in D. melanogaster

[33] that would also allow for investigating the nature of the peaks

themselves.

Conclusions
The present study shows that MALDI-TOF MS reliably

discriminates between anopheline mosquito species - even at the

sub-species level. Present data suggests that even colony-specific

patterns are resolved and that the technique may be used beyond

simple species typing including stock authentication or perhaps the

detection of population structures in field-caught mosquitoes.

While being accurate and robust MALDI-TOF MS has several

additional advantages over other typing methods, including simple

sample preparation, short processing time and low consumable

costs – providing results rapidly and economically. The workflow

can easily be standardised and automated allowing for cost-

effective high throughput mass screening. As the method does not

require DNA sequence information about the mosquito, data can

be reviewed at any later stage for diagnostic or functional patterns.

As only parts of the animal are needed the remaining parts can be

subjected to additional analysis on DNA or protein extracts of the

same individual. This method has the potential to become an

invaluable tool for many applications in vector biology and control

including routine species identification, colony authentication,

population genetics or even the detection of trait-specific markers

including insecticide resistance. These and other possibilities are

currently being further explored in our laboratories.

Supporting Information

Table S1 MALDI-TOF MS classification results. The

table shows the specimens included in the three different models

and whether the models classified the individuals correctly

(TRUE) or wrongly (FALSE) against the reference (i.e. morphol-

ogy, PCR score and information provided by MR4). PEAKLIST:

file name of the MALDI-TOF MS peak list. LABEL: name of the

mosquito colony or the field population. MR4.ID: MR4 catalogue

number. ORIGIN: tells whether the specimen was collected in the

field or originating from a laboratory colony. SPECIMEN: is the

specimen number of a colony (1 through to 10) or field population.

SPECIES: mosquito species. MOL.FORM: molecular form in the

case of A. gambiae s.s. INCLUSION.MODEL.1: indicates whether

the spectrum/specimen was included in building Model 1.

CLASSIFICATION.MODEL.1: states whether the specimen

was classified correctly (TRUE), wrongly (FALSE) or was not

included in the classification (NA). INCLUSION.MODEL.2:

same as above for Model 2. CLASSIFICATION.MODEL.2:

same as above for Model 2. INCLUSION.MODEL.3: same as

above for Model 3. CLASSIFICATION.MODEL.3: same as

above for Model 3.

(CSV)

Table S2 CAT scores for the SDA model discriminating
the Anopheles gambiae species complex (Model 1). The

table lists the computed correlation-adjusted t-scores (CAT scores)

of the mean versus the pooled mean for each predictor variable (i.e.

peak) and centroid. Score: The sum of the squared CAT scores
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across groups which determines the overall ranking of the peaks.

CAT.AR, CAT.GA, CAT.ME and CAT.QD are the CAT scores

of the centroid versus the pooled mean for each group and peak.

LFDR: The local false discovery rate computed for each peak.

HC: The higher criticism score computed for each peak.

(CSV)

Table S3 CAT scores for the SDA model discriminating
M and S molecular forms in Anopheles gambiae s.s.
(Model 2). The table lists the computed correlation-adjusted t-

scores (CAT scores) of the mean versus the pooled mean for each

predictor variable (i.e. peak) and centroid. Score: The sum of the

squared CAT scores across groups which determines the overall

ranking of the peaks. CAT.M and CAT.S are the CAT scores of

the centroid versus the pooled mean for each group and peak.

LFDR: The local false discovery rate computed for each peak.

HC: The higher criticism score computed for each peak.

(XLS)

Table S4 CAT scores for the SDA model discriminating
the Anopheles arabiensis colonies (Model 3). The table lists

the computed correlation-adjusted t-scores (CAT scores) of the

mean versus the pooled mean for each predictor variable (i.e. peak)

and centroid. Score: The sum of the squared CAT scores across

groups which determines the overall ranking of the peaks.

CAT.BOBO, CAT.DONGOLA, CAT.HARARE, CAT.KGB

and CAT.SENN are the CAT scores of the centroid versus the

pooled mean for each group and peak. LFDR: The local false

discovery rate computed for each peak. HC: The higher criticism

score computed for each peak.

(XLS)

Dataset S1 MALDI-TOF MS peak lists. The folder contains

the 1,740 MALDI-TOF MS peak lists that were the basis of the

present analysis. The file names correspond to the column

‘‘PEAKLIST’’ in Table S1 containing a detailed description of

the specimens and its classification by the different SDA models.

(ZIP)
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Discrimination of different species from the genus Drosophila by intact protein

profiling using matrix-assisted laser desorption ionization mass spectrometry.
BMC Evolutionary Biology 10: 95.

34. Kaufmann C, Ziegler D, Schaffner F, Carpenter S, Pflüger V, et al. (2011)
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45. Ahdesmäki M, Zuber V, Strimmer K (2011) Shrinkage Discriminant Analysis

and CAT Score Variable Selection. Available:http://CRAN.R-project.org/
package = sda.

46. Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, et al. (2002)
Comparative genome and proteome analysis of Anopheles gambiae and Drosophila

melanogaster. Science 298:

47. Wegener C, Gorbashov A (2008) Molecular evolution of neuropeptides in the
genus Drosophila. Genome Biol 9: R131.

48. Das S, Radtke A, Choi Y-J, Mendes A, Valenzuela J, et al. (2010)
Transcriptomic and functional analysis of the Anopheles gambiae salivary gland

in relation to blood feeding. BMC Genomics 11: 566.

49. Dana A, Hong Y, Kern M, Hillenmeyer M, Harker B, et al. (2005) Gene
expression patterns associated with blood-feeding in the malaria mosquito

Anopheles gambiae. BMC Genomics 6: 5.
50. Félix RC, Müller P, Ribeiro V, Ranson H, Silveira H (2010) Plasmodium infection

alters Anopheles gambiae detoxification gene expression. BMC Genomics 11:
51. Caputo B, Dani FR, Horne GL, N’Fale S, Diabate A, et al. (2007) Comparative

analysis of epicuticular lipid profiles of sympatric and allopatric field populations

of Anopheles gambiae s.s. molecular forms and An. arabiensis from Burkina Faso
(West Africa). Insect Biochem Mol Biol 37: 389–398.

52. Santolamazza F, Caputo B, Calzetta M, Vicente JL, Mancini E, et al. (2011)
Comparative analyses reveal discrepancies among results of commonly used

methods for Anopheles gambiae molecular form identification. Malar J 10: 215.

53. Santolamazza F, Della Torre A, Caccone A (2004) Short report: A new
polymerase chain reaction-restriction fragment length polymorphism method to

identify Anopheles arabiensis from An. gambiae and its two molecular forms from
degraded DNA templates or museum samples. Am J Trop Med Hyg 70: 604–

606.

Identification of Mosquito Species by MALDI-TOF MS

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e57486


