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Abstract

Urban environments are increasing worldwide and are inherently different than their rural

counterparts, with a variety of effects on wildlife due to human presence, increased habitat

fragmentation, movement barriers, and access to anthropogenic food sources. Effective

management of urban wildlife requires an understanding of how urbanization affects their

behavior and ecology. The spatial activity and interactions of urban wildlife, however, have

not been as rigorously researched as in rural areas. From January 2015 to December 2016,

we captured, radio-collared, and tracked 11 coyotes and 12 red foxes in Madison, WI. Within

our study area, coyotes strongly selected home ranges with high proportions of natural

areas; conversely, red foxes selected home ranges with open space and moderately devel-

oped areas. Use of highly developed areas best explained variation among individual home

range sizes and inversely affected home range size for coyotes and red foxes. Coyote and

red fox home ranges showed some degree of spatial and temporal overlap, but generally

appeared partitioned by habitat type within our study area. Coyotes and red foxes were both

active at similar times of the day, but their movement patterns differed based on species-

specific habitat use. This spatial partitioning may promote positive co-existence between

these sympatric canids in urban areas, and our findings of spatial activity and interactions

will better inform wildlife managers working in urban areas.

Introduction

Urbanization is an agent of change for the biotic environment and has strong effects on wild-

life populations [1–2]. As of 2014, 88% of Americans lived in urban environments and urban

land acreage has quadrupled since 1945 [3]. This trend is likely to continue, as over five billion

people are projected to live in urban areas worldwide by 2030 [4], highlighting the need to

understand the effects of urbanization on biotic communities. Urban environments are inher-

ently different from their rural counterparts, primarily due to human presence, but also due to

increased habitat fragmentation, movement barriers (i.e., roads and development), and access

to anthropogenic sources of food as well as mortality [5–6]. Natural disturbances, such as fire,

are suppressed and replaced with a host of anthropogenic disturbances—including construc-

tion, landscaping, and recreation—all with different effects on urban biological communities
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[7–8]. Urbanization affects biodiversity and has a variety of impacts on wildlife populations

living near and within city limits, and is a primary reason for the local extirpation of many spe-

cies [1, 9].

Many carnivores are sensitive to urbanization due to expansive home ranges, large body

size, and high energetic demands [10–11]. Urbanization may change how certain carnivore

species coexist on the landscape with other sympatric carnivores by altering the distribution

and activity of apex carnivores and having direct and indirect effects on mesocarnivore com-

munities [8]. The mesocarnivore release theory describes one of these potential effects whereby

removing a top carnivore may cause populations of a subordinate to rapidly increase in its

absence [10]. A behavioral effect is that carnivores in urban areas tend to shift their traveling

and hunting activity to nighttime, when human activity decreases [12–13]. Carnivore richness

in response to urbanization is species-dependent, but is generally lower as urbanization inten-

sifies [14], and road density restricts movements while threatening carnivore population via-

bility due to vehicle mortality and constrained gene flow [15]. However, research has shown

that several carnivore species can successfully inhabit, and even thrive, in human-dominated

landscapes [6, 16]. Relative to non-urban conspecifics, many urban carnivores exhibit smaller

home ranges and sometimes even higher population densities due to the exploitation of stable,

anthropogenically altered sources of food and shelter [6, 17].

Throughout North America, coyotes (Canis latrans) and red foxes (Vulpes vulpes) are two

adaptive canids capable of exploiting the urban landscape [6]. Over the last century, coyotes

have expanded their range across the continental United States and are present in many North

American cities [18–19]. This range expansion is due to their flexibility in satisfying habitat

needs and adaptability to a changing landscape, as well as the wide-scale extirpation of grey

wolves (Canis lupus), a larger competitor known to limit sympatric coyote populations [20]. In

Europe, red foxes were officially recorded in cities as early as the 1930’s but may have been pres-

ent much earlier [21–22]. It is unclear when red foxes colonized North American cities, but lit-

erature suggests they have been present in Midwestern urban areas since the 1960’s [22–23].

Competing hypotheses exist about what caused red fox expansion into urban environments,

ranging from refuge from disease outbreak [24] to competitive exclusion by coyotes [25–26].

Coyotes and red foxes are often competitors that use similar resources and may have top-

down effects on prey communities [25, 27–28]. In rural contexts, red foxes and coyotes often

spatiotemporally partition habitat resources [25, 29]. This may also take the form of interfer-

ence competition, where sympatric groups of coyotes and red foxes display interspecific terri-

toriality as a mechanism to regulate populations [27–28]. Coyotes act as apex carnivores in

many urban areas [8, 30], and both species can contribute to ecosystem structure through top-

down regulation of prey species [10, 26, 31]. Coyotes and red foxes occur and overlap in many

urban areas, but in contrast to rural areas the nature of their coexistence and competition has

not been rigorously studied [26].

A potentially confounding factor in coyote-fox interactions is that human activities drive

the spatial patterns, ecological processes, and dynamics of urban systems [32–34]. Because

humans have the potential to directly and indirectly affect the spatiotemporal presence of

urban coyotes and red foxes, it is particularly important to understand the spatial ecology of

these species relative to human development and activity. Although coyotes thrive in many

human-dominated landscapes, they usually do so by spending most of their time in urban

areas with low human activity [35]. In rural settings, red foxes avoid coyotes in both space and

time [25, 28], but are not generally restricted by human activity and have been documented to

exist in close proximity to humans in urban areas [36].

Our objective was to determine if and how the sympatric coexistence occurred between

coyotes and red foxes in a human-dominated landscape. We hypothesized that urban coyotes
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would primarily use natural areas or areas with low human development, while red foxes

would use areas with moderate and high human development. However, due to the similar

nature of coyote and red fox resource requirements and abundance of anthropogenically

altered food and shelter resources, we expected to see spatial overlap between species. Specifi-

cally, our research aimed to answer: 1) What factors drive home range size for urban coyotes

and red foxes? 2) Do coyotes and red foxes coexist in urban areas by selecting for different

urban habitats relative to land use? 3) Does coyote and red fox movement differ within the

urban landscape, especially relative to human development or interspecific canid presence?

Methods

Study area

Our study area was located in Madison, WI (Fig 1). Madison is the second largest city in Wis-

consin, with a population of 245,000 people [3]. Mean temperatures are -10.4˚C in winter to

20.6˚C in summer with mean yearly precipitation of 87.38 cm [37]). Our 7108.9ha study area

was comprised of 11.85% (842.43ha) of natural areas, and88.15% (6266.57 ha) of non-natural

area. Across the study area, there were on average 10.04km of roads per km2. Our study area

encompassed the University of Wisconsin-Madison (UW) campus, along with a mosaic of res-

idential, commercial, and semi-isolated natural areas bounded by developed roads and neigh-

borhoods. Our study area also encompassed several public natural areas, including the UW

Lakeshore Nature Preserve (121 ha), Owen Conservation Park (39 ha), and UW Arboretum

(486 ha). Bordering the southwestern shore of Lake Mendota, the UW Lakeshore Nature Pre-

serve consisted of upland broadleaf deciduous forests (oak (Quercus spp.), hickory (Carya
spp.), ash (Fraxiunus spp.), basswood (Tilia americana)), a restored tallgrass prairie (indian-

grass (Sorghastrum nutans), big bluestem (Andropogon gerardi), little bluestem (Schizachyrium
scoparium)), and several small wetlands (cattail (Typha spp.)). Owen Conservation Park was

part of the Madison Parks system and was composed of both restored tallgrass prairies and

oak savannas. The UW Arboretum consisted of many major habitat types, including upland

broadleaf deciduous forests, restored tallgrass prairies and oak savannas, human-planted

coniferous forests, and various wetland complexes. Wooded corridors existed throughout our

study area.

Capture and monitoring

We live-captured adult coyotes and red foxes from January to April 2015 and November

2015 to April 2016 using cable restraints. This study was conducted in strict accordance with

followed all ethical capture procedures [38]. Our animal handling protocol were approved

by the University of Wisconsin Institutional Animal Care and Use Committee (Protocol

A01559), and Wisconsin Department of Natural Resources (Permit # SCP-SOD-001-2014).

We made extensive efforts to minimize or eliminate suffering throughout our handling pro-

cess, and no animals were killed during our study. We chemically immobilized each trapped

canid intramuscularly (IM) using ketamine (10 mg/kg for coyotes, 4 mg/kg for red foxes)

and xylazine (2mg/kg). We weighed each animal, assessed physical condition (i.e., eyes,

teeth, coat, body condition), and collected other biological samples. Finally, we fitted each

animal with ear tags and a very high frequency (VHF) radio collar (Advanced Telemetry Sys-

tems, Isanti, MN; Model # M1950 for red fox and M2220B for coyote) or satellite Global

Positioning System (GPS) collar (Lotek Wireless Fish & Wildlife Monitoring, Newmarket,

ON; Model #G5C175C). We administered Yohimbine (0.1 mg/kg) to reverse immobilization

for all canids.

Coexistence of urban canids
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We attempted to locate each VHF-collared animal via radio receiver at least once per week

for the entire duration that the radio collar functioned and remained on the animal, or the ani-

mal remained alive. We triangulated each location based on the intersections of�3 telemetry

bearings taken within a maximum of 15 minutes of each other to reduce error based on animal

movement [39]. We also located animals using GPS readings when we visually observed indi-

viduals, but these observations were rare and did not appear to affect the animal’s natural

behavior. To ensure the accuracy of triangulations, we plotted the telemetry bearings and esti-

mated the location of the animal on a laptop computer to proof locations in the field (Radio-

Tracker, John Cary, University of Wisconsin, Madison, WI). During the weekly location of

each animal, we tracked them for a 5-hour period, where we located the focal animal once

per hour during that period. We systematically rotated weekly tracking periods around the

24-hour clock to ensure that we documented temporal variation in activity. We programmed

GPS collars to collect locations at hourly intervals.

Fig 1. Land cover classifications within our study area. Madison, WI, 2015–2016.

https://doi.org/10.1371/journal.pone.0190971.g001
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Data variables

We used ArcGIS 10.4 (Redlands, CA: Environmental Systems Research Institute) to delineate

habitat types relative to human development in our study area based on National Land Cover

Data (NLCD) [40]. We grouped NLCD habitat types into five categories based on previous

urban canid research [25]: Developed open space (OPEN; i.e., turf fields, non-forested parks,

and cemeteries); moderate intensity development (MDEV; i.e., 20–79% impervious surface,

residential neighborhoods); high intensity development (HDEV; i.e.,�80% impervious sur-

face, industrial and commercial land); non-developed (NATR; i.e., natural areas, including for-

est, grassland, emergent wetlands); and water (WATR; i.e., open bodies of water) (Fig 1). We

obtained local population density (humans/km2) data from the National Historical Geo-

graphic Information System [41], based geographically on the most recent U.S.A. Census

blocks.

We calculated time of day based on local sunrise and sunset times using 4 periods: sunrise

(time of sunrise ± 2 hours), sunset (time of sunset ± 2 hours), day (began after sunrise period

and lasted until sunset period), and night (began after sunset period and lasted until sunrise

period). This approach led to uneven temporal lengths of time periods, but more accurately

reflected seasonal changes to photoperiods.

We examined radio location data annually and by seasons based on biologically meaningful

periods of life for each species: breeding (red fox = November to February, coyote = December

to March), pup-rearing (red fox = March to June, coyote = April to July), and non-breeding

(red fox = July to October, coyote = August to November) [19, 42].

Statistical analysis

We estimated home ranges using minimum convex polygons (MCP) [43] for individual coy-

otes and red foxes using the adehabitatHR package in R (version 2.11.1; R Foundation for Sta-

tistical Computing, Vienna, Austria). To limit autocorrelation, we used a subset of every other

telemetry point (i.e., the first, third, and fifth telemetry location, when available) from each

5-hour tracking period. We then calculated 95% MCPs to estimate the individual’s home

range, and 50% MCPs to estimate core use areas annually. We also calculated seasonal home

ranges for each of the three seasons for individuals, where we included canids with�15 inde-

pendent telemetry locations within the respective season. While this allowed us to include the

greatest number of canids in our seasonal analysis, it should be noted that this sample size is

below most thresholds for minimum sample sizes for MCP home range estimation [44].

We used the adehabitatHS package [45] in R to perform multi-scaled compositional analy-

ses for each individual canid. To avoid the issues of autocorrelation associated with other

methods of analyzing telemetry data, this method treats individual animals as sampling units,

instead of individual locations. This technique presents habitat use as a value ranging from 0

to 1, where the sum of all values equals 1. The resulting values represent selection (use relative

to availability), and to what degree each category was selected [46]. Values greater that 1 repre-

sent habitat types selected for, values less than 1 represent habitat types selected against, and

values of 1 represent no selection. We analyzed habitat selection on two scales: 2nd order

(home range) considered broad selection of an individual’s home range compared to available

habitat, and 3rd order (location) considered the use of actual locations compared to available

habitat within an individual’s home range [46]. Because HDEV was absent from 36% of coyote

home ranges, we chose to omit it from 3rd order analysis to avoid having to censor more indi-

viduals from this analysis and further reduce our sample size.

We used Pianka’s index to quantify overlap in habitat use by coyotes and red foxes during

different seasons [25, 47]. This index compared the percent use of habitat categories and
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resulted in a value ranging from 0 to 1 (0 suggested no overlap in habitat use and 1 suggested

total overlap). We calculated this index on two different scales: the home range level indexed

the overlap of the composition of coyote and red fox home ranges, and the location level

indexed the overlap of the use of habitats available within home ranges.

We analyzed the potential drivers of home range size within our study area using an AIC

modeling framework using 12 a-priorimodels (Tables 1 and 2). We analyzed annual and sea-

sonal home ranges separately. We fit a linear model (annual) and linear mixed-effects model

(seasonal) using 95% MCP size as our dependent variable. When no single top model was evi-

dent, we used model averaging across our top candidates (ƩAICw > 0.90) [48].

We estimated canid movement activity by calculating the distance and direction between

subsequent telemetry locations within a 5-hour tracking period (hereafter referred to as

“steps”). To account for user-error influencing the time between locations (i.e., temporarily

losing radio-contact with a canid), we excluded any steps that were calculated using locations

greater than 72min (1.2hr) or less than 48min (0.8hr) apart. We classified the start of each step

by species, sex, date, time of day, biological season (depending on species), and habitat type. In

addition, we categorized red fox steps based on if they were within a coyote’s 50% MCP, outside

of the 50% MCP but within the 95% MCP, or outside of the 95% MCP. We also examined if a

red fox was moving in the direction of the nearest coyote 50% MCP by using the bearing from

the origin of the step to the center of the 50% MCP +/- 90˚. In each analysis, we used univariate

analysis-of-variance (ANOVA) to investigate the influence of spatial and temporal variation on

canid movement, followed by a post-hoc Tukey HSD test to identify habitat type and season.

Results

Overview

We captured and tracked 11 coyotes (nmale = 7, nfemale = 4) and 12 red foxes (nmale = 8, nfemale =

4) from January 2015 to December 2016. We excluded four foxes (nmale = 3, nfemale = 1) from

analyses because of a low number of fixes due to mortality or collar failure. We collected 5,729

total locations (ncoyote = 4382, �xcoyote ¼ 365:2, rangecoyote = 36–2311; nfox = 1347, �x fox ¼ 122:5,

rangefox = 2–458). Mean number of days on air were 282.3 (±60.7 SE) for coyote, and 243.6

(±71.6 SE) for red fox.

Home ranges

We calculated annual (Table 3, Fig 2) and seasonal (Table 4) 95% MCPs for each coyote (n = 11)

and red fox (n = 8) from January 2015 to December 2016.

Table 1. Explanatory variables for modeling changes in annual and seasonal home range size for urban coyotes

and red foxes in Madison, WI, 2015–2016.

Variable Abbreviation Description

Species SPEC Species of Animal (Coyote/Red Fox)

Sex SEX Sex of animal (M/F)

High Development HDEV Percent of home range made up by High Development (Commercial,

Industrial)

Moderate

Development

MDEV Percent of home range made up by Moderate Development (Residential)

Developed Open OPEN Percent of home range made up by Developed Open (Lawns, Parks, turf

fields)

Natural NATR Percent of home range made up by Natural (Green space)

Season SEAS Biological season of home range (Breeding, Non-breeding, Pup-rearing)

https://doi.org/10.1371/journal.pone.0190971.t001
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For annual home ranges, our top model, “Species-specific Use of HDEV,” (AICw = 0.97)

was the only model with substantial support (Table 5). In our top model, species (SPEC) had a

positive effect on home range size while HDEV was constant (ßSPEC = 0.63). HDEV had a posi-

tive effect on home range size for coyotes (ßHDEV = 2.22). The interaction between SPEC and

HDEV had a negative effect on home range size (ßSPEC:HDEV = -2.02).

Table 2. Potential explanatory models to explain changes in home ranges sizes for urban canids in Madison, WI,

2015–2016.

Name Variables Description

Sex SEX Home range size will be driven by the sex of the animal because

members of each sex have different energetic requirements and

social roles. [19, 42]

Season SEAS Home range size will be driven by biological season because of the

changes in energetic requirements and behaviors. [19, 42]

Species SPEC Home range size will be driven by species because species have

different ecological roles and therefore use available habitat

differently. [19, 42]

Species and Sex SPEC � SEX Home range size will be driven by the interaction between an

individual animal’s species and sex because individual animals

have different energetic demands and life history traits. [19, 42]

Species and Season SPEC � SEAS Home range size will be driven by the interaction between species

and the time of year, because different species have different

energetic requirements and life history traits depending on the

time of year. [19, 42]

Species, Sex, Season SPEC � SEX � SEAS Home range size will be driven by the interaction between an

individual animal’s species and sex because different animals have

different energetic demands and life history traits at different

times of the year. [19, 42]

Species-specific Use of

NATR

SPEC � NATR Species-specific use of natural habitat will drive home range size

because natural areas provide traditionally suitable habitat for

canids. [19, 22, 42, 49]

Species-specific Use of

OPEN

SPEC � OPEN Species-specific use of developed open habitat will drive home

range size because areas such as cemeteries and parks may

provide resources to support canids. [19, 22, 42, 49]

Species-specific use of

MDEV

SPEC � MDEV Species-specific use of moderately developed habitat will drive

home range size because residential areas may provide resources

to support canids. [19, 22, 42, 49]

Species-specific use of

HDEV

SPEC � HDEV Species-specific use of highly developed habitat will drive home

range size because highly developed areas typically mean lower

quality habitat. [19, 22, 42, 49]

Species-specific use of

NATR and OPEN

SPEC � NATR

+ SPEC � OPEN

Species-specific use of natural and developed open habitat will

drive home range size because these habitats may provide

resources to support canids. [19, 22, 42, 49]

Species-specific use of

NATR and MDEV

SPEC � NATR

+ SPEC � MDEV

Species-specific use of natural and moderately developed habitat

will drive home range size because these habitats may provide

resources to support canids. [19, 22, 42, 49]

https://doi.org/10.1371/journal.pone.0190971.t002

Table 3. Annual home range sizes (km2) for coyotes and red foxes in Madison, WI, 2015–2016.

Coyote Red Fox

All (M & F) Male Female All (M & F) Male Female

Mean 5.79 7.46 2.89 3.99 5.63 2.34

Range 0.93–23.02 2.04–23.04 0.93–5.10 0.19–8.18 3.64–8.18 0.19–6.42

SE 0.87 0.94 1.06 2.18 1.06 1.40

n 11 7 4 8 4 4

https://doi.org/10.1371/journal.pone.0190971.t003
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For seasonal home ranges, our top models were “Species-specific use of NATR and OPEN”

(AICw = 0.60), and “Species-specific use of NATR and MDEV” (AICw = 0.39) (Table 6). After

model averaging, SPEC, or red fox home ranges compared to coyote (ßSPEC = -7.792), had a

negative effect on seasonal home range size. For coyotes, MDEV (ßMDEV = -1.413) and NATR

Fig 2. Annual 95% minimum convex polygon home ranges for coyotes and red foxes in Madison, WI, 2015–2016.

https://doi.org/10.1371/journal.pone.0190971.g002

Table 4. Seasonal home range sizes (km2) for coyotes and red foxes in Madison, WI, 2015–2016.

Coyote Red Fox

Breeding Pup-rearing Non-breeding Breeding Pup-rearing Non-breeding

Mean 4.79 2.66 4.55 3.19 2.52 3.93

Range 0.79–16.18 0.49–4.98 0.79–13.11 0.16–6.63 0.40–4.89 0.86–6.22

SE 1.40 0.59 2.18 1.26 0.62 0.89

n 10 9 6 6 6 5

Breeding season refers to the 4 months prior to birth of pups, pup-rearing refers to the 4 months after birth, and non-breeding are the remaining 4 months of the year.

https://doi.org/10.1371/journal.pone.0190971.t004
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(ßNATR = -11.453) had negative effects on home range size, while OPEN (ßOPEN = 0.753) had a

positive effect. For red foxes, MDEV (ßSPEC:MDEV = 5.616) and NATR (ßSPEC:NATR = 18.257)

both had positive effects on home range size, while OPEN (ßSPEC:OPEN = -5.719) had a negative

effect.

Annual habitat composition

At the 2nd order scale, both coyotes (p = 0.003) and red foxes (p< 0.001) differentially selected

for habitat within our study area. Coyotes selected home ranges with NATR and avoided

HDEV and MDEV. Red foxes used HDEV and MDEV in proportion to their availability and

avoided NATR (Fig 3).

At the 3rd order scale, both coyotes (p< 0.001) and red foxes (p = 0.002) differentially

selected for habitat within their respective home ranges. Coyotes selected for NATR, avoided

MDEV, and used OPEN in proportion to availability. Red foxes avoided MDEV, selected for

OPEN, and used NATR in proportion to its availability (Fig 3).

Seasonal habitat composition

Coyote selection patterns did not vary across seasons. At the 2nd order scale, coyotes selected

home ranges with NATR, avoided HDEV and MDEV and used OPEN in proportion to

its availability on the landscape (Fig 3). At the 3rd order scale, coyotes again selected for

Table 5. Results of a-priorimodel comparisons for selecting factors driving annual home range size in urban coyotes and red foxes in Madison, WI, 2015–2016.

Name AICc ΔAICc AICw Cumulative AICw

Species-specific use of HDEV 109.74 0.00 0.97 0.97

Sex 118.07 8.34 0.02 0.99

Species-specific use of NATR 120.14 10.40 0.01 1.00

Species 121.16 11.42 0.00 1.00

Species-specific use of MDEV 123.33 13.60 0.00 1.00

Species and Sex 124.62 14.89 0.00 1.00

Species-specific use of OPEN 126.69 16.95 0.00 1.00

Species-specific use of NATR and OPEN 128.19 18.46 0.00 1.00

Species-specific use of NATR and MDEV 129.24 19.50 0.00 1.00

https://doi.org/10.1371/journal.pone.0190971.t005

Table 6. Results of a-priorimodel comparisons for selecting factors driving seasonal home range size in urban coyotes and red foxes in Madison, WI, 2015–2016.

Name AICc ΔAICc AICw Cumulative AICw

Species-specific use of NATR and MDEV 188.59 0.00 0.60 0.60

Species-specific use of NATR and OPEN 189.44 0.85 0.39 0.99

Species-specific use of NATR 196.65 8.06 0.01 1.00

Species-specific use of HDEV 203.01 14.42 0.00 1.00

Species-specific use of OPEN 204.55 15.95 0.00 1.00

Species-specific use of MDEV 205.17 16.58 0.00 1.00

Species, Sex, and Season 206.66 18.07 0.00 1.00

Species and Season 209.40 20.80 0.00 1.00

Season 210.23 21.63 0.00 1.00

Species and Sex 210.36 21.77 0.00 1.00

Sex 211.35 22.75 0.00 1.00

Species 214.13 25.54 0.00 1.00

https://doi.org/10.1371/journal.pone.0190971.t006
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Fig 3. Habitat selection of coyotes (rows 1 and 2) and red foxes (rows 1 and 3) in Madison, WI, 2015–2016. 2nd order (left) indicates

home range selection compared to available habitat, 3rd order (right) indicates use of actual locations compared to available habitat within

an individual’s home range. Selection ratios (percent use/percent available) greater than 1 indicate selection, less than 1 indicate avoidance.

https://doi.org/10.1371/journal.pone.0190971.g003
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NATR, avoided MDEV, and used OPEN in proportion to its availability within the home

range (Fig 3).

During the breeding season, at the 2nd order scale, red foxes avoided NATR and used

HDEV and MDEV, as well as OPEN in proportion to its availability on the landscape (Fig 3).

At the 3rd order scale, foxes used all available habitat in proportion to its availability (Fig 3).

During the pup-rearing season, at the 2nd order scale, red foxes exhibited selection for MDEV,

avoided NATR and used HDEV and OPEN in proportion to its availability on the landscape.

At the 3rd order scale, foxes avoided HDEV and MDEV, selected for OPEN and used NATR

in proportion to its availability in the home range. During the non-breeding season, at the 2nd

order scale, foxes avoided HDEV and NATR, but used other habitats in proportion to their

availability on the landscape. At the 3rd order scale, foxes selected for NATR and OPEN, and

avoided HDEV and MDEV.

Overlap of habitat use

Based on Pianka’s index, overlap of coyote and red fox habitat use differed at both the home

range (0.68) and location level (0.41). Overlap of habitats also differed seasonally. At the home

range level, habitat use overlap was less during the pup-rearing season (breeding = 0.70, pup-

rearing = 0.55, non-breeding = 0.76). At the location level, habitat use overlap was low, but

was relatively greater during the pup-rearing season (breeding = 0.32, pup-rearing = 0.42,

non-breeding = 0.39).

Movement/Step length

Habitat type had a significant effect on step length for both coyotes (F4, 1434 = 4.151, p = 0.002)

and red foxes (F4, 806 = 4.176, p = 0.002) (Fig 4). Post-hoc Tukey HSD tests showed that for

foxes, steps originating in NATR (�x ¼ 577:59m) were significantly longer than steps

Fig 4. Mean step length (distance between two subsequent locations collected one-hour apart) for coyotes and red foxes by habitat type (left) and time of day

(right) in Madison, WI, 2015–2016.

https://doi.org/10.1371/journal.pone.0190971.g004
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originating in OPEN (�x ¼ 393:42m, p = 0.025) and MDEV (�x ¼ 383:46, p< 0.001). For coy-

otes, steps originating in NATR (�x ¼ 340:18m) were significantly shorter than steps originat-

ing in OPEN (�x ¼ 405:16m, p = 0.005). Step length did not significantly differ for steps

originating in the remaining habitats for either species.

Time of day significantly affected step length for both coyotes (F3, 1435 = 45.600, p< 0.001)

and red foxes (F3, 807 = 50.380, p< 0.001) (Fig 4). For both species, steps recorded during

night periods (�x fox ¼ 591:72m; �xcoyote ¼ 425:05m) were significantly longer than steps

recorded during day (�x fox ¼ 62:14m, pfox < 0.001; �xcoyote ¼ 134:10m pcoyote < 0.001),

sunrise (�x fox ¼ 331:15m, pfox < 0.001; �xcoyote ¼ 357:07m pcoyote < 0.001), and sunset periods

(�x fox ¼ 307:72m, pfox < 0.001; �xcoyote ¼ 307:58m, pcoyote < 0.001). Steps collected during cre-

puscular time periods (sunrise, sunset) were also significantly longer than steps in day periods

(pfox < 0.001, pcoyote < 0.001).

Sex significantly affected step length for coyotes (F1, 1437 = 9.106, p = 0.003) and red foxes

(F1, 809 = 63.09, p< 0.001). For coyotes, females (�x ¼ 390:07m) displayed significantly longer

steps than males (�x ¼ 346:49m, p = 0.003). For red foxes, males (�x ¼ 508:66m) displayed sig-

nificantly longer steps than females (�x ¼ 272:77m, p< 0.001).

Season significantly affected step length for red foxes (F2, 808 = 11.93, p< 0.001), but not for

coyotes (F2, 1436 = 0.414, p = 0.661). Post-hoc Tukey HSD tests showed that fox steps during

the pup-rearing season (�x ¼ 315:75m) were significantly shorter than those during the breed-

ing (�x ¼ 493:00m, p = 0.007) or non-breeding season (�x ¼ 439:21m, p< 0.001).

For red foxes, proximity to coyote core use area did not significantly alter step length

(F2, 836 = 0.886, p = 0.41) or step direction (X2
2 = 4.495, p = 0.087).

Discussion

Our research shows how coyotes and red foxes partition space resources within an urban land-

scape. The spatiotemporal use of our urban study area by coyotes and red foxes appear dictated

by habitat type within the human-dominated landscape. Like rural canids [19, 42], it appears

that coyotes and red foxes both displayed intraspecific territoriality within our urban study

area, but there may be a greater degree of interspecific overlap between coyotes and foxes in

urban areas relative to rural ones [25,55]. Coyotes selected for relatively large NATR in their

territories, and avoided areas of HDEV; while foxes avoided NATR and instead primarily

selected for OPEN within their home ranges. This species-specific habitat use also appeared to

be the primary driver of both annual and seasonal home range sizes of coyotes and red foxes.

While their movement patterns differed based on species-specific habitat use, coyotes and red

foxes were both active at similar times of the day.

Across temporal and spatial scales, coyotes selected for NATR, and avoided MDEV and

HDEV. This pattern suggests that natural areas are important for coyotes inhabiting urban

environments, and despite living in close proximity to humans in the city, coyotes generally

avoided them [49]. MDEV and HDEV potentially have more human-use when compared to

NATR or OPEN [40], and studies have shown that vehicles are a primary source of mortality

for urban coyotes [50]. These factors could explain why coyotes consistently avoided human-

dominated areas. Urban coyotes typically maintain a largely natural diet [51], and may be able

to satisfy their dietary requirements primarily in natural areas, where they can avoid humans

and the potential risks associated with MDEV and HDEV despite urban areas being a rich

source of anthropogenic food.

In many rural areas coyotes appear to drive the distribution of sympatric red foxes through

spatial exclusion [25, 27–28]. Our results show the same dynamic may occur in urban areas

but to a lesser degree. Coyotes and red foxes displayed similar habitats within their home
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ranges, but the amounts of habitat types within home ranges differed by species. While coyotes

selected home ranges with large NATR components, red foxes avoided these areas and used

other areas in proportion to their availability on the landscape. Red foxes used most areas in

proportion to their availability, as would be expected from a generalist [22, 42]. While coyotes

are also generalists, they act as apex carnivores in urban areas [30] and may select for their pre-

ferred habitat. Foxes largely avoided areas that were preferred by coyotes, even though foxes

frequently used similar areas within their home ranges, suggesting that on the landscape level,

a degree of interspecific spatial partitioning may be occurring.

Species-specific habitat use appeared to be the most important factor affecting annual home

range size for both coyotes and red foxes. Our top model—species-specific use of HDEV—

showed that coyotes and foxes responded differently to the amount of HDEV within their

annual home range. Resource availability often dictates home range size and home ranges for

synanthropic species are generally smaller than for their rural counterparts due to increased

and more concentrated resource availability [6, 17]. We found that as the proportion of HDEV

within a coyote’s home range increased, home range size would also increase, suggesting that

coyotes may rely on other habitats to satisfy their ecological needs. Red fox home ranges were

not negatively affected by development in the way that coyotes were, and despite avoiding

HDEV it made up a larger proportion of their home ranges.

Species-specific habitat use within the home range best explained the variation in seasonal

home range size as well, although limited samples may have affected the accuracy of our

results. Coyotes primarily selected for NATR, likely to satisfy resource requirements [50], so

higher proportions of this habitat type may allow coyotes to successfully acquire resources

without needing to cover and defend larger expanses of territory [6]. We predicted the oppo-

site trend for red foxes; when the proportion of NATR increased, home range size would

increase. On the landscape level (3rd order), red foxes avoided NATR, so it may be expected

that an increase in the proportion of NATR within a red fox home range would cause an

increase in home range size to successfully acquire adequate resources [52–53]. There was less

overlap in home range composition during the pup-rearing season compared to the breeding

and non-breeding seasons, suggesting that at the home range level, red foxes and coyotes are

more spatially segregated during the time young are born and being cared for, a behavior that

has been observed in sympatric rural populations of coyotes and red foxes [27–28].

Habitat and development also affected the fine-scale movements of urban canids, with both

canid steps being longer in habitats that were selected neither for nor against. Longer step

lengths by coyotes in HDEV may be because they quickly passed through these areas, while

longer steps by foxes in NATR may be to escape detection by coyotes. Despite known exclu-

sion by coyotes in rural areas [25–26], fox step length and direction did not significantly

change when closer to coyote core-use areas. This may be attributed to the ambiguity of a 50%

core use or 95% MCP boundary, or that red foxes are indifferent to coyote presence in habitats

that both species frequent, or other factors, such as prey distribution. Both coyotes and red

foxes displayed temporal variation in step length, generally being more active when humans

are less active. This trend is well supported for urban coyotes [50], but to our knowledge, this

is the first documentation for urban red foxes. The variation in step length and habitat selec-

tion may help to facilitate coexistence of canids in urban areas by allowing the spatiotemporal

partitioning of resources [8].

Season and an individual’s sex also affected step length. Female coyotes and male red foxes

displayed longer steps. We detected no seasonal difference in step length for coyotes, but sig-

nificantly shorter fox steps during the pup-rearing season. During this season, both coyotes

and red foxes use den sites to raise pups, however only a small proportion of a coyote pack

frequently uses the den site [19], unlike red foxes where most individuals localize their
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movements and return to the den site daily [42]. Coyotes—as apex carnivore—may not feel

predation pressure and would not need to be as strongly tied to the den site to protect pups [6,

30]. This may explain why we detected a difference in fox step length during this time of the

year, as foxes seemed to be concentrated around this central den site once pups were born. We

suspect that a high degree of individual variation in coyote activity could have masked a true

difference in step length between seasons for our study, as coyotes generally have a wide range

of individual social roles [19], but we did not account for the role of an individual within a

pack or family in our study.

Coyotes and red foxes in Madison generally appeared to be spatially partitioning use of our

urban study area, but displayed various degrees of overlap between interspecific home ranges.

In rural contexts, spatial partitioning with some overlap is well documented [25, 27–28] and

suggests that red foxes avoid areas used extensively by coyotes. A similar mechanism may exist

to facilitate their coexistence in a spatially constrained urban environment. If coyotes in urban

areas avoid areas used by humans and our research suggests that urban red foxes select for

Fig 5. Radio-collared coyote and red fox sharing an urban field while hunting independently, with no aggressive interactions, Madison, WI, October 12, 2015.

https://doi.org/10.1371/journal.pone.0190971.g005
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more developed areas, it could be hypothesized that red foxes may be using these developed

areas as refugia to avoid coyotes [25]. We could not definitively describe the mechanism for

this selection, specifically if red foxes were self-selecting for these areas or if they were using

them as refuge from coyotes occupying natural areas. Studies of urban red foxes in Europe (an

area absent of coyotes) suggested that density was proportional to the amount of moderate-

density housing available [22] and that in a particular urban area that lacked coyotes, red foxes

used residential and developed open areas disproportionately to their availability [25], suggest-

ing that red foxes may not be selecting developed areas only to avoid coyotes, but for other rea-

sons as well.

Despite the evidence of habitat partitioning to facilitate coexistence between these two sym-

patric canid species, during the duration of our research several interspecific interactions

between coyotes and red foxes provided evidence that there may be more to this relationship.

For example, a radio-collared coyote and red fox were observed foraging < 100m from one

another for over 1 hour in an open field with no sign of aggression or negative interactions

(Fig 5). In another example, a pair of coyotes frequently visited (1–2 visits/week for 4 weeks)

an active red fox den in a residential neighborhood (Fig 6). While the coyotes investigated the

den site and partially entered the den to retrieve an Eastern cottontail (Sylvilagus floridianus)
carcass, the adult foxes remained in the vicinity. This behavior continued for close to one

month, with no attempts from the red fox family to relocate to any of several available nearby

dens. Coyotes and red foxes may be more tolerant of each other in urban areas than we initially

suspected. In either situation, if the red foxes perceived coyotes as dangerous, it would be

expected that they would have altered their behavior to avoid a negative interaction [54–55].

Fig 6. Coyote (left) investigating active red fox (right) den. Pair of coyotes visited den site weekly, even scavenging a cottontail rabbit carcass at one point. Behavior

continued for close to a month and red foxes never relocated. Madison, WI, April 26, 2016.

https://doi.org/10.1371/journal.pone.0190971.g006
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While the focus of our study was not on food or habitat resource availability, we suspect

that the mechanism that facilitates coexistence in urban areas is rooted in an abundance of

food resources in our urban study area [1, 56]. More abundant resources appear to allow both

species to display smaller home ranges, which may allow for these two traditionally competi-

tive species to coexist within urban environments with a similar dynamic to rural coyotes and

red foxes, but on a smaller scale with potentially less competitive interactions [25–26]. Habitat

patch size—especially of NATR—may also be important to home range size and composition.

In our study area, coyotes within the largest natural area (UW Arboretum) rarely ventured

into surrounding developed areas, whereas coyotes near smaller natural areas (Owen Park)

frequently used adjacent neighborhoods. The size of natural areas may influence resource

availability and therefore affect the way wildlife uses these areas. Additional research should be

conducted using fine-scale tracking techniques and GPS technology on sympatric canids to

investigate the potential for interactions between these two species to adequately determine if

coyotes are displacing red foxes or if red foxes are simply self-selecting for more developed

areas of urban landscapes.
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