
ll
OPEN ACCESS
iScience

Article
HASLR: Fast Hybrid Assembly of Long Reads
Ehsan

Haghshenas,

Hossein Asghari,

Jens Stoye, Cedric

Chauve, Faraz

Hach

faraz.hach@ubc.ca

HIGHLIGHTS
We introduce HASLR, a

fast tool for hybrid

assembly of short reads

and long reads

HASLR proposes a new

data structure called

backbone graph

The backbone graph

provides a large-scale

map of the whole genome

Our experiments

demonstrate that HASLR

generates low number of

misassemblies

Haghshenas et al., iScience 23,
101389
August 21, 2020 ª 2020 The
Author(s).

https://doi.org/10.1016/

j.isci.2020.101389

mailto:faraz.hach@ubc.ca
https://doi.org/10.1016/j.isci.2020.101389
https://doi.org/10.1016/j.isci.2020.101389
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101389&domain=pdf

iScience

Article

HASLR: Fast Hybrid Assembly of Long Reads

Ehsan Haghshenas,1,2 Hossein Asghari,1,2 Jens Stoye,3 Cedric Chauve,4,5 and Faraz Hach2,6,7,*

SUMMARY

Third-generation sequencing technologies from companies such as Oxford Nano-
pore and Pacific Biosciences have paved the way for building more contiguous
and potentially gap-free assemblies. The larger effective length of their reads
has provided a means to overcome the challenges of short to mid-range repeats.
Currently, accurate long read assemblers are computationally expensive,
whereas faster methods are not as accurate. Moreover, despite recent advances
in third-generation sequencing, researchers still tend to generate accurate short
reads for many of the analysis tasks. Here, we present HASLR, a hybrid assembler
that uses error-prone long reads together with high-quality short reads to effi-
ciently generate accurate genome assemblies. Our experiments show that
HASLR is not only the fastest assembler but also the one with the lowest number
of misassemblies on most of the samples, while being on par with other assem-
blers in terms of contiguity and accuracy.

INTRODUCTION

Long reads (LRs) generated by third-generation sequencing (TGS) technologies such as Pacific Biosciences

(PacBio) andOxford Nanopore Technologies (ONT) have revolutionized the landscape of de novo genome

assembly. Although LRs have a higher error rate compared with short reads (SRs) generated by next-gen-

eration sequencing (NGS) technologies such as Illumina, they have been shown to result in accurate assem-

blies given sufficient coverage. Indeed, the length of TGS LRs enables the resolution of many short and

mid-range repeats that are problematic when assembling genomes from SRs. Recent advances in

sequencing ultra-long ONT reads have moved us closer to the complete reconstruction of entire genomes

(including difficult-to-assemble regions such as centromeres and telomeres) than ever before (Miga et al.,

2019). Similarly, HiFi PacBio reads have been shown to be capable of improving the contiguity and accuracy

in complex regions of the human genome (Vollger et al., 2019). These advances toward more accurate and

complete genome assembly could not be achieved without the recent development of assemblers specif-

ically tailored for LRs. These tools assemble LRs either after an error correction step (Koren et al., 2017; Chin

et al., 2016) or directly without any prior error correction (Li, 2016; Ruan and Li, 2019; Kolmogorov et al.,

2019).

Although LRs are becoming more widely used for de novo genome assembly, using hybrid approaches

(that utilize a complementary SR dataset) is still popular for several reasons: (1) SRs have higher accuracy

and can be generated by Illumina sequencers at a high throughput for a lower cost; (2) plenty of SR datasets

are already publicly available for many genomes; (3) for some basic tasks such as variant calling (SNV and

short indel detection), SRs still provide better resolution owing to their high accuracy, which often moti-

vates researchers to generate SRs even when LRs are in hand; and (4) unlike PacBio assemblies whose ac-

curacy increases with the depth of coverage thanks to their unbiased random error model (Myers, 2014),

constructing reference quality genomes solely from ONT reads remains challenging owing to biases in

base calling, even with a high coverage (Koren et al., 2017; Antipov et al., 2015). As a result, hybrid assembly

approaches are still useful (Jaworski et al., 2019; Jiang et al., 2019; Kadobianskyi et al., 2019).

Hybrid approaches for de novo genome assembly can be classified into three groups: (1) methods that first

correct raw LRs using SRs and then build contigs using corrected LRs only (e.g., PBcR [Koren et al., 2012]

and MaSuRCA [Zimin et al., 2017]). In recent years, many tools have been proposed for hybrid error correc-

tion of long reads that can be used toward this goal (see Salmela and Rivals (2014), Haghshenas et al. (2016),

andWang et al. (2018) for examples of such tools); (2) methods that first assemble raw LRs and then correct/

polish the resulting draft assembly with SRs using polishing tools such as Pilon (Walker et al., 2014) and

Racon (Vaser et al., 2017); and (3) methods that first assemble SRs and then utilize LRs to generate longer

1School of Computing
Science, Simon Fraser
University, Burnaby, BC
V5A1S6, Canada

2Vancouver Prostate Centre,
Vancouver, BC V6H3Z6,
Canada

3Faculty of Technology and
Center for Biotechnology,
Bielefeld University,
Bielefeld, Germany

4Department of
Mathematics, Simon Fraser
University, Burnaby, BC
V5A1S6, Canada

5LaBRI, Université de
Bordeaux, Bordeaux, France

6Department of Urologic
Sciences, University of British
Columbia, Vancouver, BC
V5Z1M9, Canada

7Lead Contact

*Correspondence:
faraz.hach@ubc.ca

https://doi.org/10.1016/j.isci.
2020.101389

iScience 23, 101389, August 21, 2020 ª 2020 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:faraz.hach@ubc.ca
https://doi.org/10.1016/j.isci.2020.101389
https://doi.org/10.1016/j.isci.2020.101389
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101389&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

contigs (e.g., hybridSPAdes [Antipov et al., 2015], Unicycler [Wick et al., 2017], DBG2OLC [Ye et al., 2016],

and Wengan [Di Genova et al., 2019]).

PBcR and MaSuRCA correct LRs using their internal correction algorithm and then employ CABOG (Miller

et al., 2008) (Celera Assembler with the Best Overlap Graph) for assembling corrected LRs. hybridSPAdes

and Unicycler are similar in design. Both of these tools first use SPAdes (Bankevich et al., 2012), which takes

SRs as input and generates an assembly graph, a data structure in which multiple copies of a genome

segment are collapsed into a single contig (see Zerbino and Birney (2008) for more details). This data struc-

ture also records connections between subsequent contigs such that every region of the genome corre-

sponds to a path in the graph. hybridSPAdes and Unicycler then align LRs to this assembly graph in order

to resolve ambiguities and generate longer contigs. On the other hand, DBG2OLC first assembles contigs

from SRs andmaps them onto raw LRs to get a compressed representation of LRs based on SR contig iden-

tifiers and then applies an overlap-layout-consensus (OLC) approach on these compressed LRs to

assemble the genome. Since compressed LRs are much shorter compared to raw LRs, building an overlap

graph from them is quicker than building it from raw LRs, owing to the faster pairwise alignment. Finally, the

more recent tool, Wengan, assembles short reads and then builds multiple synthetic paired-read libraries

of different insert sizes from LR sequences. These synthetic paired reads are then aligned to short read con-

tigs and a scaffolding graph is built from the resulting alignments. In the end, the final assembly is gener-

ated by traversing proper paths of the scaffolding graph.

Among the above tools, hybridSPAdes and Unicycler have been designed specifically for bacterial and

small eukaryotic genomes and do not scale for the assembly of large genomes. PBcR, MaSuRCA,

DBG2OLC, and Wengan are the only hybrid assemblers that are capable of assembling large genomes,

such as the human genome. However, for mammalian genomes, PBcR and MaSuRCA require a large

computational time and cannot be used without a computing cluster. DBG2OLC is faster owing to its

use of compressed LRs. Wengan is also a fast assembler and can be used for assembling large genomes

in a reasonable time.

In this paper, we introduce HASLR, a fast hybrid assembler that is capable of assembling large genomes.

Based on our results, HASLR is the fastest between all the assemblers we tested, while generating the

lowest number of mis-assemblies on most datasets. Furthermore, it generates assemblies that are compa-

rable with the best performing tools in terms of contiguity and accuracy. HASLR is also capable of assem-

bling large genomes using less time and memory than other tools.

RESULTS

HASLR’s Overview

Here, we present an overview of HASLR. See Transparent Methods Section in the Supplemental Informa-

tion for more detailed description of HASLR. The input to HASLR is a set of long reads (LRs) and a set of

short reads (SRs) from the same sample, together with an estimation of the genome size. HASLR performs

the assembly using a novel approach that rapidly assembles the genome without performing all-versus-all

LR alignments. HASLR, similar to hybridSPAdes, Unicycler, and Wengan, builds SR contigs using a fast SR

assembler (i.e., Minia). Then, it uses LRs to put SR contigs in the order of their expected appearance in the

genome. This is done by building a novel data structure called backbone graph that models the connec-

tions between SR contigs based on their alignments onto LRs. Note that the backbone graph is built only

using ‘‘unique’’ SR contigs, those SR contigs that are likely to appear in the genome only once. This is

because repetitive SR contigs will cause branching in the backbone graph (see Figure 1 for the backbone

graphs built using Yeast dataset utilizing unique versus all SR contigs). Next, the backbone graph is simpli-

fied to reduce the effect of wrong SR contig to LR alignments. Finally, a consensus sequence is calculated

for each edge that fills the gap between its neighboring SR contigs. The final assembly is generated using

all SR contigs and consensus sequences in the simplified backbone graph.

It is important to note that the backbone graph is not an assembly graph per se, for two reasons. First, the

regions between each pair of connected unique SR contigs are not present in the graph. These missing re-

gions are obtained by calculating the consensus of LR subsequences between each pair of unique SR con-

tigs. Second, unlike assembly graphs, there are some segments of the genome that cannot be translated to

a path in the backbone graph. This is due to the potential fragmentation that was mentioned earlier.

ll
OPEN ACCESS

2 iScience 23, 101389, August 21, 2020

iScience
Article

Identification of Unique Short Read Contigs

In order tomeasure the efficacy of our approach for identifying unique SR contigs (see TransparentMethods

Section in the Supplemental Information for more details), we conducted a set of experiments as follows.

First, we simulated an SR dataset based on six different reference genomes: E. coli, Yeast, C. elegans, A.

thaliana, D. melanogaster, and GRCh38 human reference genome. For each genome, we used ART (Huang

et al., 2011) to simulate 503 coverage short Illumina reads (2 3 100 bp long, 500 bp insert size mean, and

50 bp insert size deviation) using the Illumina HiSeq 2000 error model. Next, we used Minia to assemble

the simulated short reads using k-mer size 49. Finally, to form the ground truth for copy count of each SR

contig, we mapped the assembled SR contigs to the reference genome using minimap2 (Li, 2018).

For identification of unique SR contigs, we use the notion of mean k-mer frequency of SR contigs as follows.

We calculate the mean and standard deviation of k-mer frequency of 30 longest contigs (favg, fstd). At the

end, every SR contig whose mean k-mer frequency is below favg+3fstd is considered as unique contig.

Here, we report the precision and recall of the above-mentioned approach in identifying unique SR contigs.

For each dataset, we evaluate the performance of our approach in identifying unique SR contigs that are

longer than a threshold. The ‘‘length threshold’’ that is used to discard small contigs in this experiment

changes from 100 to 1,000 with a step size of 100.

As it can be seen in Figure 2, the precision of the identified unique SR contigs is always high regardless of

the ‘‘length threshold.’’ In addition, in all the experiments a big jump in recall is observed at ‘‘length

threshold’’ of 300. The results of this experiment show that the proposed approach for identifying unique

SR contigs performs well with high precision and recall.

Experimental Setup

We evaluated the performance of HASLR on both simulated and real datasets. We selected five hybrid as-

semblers: hybridSPAdes (Antipov et al., 2015), Unicycler (Wick et al., 2017), DBG2OLC (Ye et al., 2016), Ma-

SuRCA (Zimin et al., 2017), Wengan (Di Genova et al., 2019); four long read methods: Canu (Koren et al.,

2017), Flye (Kolmogorov et al., 2019), wtdbg2 (Ruan and Li, 2019), miniasm (Li, 2016); and two short read

methods: Minia (Chikhi and Rizk, 2013), SPAdes (Bankevich et al., 2012). All experiments were performed

on isolated nodes of a cluster (i.e., no other simultaneous jobs were allowed on each node). Each node

runs CentOS 7 and is equipped with 32 cores (2 threads per core; total of 64 CPUs) Intel(R) Xeon(R) proces-

sors (Gold 6130 @ 2.10 GHz) and 720 GB of memory. Each tool was run with their recommended settings.

See Table S1 and Supplemental Information for more details about the versions of tools and the employed

commands. Note that, for wtdbg2, we used the provided wtdbg2.pl wrapper, which automatically per-

forms a polishing step using the embedded polishing module.

Figure 1. Two Backbone Graphs Built from a Real PacBio Dataset Sequenced from a Yeast Genome

Each graph is visualized with Bandage (Wick et al., 2015) and colored using its rainbow coloring feature. Each

chromosome is colored with a full rainbow spectrum. (Left) The backbone graph built from all SR contigs. (Right) The

backbone graph built from unique SR contigs. As it can be seen, using only unique SR contigs for building the backbone

graph resolves many of the complexities and ambiguities in the graph. However, it is important to note that excluding

non-unique SR contigs could potentially result in a more fragmented graph (some chromosomes are split into multiple

paths rather than a single one) and assembly.

ll
OPEN ACCESS

iScience 23, 101389, August 21, 2020 3

iScience
Article

For each experiment, assemblies were evaluated by comparing against their corresponding reference

genome using QUAST (Mikheenko et al., 2018). QUAST reports on a wide range of assembly statistics,

but we are mostly interested in misassemblies, NGA50, and rate of small errors (mismatch or indel). QUAST

detects and reports misassemblies when a contig cannot align to the reference genome as a single contin-

uous piece. Misassemblies indicate structural assembly errors. For computing NGA50, unlike N50 and

NG50, only segments of assembled contigs that are aligned to the reference genome are considered. In

addition, QUAST breaks contigs with extensive misassemblies before calculation of NGA50. Therefore,

NGA50 is a good indicator of the contiguity of the assembly, while takingmisassemblies into consideration.

Experiment on Simulated Dataset

We evaluated all the selected methods on four simulated datasets, namely, E. coli, yeast, C. elegans, and

human, to provide a wide range of genome sizes and complexity. For each genome, we used ART (Huang

et al., 2011) to simulate 503 coverage short Illumina reads (2 3 150 bp long, 500 bp insert size mean, and

50 bp insert size deviation) using the Illumina HiSeq 2000 error model. We also simulated 503 coverage

long PacBio reads using PBSIM (Ono et al., 2012). In order to capture the characteristics of real datasets,

a set of PacBio reads generated from a human genome (see Supplemental Information for details) with

P6-C4 chemistry was passed to PBSIM via option –sample-fastq. This enables PBSIM to sample the

read length and error model from the real long reads.

Figure 2. Precision and Recall Results in Identification of Unique Short Read Contigs on Six Different Reference

Genomes

Precision is shown with blue dots and recall is shown with orange dots. Precision is always high across the different

experiments, and in all the experiments a big jump in recall happens at length threshold of 300.

ll
OPEN ACCESS

4 iScience 23, 101389, August 21, 2020

iScience
Article

Genome Assembler Contigs Genome

Fraction

NGA50 Misassemblies

Extensive + Local

Mismatch

Rate

Indel

Rate

Time Memory

(GB)

E. coli Canu 1 99.648 4,625,313 0 + 0 0.86 15.85 30:18 4.16

Flye 1 99.937 4,639,833 0 + 0 0.34 25.31 5:59 12.10

wtdbg2 135 96.158 107,864 4 + 79 216.99 492.12 0:46 19.36

miniasm 4 99.470 4,178,447 0 + 1 52.24 646.11 0:41 2.56

Minia 162 97.713 58,763 0 + 0 0.26 0.00 0:26 3.04

SPAdes 79 98.333 176,163 1 + 2 1.69 0.11 6:56 113.92

hybridSPAdes 1 100.000 4,641,652 0 + 0 6.18 0.32 8:05 113.92

Unicycler 1 99.997 4,641,530 0 + 0 3.12 0.45 18:43 21.56

DBG2OLC 2 92.497 2,647,379 0 + 0 0.28 30.05 4:37 1.35

MaSuRCA 1 99.874 4,636,209 0 + 4 0.56 0.19 5:21 32.52

Wengan 1 100.000 4,641,731 0 + 0 2.54 5.36 2:21 3.19

HASLR 1 99.999 4,643,699 0 + 0 2.00 42.89 0:41 3.04

Yeast Canu 21 98.831 910,628 0 + 0 3.18 25.44 44:10 5.51

Flye 19 99.418 916,686 6 + 1 11.37 49.72 9:03 19.65

wtdbg2 490 92.871 77,726 24 + 191 259.00 577.63 1:58 28.35

miniasm 18 96.637 776,254 0 + 0 54.28 709.35 1:49 6.63

Minia 608 94.104 39,673 0 + 0 0.46 0.04 1:03 5.05

SPAdes 211 95.231 151,550 0 + 0 5.62 0.69 16:16 113.93

hybridSPAdes 38 97.840 797,316 2 + 12 41.54 2.12 19:41 113.93

Unicycler 52 97.893 799,601 0 + 1 8.81 0.44 57:47 22.99

DBG2OLC 18 98.492 771,063 1 + 0 5.9 85.95 13:29 1.21

MaSuRCA 17 99.476 919,651 0 + 3 5.97 0.56 15:10 32.66

Wengan 22 97.065 796,244 0 + 0 6.14 24.48 4:14 5.55

HASLR 18 96.597 796,649 0 + 0 5.39 76.63 1:52 10.48

C. elegans Canu 10 99.847 13,775,238 3 + 1 5.88 67.73 5:15:05 13.76

Flye 16 99.798 15,266,425 8 + 0 1.10 55.35 1:01:26 89.50

wtdbg2 4,487 95.468 81,074 194 + 506 246.33 657.89 15:57 29.45

miniasm 37 99.696 7,468,924 3 + 7 68.24 864.11 20:37 19.35

Minia 13,546 86.788 10,047 13 + 4 0.76 0.11 6:18 8.36

SPAdes 3,219 94.713 58,307 30 + 62 6.42 1.36 2:45:34 114.80

hybridSPAdes 340 98.643 924,797 67 + 197 73.26 9.14 3:11:50 114.79

Unicycler NA

DBG2OLC 16 99.692 6,732,354 10 + 7 8.55 174.21 2:04:23 7.99

MaSuRCA 18 99.609 4,614,507 34 + 123 14.89 4.56 2:07:41 33.76

Wengan 46 98.917 2,042,350 53 + 20 7.26 59.81 28:21 11.18

HASLR 25 99.182 6,455,832 0 + 0 14.74 230.58 10:45 22.42

Table 1. Comparison between Draft Assemblies Obtained by Different Tools on Simulated Data

(Continued on next page)

ll
OPEN ACCESS

iScience 23, 101389, August 21, 2020 5

iScience
Article

Table 1 shows the QUAST metrics calculated for assemblies generated by different tools. As it can be seen,

HASLR generates assemblies with the lowest number of misassemblies in all datasets. It is important to

note that since reads are simulated from the same reference used for this assessment, any misassembly re-

ported by QUAST is indeed a structural assembly mistake. In terms of the contiguity, HASLR achieves

NGA50 on par with other tools for all datasets except for C. elegans where Canu shows an NGA50 twice

larger than others tools. On the human dataset, HASLR generates the most contiguous assembly with

an NGA50 of 17.03 Mb and only two extensive misassemblies, although at the price of a lower genome frac-

tion (see Discussion). In addition, HASLR is the fastest assembler across the board. wtdbg2 has a compa-

rable speed but generates lower quality assemblies, both in terms of misassemblies and mismatch/indel

rate.

It is particularly interesting to compare HASLR with hybridSPAdes, Unicycler, and Wengan, since they share

similar design in that they connect short read contigs rather than explicitly assembling long reads. In addition,

Wengan uses short read contigs generated byMinia, similar toHASLR. hybridSPAdes andUnicycler do not scale

for large genomes as they have been designed for small and bacterial genomes. OnC. elegans dataset, HASLR

gives significantly more contiguous assembly than hybridSPAdes and Wengan without any structural assembly

error. For the human dataset, HASLR has a higher NGA50 while generating significantly less misassemblies.

Note that, HASLR does not employ any polishing step either internally or externally. Thus, the indel rate of

the draft assemblies generated by HASLR is less than desirable. Since SR contigs generated by Minia do

not contain many indels, it is expected that most of these indels are within the consensus sequence calcu-

lated by partial order alignment. However, these types of local assembly errors can be easily addressed

through a polishing step as shown in Table S4. With a single round of polishing, both indel and mismatches

rates match the other tools in two datasets.

Experiment on Real Dataset

To compare the performance of HASLR on real data with other tools, we tested them on four publicly available

datasets,E. coli, yeast,C. elegans, and human. Table 2 contains details about these real datasets. Similar to simu-

lated datasets, on real dataset HASLR generates less misassembly compared to other assemblers while remain-

ing the fastest (see Table 3). Compared with other hybrid assemblers, HASLR performs similar or better in terms

of contiguity, whereas it stands behind self-assembly tools with a lower NGA50.

Genome Assembler Contigs Genome

Fraction

NGA50 Misassemblies

Extensive + Local

Mismatch

Rate

Indel

Rate

Time Memory

(GB)

Human Canu 1,461 97.279 15,045,226 854 + 99 37.7 196.78 562:14:04 58.72

Flye NA

wtdbg2 122,438 92.735 87,595 3,436 + 13,041 224.02 598.87 10:25:19 190.07

miniasm 2,528 97.170 10,294,834 374 + 181 71.56 775.18 110:33:23 511.16

Minia 593,601 80.704 4,537 1,016 + 16 1.55 0.13 3:29:08 8.91

SPAdes NA

hybridSPAdes NA

Unicycler NA

DBG2OLC 1,906 91.013 14,385,033 221 + 246 8.43 201.56 81:18:15 69.53

MaSuRCA NA

Wengan 1,776 94.617 11,216,374 185 + 70 3.84 33.5 20:12:12 38.08

HASLR 897 91.213 17,025,446 2 + 5 11.32 207.88 6:06:43 58.55

Table 1. Continued

Note: Mismatch and indel rates are reported per 100 kbp. Unicycler crashed on C. elegans dataset due to maximum recursion limit. For the human dataset, Flye,

SPAdes, hybridSPAdes, and Unicycler failed due to memory limit and MaSuRCA failed due to a segmentation fault.

ll
OPEN ACCESS

6 iScience 23, 101389, August 21, 2020

iScience
Article

For real datasets, we further evaluated the accuracy of assemblies by performing gene completeness anal-

ysis using BUSCO (Simão et al., 2015), which quantifies gene completeness using single-copy orthologs.

Table 4 shows the results of BUSCO on E. coli, yeast, and C. elegans. We were unable to obtain BUSCO

results for the human genome owing to a high run time requirement.

Another observation is that, for some experiments, HASLR does not perform as well as others in terms of

genome fraction (see Discussion for more details). However, our gene completeness analysis shows that HASLR

is on par with other tools based on BUSCO gene completeness measure (see Table 4). Note that very low gene

completeness of Canu, wtdbg2, and DBG2OLC on E. coli dataset could be due to high indel rates of their as-

semblies. This high indel rate might be caused by the deep coverage of this dataset (>10003).

We additionally ran RepeatMasker (Smit et al., 2013-2015) on CHM1 assembly generated by HASLR and discov-

ered 1,519,699 SINEs, 922,706 LINEs, and 485,530 LTRs, spanning 13.22%, 21.73%, and 9.21% of the assembly,

respectively. In addition, there are 2,275 microsatellites, 659,551 simple repeats, and 97,783 low complexity re-

gions, covering 0.26%, 1.36%, and 0.22% of the assembly, respectively. Further investigation showed that these

repeats have awide rangeof sizes (seeFigure 3 for distribution of identified repeats). This suggests that similar to

other long read assemblers, HASLR is capable of resolving large repeats.

Long Read Coverage Analysis

In order to investigate the required coverage for de novo assembly using HASLR, we assessed its

performance on different values for long read coverage. Although HASLR requires only three long reads

(minSupp = 3) connecting two unique SR contigs to have a corresponding edge in the backbone graph,

in practice a higher coverage is required. We subsampled reads from each simulated and real dataset

to 53, 103, 153, 203, 253, 303, 353, 403, and 453 coverage. After assembling the subsampled datasets,

we measured the NGA50 and Genome fraction using QUAST for each obtained assembly.

As depicted in Figure 4, higher coverage of long reads results in a better assembly. It is interesting that, in

most cases, starting from 153 coverage, the genome fraction does not improve significantly. Although the

continuity of assemblies keeps improving with increasing coverage, the biggest jump in NGA50 happens

between 203 and 303 coverage. Changes in NGA50 above 303 coverage is not significant.

DISCUSSION

HASLR introduces the notion of backbone graph for hybrid genome assembly. This enables HASLR to

keep up with increasing throughput of LR sequencing technologies while remaining time and memory

efficient. The high speed of HASLR is due to two reasons: (1) HASLR uses the fast SPOA consensus mod-

ule rather than normal POA implementation and (2) HASLR uses only the longest 253 coverage of LRs for

Dataset Technology N50

Length

Estimated

Coverage

Total Size

(Gb)

Aligned

Size (Gb)

Avg.

Alignment

Identity (%)

E. coli ONT R9.4 63,747 1,080 5.01 4.31 85.03

(K-12 MG1655) Illumina 2 3 151 372 1.73 – –

Yeast PacBio 8,561 132 1.61 1.42 86.90

(S288C) Illumina 2 3 150 82 1.00 – –

C. elegans PacBio 16,675 47 4.73 4.32 87.43

(Bristol) Illumina 2 3 100 67 6.76 – –

Human PacBio 19,960 59 182.51 163.51 85.85

(CHM1) Illumina 2 3 151 41 127.76 – –

Table 2. Statistics of Real Long Read Datasets

Note: Alignment statistics were obtained by aligning long reads against their reference genome using lordFAST (Haghshe-

nas et al., 2019).

ll
OPEN ACCESS

iScience 23, 101389, August 21, 2020 7

iScience
Article

Dataset Assembler Contigs Genome

Fraction

NGA50 Misassemblies

Extensive + Local

Mismatch

Rate

Indel

Rate

Time Memory

(GB)

E. coli

(ONT)

Canu 1 99.976 3,647,271 2 + 6 108.85 1,254.40 702:57:07 32.39

Flye NA

wtdbg2 9 79.114 141,474 38 + 72 245.82 1,501.74 4:57 28.05

miniasm 3 99.992 3,106,217 4 + 10 279.13 1,263.23 50:00 55.56

Minia 177 97.698 57,763 0 + 0 0.24 0.02 2:22 4.76

SPAdes 95 98.281 133,063 0 + 9 1.16 0.15 34:51 114.29

hybridSPAdes 15 99.964 3,863,268 2 + 7 7.16 0.50 3:38:13 114.29

Unicycler NA

DBG2OLC 1 99.950 3,539,045 3 + 4 46.86 335.82 8:25 8.74

MaSuRCA 1 99.988 3,892,134 3 + 7 2.82 0.50 30:28 32.66

Wengan 3 99.998 3,346,596 3 + 2 4.74 9.24 20:02 14.37

HASLR 2 99.992 3,970,011 2 + 2 22.62 79.85 3:18 5.78

Yeast

(PacBio)

Canu 23 99.724 739,932 29 + 2 8.85 7.99 1:00:19 5.97

Flye 19 99.511 566,399 28 + 2 11.60 28.41 26:10 17.49

wtdbg2 28 97.668 640,895 20 + 3 10.65 27.17 3:04 16.26

miniasm 88 98.292 547,238 21 + 34 31.45 381.55 5:59 15.58

Minia 722 93.758 33,472 1 + 1 1.67 0.81 1:18 6.36

SPAdes 246 95.054 126,338 4 + 2 6.44 1.47 17:11 114.09

hybridSPAdes 61 97.207 436,584 28 + 20 44.77 3.71 20:58 114.09

Unicycler 51 97.555 531,185 15 + 5 15.13 4.22 2:09:27 36.90

DBG2OLC 24 63.275 229,397 25 + 10 28.37 58.43 9:51 0.99

MaSuRCA 24 99.262 538,374 30 + 8 11.83 5.85 23:15 32.69

Wengan 29 96.258 528,763 14 + 10 11.86 34.29 6:38 8.64

HASLR 28 95.735 530,856 11 + 5 8.13 100.64 2:25 11.30

C. elegans

(PacBio)

Canu 172 99.665 561,201 723 + 596 65.28 58.82 4:15:23 11.62

Flye 64 99.638 558,112 550 + 450 50.50 52.89 1:08:43 31.60

wtdbg2 288 98.994 561,292 329 + 596 26.82 79.72 14:13 21.19

miniasm 174 99.537 540,855 505 + 432 79.10 393.94 20:12 19.95

Minia 17,388 86.274 7,198 33 + 27 1.34 0.99 8:05 6.61

SPAdes 7,234 92.003 23,152 257 + 256 11.87 4.72 2:00:57 74.10

hybridSPAdes 2,336 96.720 84,003 633 + 638 108.04 15.96 2:47:32 74.11

Unicycler 858 97.102 139,992 940 + 692 58.36 45.47 23:49:29 105.06

DBG2OLC 206 99.100 421,196 546 + 383 44.75 80.61 2:34:44 11.36

MaSuRCA 216 97.013 471,366 368 + 504 49.20 23.50 1:57:49 33.48

Wengan 270 93.341 341,861 308 + 336 35.75 121.11 45:45 8.02

HASLR 261 97.431 453,631 259 + 331 26.08 140.40 15:35 17.93

Table 3. Comparison between Assemblies Obtained by Different Tools on Real Data

(Continued on next page)

ll
OPEN ACCESS

8 iScience 23, 101389, August 21, 2020

iScience
Article

assembly. Assemblies generated by HASLR are similar to those generated by best-performing tools in

terms of contiguity while having the lowest number of misassemblies. In other words, we prefer to remain

conservative in resolving ambiguous regions without strong signal rather than aggressively resolving

them to generate longer contigs and possibly generating misassemblies. However, the conservative na-

ture of HASLR does not imply that it compromises on assembling complex regions. Every complex re-

gion that is covered by a sufficient number of LRs, together with its flanking unique SR contigs, would

be resolved. In fact, based on our manual inspections, there are regions that HASLR assembles properly

but all other tools either misassemble or generate fragmented assembly (see Figures S1–S10 for visual

examples of such cases).

There are a number of future directions that are planned for future releases of HASLR. First, compared with

other tools, HASLR usually has a higher indel rate. Note that most of the small local assembly mistakes

(including mismatch and indel errors) can be fixed by further polishing. But since a large portion of the

assembled genome is built from SR contigs, a polishing module could be specifically designed for HASLR

that only polishes the regions between unique SR contigs which have been generated using SPOA. This

would enable a faster polishing phase.

An important factor in the contiguity of assemblies generated by HASLR is the length of reads. Obviously,

longer reads would generate a more connected and resolved backbone graph. With the recent advance-

ments in the Nanopore technology and the introduction of ultra-long Nanopore reads (whose length can

go beyond 1 Mbp), one can expect to get much more contiguous assemblies. Therefore, supporting ultra-

long ONT reads is an important feature to address in the future.

HASLR sometimes generates assemblies with relatively lower genome fraction and/or NGA50 compared

with other tools. This is clearer when we compare it against Canu, especially on a large and complex

genome like the human genome. The main reason is that the connectivity of the backbone graph depends

on the existence of unique SR contigs. Therefore, the lack of unique SR contigs in a large region results in

multiple connected components rather than a single connected component in the backbone graph. How-

ever, that region as a whole (considering all SR contigs aligned to that region) might be different from any

other region in the genome because of the order of aligned SR contigs. This means that such region can be

Dataset Assembler Contigs Genome

Fraction

NGA50 Misassemblies

Extensive + Local

Mismatch

Rate

Indel

Rate

Time Memory

(GB)

CHM1

(PacBio)

Canu 2,110 96.084 2,329,909 6,715 + 7,048 145.81 120.69 689:26:01 70.44

Flye NA

wtdbg2 3,723 92.896 2,081,842 3,535 + 6,286 118.45 72.54 11:35:22 202.41

miniasm NA

Minia 697,240 65.977 1,823 955 + 823 87.93 13.17 3:13:13 9.56

SPAdes NA

hybridSPAdes NA

Unicycler NA

DBG2OLC 2,118 95.547 1,599,466 3,718 + 8,690 116.81 116.89 78:21:08 64.94

MaSuRCA 3,781 93.782 1,761,291 4,984 + 7,491 180.83 57.53 350:35:59 225.63

Wengan 4,474 88.948 875,489 2,771 + 7,577 115.65 160.71 18:19:47 112.73

HASLR 1,469 92.664 1,699,092 2,097 + 7,661 113.06 281.74 6:32:33 60.75

Table 3. Continued

Note: Mismatch and indel rates are reported per 100 kbp. Flye, SPAdes, hybridSPAdes, and Unicycler failed on human genome datasets due to memory limit.

Unicycler did not finish on E. coli dataset within one month. Flye failed on E. coli with error "No disjointigs were assembled."

ll
OPEN ACCESS

iScience 23, 101389, August 21, 2020 9

iScience
Article

Dataset Assembler Complete (%) Complete

Single Copy (%)

Complete

Duplicate (%)

Fragmented (%) Missing (%) Total BUSCO Groups

E. coli

(ONT)

Canu 4.1 4.1 0.0 16.8 79.1 440

Flye NA

wtdbg2 1.8 1.8 0.0 9.1 89.1 440

miniasm 3.0 3.0 0.0 18.0 79.0 440

minia 99.8 99.3 0.5 0.2 0.0 440

SPAdes 100.0 99.5 0.5 0.0 0.0 440

hybridSPAdes 100.0 99.5 0.5 0.0 0.0 440

Unicycler NA

DBG2OLC 35.9 35.7 0.2 33.0 31.1 440

MaSuRCA 99.7 98.6 1.1 0.0 0.3 440

Wengan 100.0 99.5 0.5 0.0 0.0 440

HASLR 97.8 97.3 0.5 1.6 0.6 440

Yeast

(PacBio)

Canu 96.6 94.8 1.8 0.2 3.2 2,137

Flye 94.6 93.0 1.6 0.1 5.3 2,137

wtdbg2 88.4 86.8 1.6 0.8 10.8 2,137

miniasm 25.8 25.6 0.2 5.2 69.0 2,137

minia 96.3 94.9 1.4 0.1 3.6 2,137

SPAdes 96.3 94.5 1.8 0.2 3.5 2,137

hybridSPAdes 96.6 94.8 1.8 0.1 3.3 2,137

Unicycler 96.4 94.7 1.7 0.1 3.5 2,137

DBG2OLC 57.1 56.5 0.6 0.5 42.4 2,137

MaSuRCA 96.3 94.1 2.2 0.1 3.6 2,137

Wengan 96.5 94.9 1.6 0.0 3.5 2,137

HASLR 95.8 94.4 1.4 0.1 4.1 2,137

C. elegans

(PacBio)

Canu 97.4 96.8 0.6 1.1 1.5 3,131

Flye 98.6 98.0 0.6 0.3 1.1 3,131

wtdbg2 97.1 96.5 0.6 1.3 1.6 3,131

miniasm 83.2 82.8 0.4 6.5 10.3 3,131

minia 80.4 79.9 0.5 9.0 10.6 3,131

SPAdes 91.4 90.8 0.6 4.1 4.5 3,131

hybridSPAdes 96.4 95.8 0.6 1.3 2.3 3,131

Unicycler 97.7 97.1 0.6 0.7 1.6 3,131

DBG2OLC 97.5 95.8 1.7 0.6 1.9 3,131

MaSuRCA 95.5 94.1 1.4 0.4 4.1 3,131

Wengan 91.6 91.1 0.5 0.9 7.5 3,131

HASLR 97.1 96.7 0.4 0.8 2.1 3,131

Table 4. Gene Completeness Analysis

Note: We used enterobacterales odb10, saccharomycetes odb10, and nematoda odb10 gene sets for assessing gene completeness of E. coli, Yeast, and

C. elegans assemblies, respectively. We were not able to obtain the gene completeness results for the human dataset due to time restrictions.

ll
OPEN ACCESS

10 iScience 23, 101389, August 21, 2020

iScience
Article

resolved using overlap-based assembly approaches. This limitation could be mitigated by extracting un-

used LRs and assembling them in an OLC fashion (e.g., using miniasm [Li, 2016]). Note that only a small

portion of LRs is unused compared to the original input dataset. As a result, using an OLC approach for

such a small set of LRs should not affect the total running time significantly.

One of themain bottlenecks of OLC-based assembly approach in terms of speed is that they require to find

all overlaps between input reads. Recent LR assemblers have tried to speed up this process by using min-

imizers (Li, 2016; Koren et al., 2017) or compressed representation of LRs (Ruan and Li, 2019) techniques.

However, an all-versus-all alignment is still required in order to generate such a graph. In fact, OLC-based

assemblers can use HASLR (or the idea of backbone graph assembly) as a first step before performing the

computationally expensive all-versus-all alignment step.

Finally, phased assembly of diploid genomes is an active area of research (see Garg et al. (2018) for an

example). Toward this goal, there are two directions of future work: (1) heterozygosity-aware consensus

calling of subreads falling between two unique SR contigs is one of our main future directions; this would

be possible via clustering of subreads that fall between consecutive unique SR contigs into two groups and

performing consensus calling for each group separately. (2) Resolving highly heterozygous regions; we

observed that some of the regions with high heterozygosity are not resolved by HASLR. This is because

the short read contigs (produced by Minia) for these regions are fragmented. Thus, they are filtered by

HASLR, which requires a minimum length for short read contig to long read alignments (controlled via

‘‘–aln-block’’ option; default 500). As a result, regions with high heterozygosity are more likely to be ab-

sent from the backbone graph, which makes the backbone graph more fragmented. This means that

HASLR might generate more fragmented assembly that has a lower NGA50 (see Tables S2 and S3 which

contain results of assemblies for HG002 human dataset). One of the future directions is to explore how a

short read assembler like Minia can be adapted for high heterozygosity regions (e.g., by collapsing hetero-

zygous events to generate longer contigs). Although some heterozygosity information might be lost as a

result of this modification, a post-assembly step can be used to retrieve this information (e.g., via mapping

long reads to the assembled contigs).

Figure 3. Distribution of Repeats in HASLR’s Assembly of CHM1 Dataset Identified Using RepeatMasker

ll
OPEN ACCESS

iScience 23, 101389, August 21, 2020 11

iScience
Article

Limitations of the Study

The current version of HASLR does not generate a phased assembly for diploid genomes. In addition, the

assemblies generated by HASLR might be fragmented owing to high heterozygosity regions or repetitive

regions that are not spanned by long reads. We refer the reader to the Discussion section for more details

about these limitations.

A

C D

B

E F

G H

Figure 4. Performance of HASLR in Assembling Different Datasets on Subsampled Coverage

ll
OPEN ACCESS

12 iScience 23, 101389, August 21, 2020

iScience
Article

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Faraz Hach (faraz.hach@ubc.ca).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The instructions to generate simulated data used in this article canbe found in Supplemental Information. Nano-

pore reads for E.coli were downloaded from http://lab.loman.net/2017/03/09/ultrareads-for-nanopore and the

corresponding Illumina data were downloaded from ftp://webdata:webdata@ussd-ftp.illumina.com/Data/

SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz and ftp://webdata:webdata@ussd-

ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz. The yeast

PacBio dataset was obtained via accessions ERX1725434, ERX1725435, and ERX1725441, whereas yeast Illumina

reads are accessible via ERX1943903. PacBio reads for C.elegans are available at https://github.com/

PacificBiosciences/DevNet/wiki/C.-elegans-data-set and the accession ID for the corresponding Illumina is

SRR065390. For the CHM1 sample, PacBio reads can be obtained at https://trace.ncbi.nlm.nih.gov/Traces/

sra/?study=SRP044331 and Illumina dataset is available via accession ID SRX652547. HASLR is an open source

tool implemented in C++ and Python. Its source code is publicly available at https://github.com/vpc-ccg/

haslr. HASLR can be installed via Bioconda package manager as well.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101389.

ACKNOWLEDGMENTS

We would like to thank Baraa Orabi for providing feedback on the original manuscript. This work is funded

in part by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grants to F.H.

(RGPIN-05952) and C.C. (RGPIN-03986) and NSERC CREATE program to E.H..

AUTHOR CONTRIBUTIONS

E.H., C.C., and F.H. developed underlyingmethodology with feedback from J.S.; E.H. implemented HASLR

and performed evaluation of methods; H.A. performed parameter tuning; E.H. and F.H. wrote the manu-

script with the help and feedback from C.C. and J.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 25, 2019

Revised: December 18, 2019

Accepted: January 21, 2020

Published: August 21, 2020

REFERENCES
Antipov, D., Korobeynikov, A., McLean, J.S., and
hybridspades, P.A. Pevzner. (2015). An algorithm
for hybrid assembly of short and long reads.
Bioinformatics 32, 1009–1015.

Bankevich, A., Nurk, S., Antipov, D., Gurevich,
A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,
Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al.
(2012). Spades: a new genome assembly

algorithm and its applications to single-cell
sequencing. J. Comput. Biol. 19, 455–477.

Chikhi, R., and Rizk, G. (2013). Space-efficient and
exact de bruijn graph representation based on a
bloom filter. Algorithms Mol. Biol. 8, 22.

Chin, C.-S., Peluso, P., Sedlazeck, F.J., Nattestad,
M., Concepcion, G.T., Clum, A., Dunn, C.,

O’Malley, R., Figueroa-Balderas, R., Morales-
Cruz, A., et al. (2016). Phased diploid genome
assembly with single-molecule real-time
sequencing. Nat. Methods 13, 1050.

Di Genova, A., Buena-Atienza, E., Ossowski, S.,
and Wengan, M.-F.S. (2019). Efficient and high
quality hybrid de novo assembly of human
genomes. BioRxiv, 840447.

ll
OPEN ACCESS

iScience 23, 101389, August 21, 2020 13

iScience
Article

mailto:faraz.hach@ubc.ca
http://lab.loman.net/2017/03/09/ultrareads-for-nanopore
http://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
http://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
http://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
http://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP044331
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP044331
https://github.com/vpc-ccg/haslr
https://github.com/vpc-ccg/haslr
https://doi.org/10.1016/j.isci.2020.101389
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref5

Garg, S., Rautiainen, M., Novak, A.M., Garrison,
E., Durbin, R., and Marschall, T. (2018). A graph-
based approach to diploid genome assembly.
Bioinformatics 34, i105–i114.

Haghshenas, E., Hach, F., Sahinalp, S.C., and
Chauve, C. (2016). Colormap: correcting long
reads by mapping short reads. Bioinformatics 32,
i545–i551.

Haghshenas, E., Sahinalp, S.C., and Hach, F.
(2019). lordFAST: sensitive and Fast Alignment
Search Tool for LOng noisy Read sequencing
Data. Bioinformatics 35, 20–27.

Huang, W., Li, L., Myers, J.R., and Marth, G.T.
(2011). Art: a next-generation sequencing read
simulator. Bioinformatics 28, 593–594.

Jaworski, C.C., Allan, C.W., and Matzkin, L.M.
(2019). Chromosome-level hybrid de novo
genome assemblies as an attainable option for
non-model organisms. BioRxiv, 748228.

Jiang, J.B., Quattrini, A.M., Francis, W.R., Ryan,
J.F., Rodrı́guez, E., and McFadden, C.S. (2019). A
hybrid de novo assembly of the sea pansy (Renilla
muelleri) genome. GigaScience 8, giz026.

Kadobianskyi, M., Schulze, L., Schuelke, M., and
Judkewitz, B. (2019). Hybrid genome assembly
and annotation of Danionella translucida.
BioRxiv, 539692.

Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner,
P.A. (2019). Assembly of long, error-prone reads
using repeat graphs. Nat. Biotechnol. 37, 540.

Koren, S., Schatz, M.C., Walenz, B.P., Martin, J.,
Howard, J.T., Ganapathy, G., Wang, Z., Rasko,
D.A., McCombie, W.R., Jarvis, E.D., et al. (2012).
Hybrid error correction and de novo assembly of
single-molecule sequencing reads. Nat.
Biotechnol. 30, 693.

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R.,
Bergman, N.H., and Phillippy, A.M. (2017). Canu:
scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation.
Genome Res. 27, 722–736.

Li, H. (2016). Minimap and miniasm: fast mapping
and de novo assembly for noisy long sequences.
Bioinformatics 32, 2103–2110.

Li, H. (2018). Minimap2: pairwise alignment for
nucleotide sequences. Bioinformatics 34, 3094–
3100.

Miga, K.H., Koren, S., Rhie, A., Vollger, M.R.,
Gershman, A., Bzikadze, A., Brooks, S., Howe, E.,
Porubsky, D., Logsdon, G.A., et al. (2019).
Telomere-to-telomere assembly of a complete
human x chromosome. BioRxiv, 735928.

Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov,
D., and Gurevich, A. (2018). Versatile genome
assembly evaluation with quast-lg. Bioinformatics
34, i142–i150.

Miller, J.R., Delcher, A.L., Koren, S., Venter, E.,
Walenz, B.P., Brownley, A., Johnson, J., Li, K.,
Mobarry, C., and Sutton, G. (2008). Aggressive
assembly of pyrosequencing reads with mates.
Bioinformatics 24, 2818–2824.

Myers, G. (2014). Efficient local alignment
discovery amongst noisy long reads. In
International Workshop on Algorithms in
Bioinformatics, D. Brown and B. Morgenstern,
eds. (Springer), pp. 52–67.

Ono, Y., Asai, K., and Hamada, M. (2012). Pbsim:
pacbio reads simulator toward accurate genome
assembly. Bioinformatics 29, 119–121.

Ruan, J., and Li, H. (2019). Fast and accurate long-
read assembly with wtdbg2. BioRxiv, 530972.

Salmela, L., and Rivals, E. (2014). Lordec: accurate
and efficient long read error correction.
Bioinformatics 30, 3506–3514.

Simão, F.A., Waterhouse, R.M., Ioannidis, P.,
Kriventseva, E.V., and Zdobnov, E.M. (2015).
Busco: assessing genome assembly and
annotation completeness with single-copy
orthologs. Bioinformatics 31, 3210–3212.

Smit, A., Hubley, R., and Green, P. (2013-2015).
RepeatMasker. http://repeatmasker.org.

Vaser, R., Sovi�c, I., Nagarajan, N., and �Siki�c, M.
(2017). Fast and accurate de novo genome
assembly from long uncorrected reads. Genome
Res. 27, 737–746.

Vollger, M.R., Logsdon, G.A., Audano, P.A.,
Sulovari, A., Porubsky, D., Peluso, P., Concepcion,
G.T., Munson, K.M., Baker, C., Sanders, A.D.,
et al. (2019). Improved assembly and variant
detection of a haploid human genome using
single-molecule, high-fidelity long reads. BioRxiv,
635037.

Walker, B.J., Abeel, T., Shea, T., Priest, M.,
Abouelliel, A., Sakthikumar, S., Cuomo, C.A.,
Zeng, Q., Wortman, J., Young, S.K., et al. (2014).
Pilon: an integrated tool for comprehensive
microbial variant detection and genome
assembly improvement. PLoS One 9, e112963.

Wang, J.R., Holt, J., McMillan, L., and Jones, C.D.
(2018). Fmlrc: Hybrid long read error correction
using an fm-index. BMC Bioinformatics 19, 50.

Wick, R.R., Schultz, M.B., Zobel, J., and Holt, K.E.
(2015). Bandage: Interactive visualization of de
novo genome assemblies. Bioinformatics 31,
3350–3352.

Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E.
(2017). Unicycler: Resolving bacterial genome
assemblies from short and long sequencing
reads. PLoS Comput. Biol. 13, e1005595.

Ye, C., Hill, C.M., Wu, S., Ruan, J., and Ma, Z.S.
(2016). Dbg2olc: efficient assembly of large
genomes using long erroneous reads of the third
generation sequencing technologies. Sci. Rep. 6,
31900.

Zerbino, D.R., and Birney, E. (2008). Velvet:
algorithms for de novo short read assembly using
de bruijn graphs. Genome Res. 18, 821–829.

Zimin, A.V., Puiu, D., Luo, M.-C., Zhu, T., Koren, S.,
Marçais, G., Yorke, J.A., Dvo�rák, J., and Salzberg,
S.L. (2017). Hybrid assembly of the large and
highly repetitive genome of aegilops tauschii, a
progenitor of bread wheat, with the masurca
mega-reads algorithm. Genome Res. 27,
787–792.

ll
OPEN ACCESS

14 iScience 23, 101389, August 21, 2020

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)30577-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30577-0/optrpttSZiJgI
http://refhub.elsevier.com/S2589-0042(20)30577-0/optrpttSZiJgI
http://refhub.elsevier.com/S2589-0042(20)30577-0/optrpttSZiJgI
http://refhub.elsevier.com/S2589-0042(20)30577-0/optrpttSZiJgI
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref19
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref22
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref22
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref24
http://repeatmasker.org
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref32
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34
http://refhub.elsevier.com/S2589-0042(20)30577-0/sref34

iScience, Volume 23

Supplemental Information

HASLR: Fast Hybrid Assembly of Long Reads

Ehsan Haghshenas, Hossein Asghari, Jens Stoye, Cedric Chauve, and Faraz Hach

S1 Supplemental Figures

Figure S1. An example showing a region of choromosome 4 of C. elegans. Related to Table 1.

Figure S2. An example showing a region of choromosome X of C. elegans. Related to Table 1.

Figure S3. An example showing a region of choromosome X of hg38. Related to Table 1.

‘

Figure S4. An example showing a region of choromosome 18 of hg38. Related to Table 1.

Figure S5. An example showing a region of choromosome 16 of hg38. Related to Table 1.

Figure S6. An example showing a region of choromosome 15 of hg38. Related to Table 1.

Figure S7. An example showing a region of choromosome 14 of hg38. Related to Table 1.

Figure S8. An example showing a region of choromosome 13 of hg38. Related to Table 1.

Figure S9. An example showing a region of choromosome 11 of hg38. Related to Table 1.

Figure S10. An example showing a region of choromosome 9 of hg38. Related to Table 1.

�1
�1 �2

�
+

1
�
+

2

�2
�3 �4

�3
�5 �6

�4
�7 �8

{ }�1

�
+

3
�
+

4

{ }�2

�
−

1
�

−

2

{ }�1

�
−

3
�

−

4

{ }�2
�
+

7
�
+

8

{ }�4

�
+

5
�
+

6

{ }�3

�
−

7
�

−

8

{ }�4

�
−

5
�

−

6{ }�3

Figure S11. Possible orientations of aligning two unique contigs to a long read. The direction of
contigs aligned to long reads shows the strand of their corresponding sequence. These directions
guide us to find the proper edge type. The set of long reads supporting each edge is shown as its
label. Related to Figure 1.

(a) example of a tip in the backbone graph (b) example of a bubble in the backbone graph

Figure S12. Examples of tip and bubbles in the backbone graph. Here the backbone graph is
visualized using Bandage (Wick et al., 2015). Related to Figure 1.

�
+

�
�

−

�+1

(, , 3)�
+

� �
−

�+1

�1

�2

�3

���� �+1

POA	consensus

[����]�+� [����]�+� [����]�
−

�+1
[����]�

−

�+1

Figure S13. Example of an edge in backbone graph and its corresponding long read alignments.
Partial Order Alignment (POA) is used in constructing the consensus sequence (see subsection
S3.5). Related to Figure 1.

S2 Supplemental Tables

Table S1: Details about utilized software. Related to Tables 1 and 3.

Tool Version Reference Repository

Minia 3.2.1 Chikhi and Rizk (2013) github.com/GATB/minia

minimap2 2.17 Li (2018) github.com/lh3/minimap2

SPOA 1.1.3 Vaser et al. (2017) github.com/rvaser/spoa

GNU Time 1.9 – ftp.gnu.org/gnu/time/

ART 2.5.8 Huang et al. (2011) niehs.nih.gov/research/resources/software/biostatistics/art/

PBSIM 7fdcefd Ono et al. (2012) github.com/yukiteruono/pbsim

Canu 1.8 Koren et al. (2017) github.com/marbl/canu

Flye 2.6 Kolmogorov et al. (2019) github.com/fenderglass/Flye

wtdbg2 2.5 Ruan and Li (2019) github.com/ruanjue/wtdbg2

miniasm 0.3 Li (2016) https://github.com/lh3/miniasm

SPAdes 3.13.1 Antipov et al. (2015) github.com/ablab/spades

Unicycler 0.4.8 Wick et al. (2017) github.com/rrwick/unicycler

DBG2OLC 0246e46 Ye et al. (2016) github.com/yechengxi/dbg2olc

MaSuRCA 3.3.1 Zimin et al. (2017) github.com/alekseyzimin/masurca

Wengan v0.1 Di Genova et al. (2019) github.com/adigenova/wengan

QUAST 5.0.2 Mikheenko et al. (2018) github.com/ablab/quast

BUSCO 4.0.1 Simão et al. (2015) busco.ezlab.org

Table S2: Comparison between assemblies obtained by different tools on HG002 dataset against
human reference GRCh38. Related to Table 3.

A
ss

em
b
le

r

C
on

ti
gs

G
en

om
e

fr
ac

ti
on

N
G

A
50

M
is

as
se

m
b
li
es

ex
te

n
si

ve
+

lo
ca

l

M
is

m
at

ch
ra

te

In
d
el

ra
te

T
im

e

M
em

or
y

(G
B

)

Canu 6,227 96.203 1,832,773 6,145+7,285 136.16 79.05 533:25:31 34.31
Flye NA
wtdbg2 4,768 93.935 2,084,440 3,200+6,320 111.72 97.05 12:24:45 211.56
miniasm 5,762 95.537 1,463,623 3,222+10,145 162.20 575.98 94:12:20 444.65

Minia 575,982 84.428 4,694 1,374+1,518 83.65 16.99 9:22:10 8.66
SPAdes NA

hybridSPAdes NA
Unicycler NA
DBG2OLC NA
MaSuRCA NA
Wengan 2867 93.297 1,217,282 2,455+7,034 108.93 82.97 34:51:29 49.36
HASLR 11,557 92.487 424,477 2,397+8,908 113.94 209.92

Note: Mismatch and indel rates are reported per 100 kbp. Flye, SPAdes, hybridSPAdes, and Unicycler failed due to memory
limit. DBG2OLC failed due to exceeding the limit for the number of open files in the cluster (4000). MaSuRCA crashed after
running for 40 days.

github.com/GATB/minia
github.com/lh3/minimap2
github.com/rvaser/spoa
ftp.gnu.org/gnu/time/
niehs.nih.gov/research/resources/software/biostatistics/art/
github.com/yukiteruono/pbsim
github.com/marbl/canu
github.com/fenderglass/Flye
github.com/ruanjue/wtdbg2
https://github.com/lh3/miniasm
github.com/ablab/spades
github.com/rrwick/unicycler
github.com/yechengxi/dbg2olc
github.com/alekseyzimin/masurca
github.com/adigenova/wengan
github.com/ablab/quast
busco.ezlab.org

Table S3: Comparison between assemblies obtained by different tools on HG002 dataset against
Peregrine assembly of HiFi PacBio reads. Related to Table 3.

A
ss

em
b
le

r

C
on

ti
gs

G
en

om
e

fr
ac

ti
on

N
G

A
50

M
is

as
se

m
b
li
es

ex
te

n
si

ve
+

lo
ca

l

M
is

m
at

ch
ra

te

In
d
el

ra
te

T
im

e

M
em

or
y

(G
B

)

Canu 6,227 93.394 3,344,052 3,828+3,324 75.63 74.23 533:25:31 34.31
Flye NA
wtdbg2 4,768 91.377 4,050,425 2,578+2,510 54.90 93.36 12:24:45 211.56
miniasm 5,762 92.676 2,421,361 2,237+6,387 109.24 577.53 94:12:20 444.65

Minia 575,982 81.771 4,826 1,210+616 31.05 8.53 9:22:10 8.66
SPAdes NA

hybridSPAdes NA
Unicycler NA
DBG2OLC NA
MaSuRCA NA
Wengan 2867 90.458 1,727,800 1,227+3,428 55.16 76.26 34:51:29 49.36
HASLR 11,557 89.624 495,840 1,129+5,019 58.87 204.59

Note: Mismatch and indel rates are reported per 100 kbp. Flye, SPAdes, hybridSPAdes, and Unicycler failed due to memory
limit. DBG2OLC failed due to exceeding the limit for the number of open files in the cluster (4000). MaSuRCA crashed after
running for 40 days.

Table S4: Effect of polishing assemblies on the small assembly errors of two real datasets. Related
to Table 3.

Mismtach rate Indel rate

Dataset Assembler draft polished draft polished

Yeast Canu 8.85 7.56 7.99 7.99
(PacBio) Flye 11.60 7.51 28.41 4.38

wtdbg2 10.65 7.19 27.17 2.61
miniasm 31.45 12.57 381.55 38.79

hybridSPAdes 44.77 9.88 3.71 3.93
Unicycler 15.13 6.84 4.22 2.44
DBG2OLC 28.37 14.42 58.43 5.51
MaSuRCA 11.83 8.49 5.85 9.69
Wengan 11.86 7.36 34.29 2.08
HASLR 8.13 4.33 100.64 2.05

C.elegans Canu 65.28 65.88 58.82 29.71
(PacBio) Flye 50.50 44.72 52.89 26.25

wtdbg2 26.82 25.9 79.72 27.11
miniasm 79.10 52.41 393.94 38.52

hybridSPAdes 108.04 27.88 15.96 45.43
Unicycler 58.36 36.97 45.47 32.08
DBG2OLC 44.75 46.50 80.61 43.52
MaSuRCA 49.20 30.9 23.50 31.97
Wengan 35.75 21.13 121.11 22.82
HASLR 26.08 19.61 140.40 22.92

Note: Here polished genomes are obtained after a single round of polishing using Arrow (github.com/PacificBiosciences/
GenomicConsensus)

github.com/PacificBiosciences/GenomicConsensus
github.com/PacificBiosciences/GenomicConsensus

S3 Transparent Methods

S3.1 Obtaining unique short read contigs

The input to HASLR is a set of long reads (LRs) and a set of short reads (SRs) from the same
sample, together with an estimation of the genome size. HASLR starts by assembling SRs into a set
of short read contigs, denoted by C. Assembly of SRs is a well-studied topic and many efficient tools
have been specifically designed for that purpose. These tools use either a de Bruijn graph (Simpson
et al., 2009; Chikhi and Rizk, 2013) or an OLC strategy (based on an overlap graph or a string
graph) (Simpson and Durbin, 2012; Molnar et al., 2017) to assemble the genome by finding “proper”
paths in these graphs.

Next, HASLR identifies a set U of unique contigs (UCs), those SR contigs that are likely to
appear in the genome only once. The motivation for this is that repetitive SR contigs would cause
branching in the backbone graph and in fact, building the backbone graph using all SR contigs
could result in a very tangled graph. In other words, using only unique SR contigs for building the
backbone graph resolves many of the complexities and ambiguities in the graph. In order to identify
unique contigs, for every SR contig, ci, the mean k-mer frequency, f(ci), is computed as the average
k-mer count of all k-mers present in ci. Note that the value of f(ci) is proportional to the depth
of coverage of ci. Assuming longer contigs are more likely to come from unique regions, their mean
k-mer frequency can be a good indicator for identifying UCs. Let LCq ⊆ C be the set of q longest
SR contigs in C, and favg, fstd be the average and standard deviation of {f(c) | c ∈ LCq}. Then,
the set of unique contigs is defined as U = {u | u ∈ C and f(u) ≤ favg + 3fstd}. Our empirical
results show that this approach can identify UCs with high precision and recall (see Section 2.2 for
more details).

S3.2 Construction of backbone graph

The backbone graph encodes potential adjacencies between unique contigs and thus presents a large-
scale map of the genome, albeit, with some level of ambiguity. Using the backbone graph, HASLR
finds paths of unique contigs representing their relative order and orientation in the sequenced
genome. These paths are later transformed into the assembly.

Formally, given a set of UCs, U = {u1, u2, . . . , u|U |}, and a set of LRs, L = {l1, l2, . . . , l|L|},
HASLR builds the backbone graph BBG as follows. First, UCs are aligned against LRs. Each
alignment can be encoded by a 7-tuple

(
rbeg, rend, uid, ustrand, ubeg, uend, nmatch

)
whose

elements respectively denote the start and end positions of the alignment on the LR, the index of
the UC in U , the strand of the alignment (+ or −), the start and end position of the alignment on
the UC, and the number of matched bases in the alignment. Let Ai =

(
ai1, a

i
2, . . . a

i
|Ai|
)

be the list
of alignments of UCs to li, sorted by rend.

Note that alignments in Ai may overlap due to relaxed alignment parameters in order to
account for the high sequencing error rate of LRs. Thus, in the next step we aim to select a
subset of non-overlapping alignments whose total identity score – defined as the sum of the number
of matched bases – is maximal. Let Si(j) be the best subset among the first j alignments, i.e.
the non-overlapping subset of these j alignments with maximal total identity score. Si(j) can be

calculated using the following dynamic programming formulation:

Si(j) =

{
0 if j = 0

max
{
Si

(
j − 1

)
, Si

(
prev(j)

)
+ aij [nmatch]

}
otherwise

(1)

where prev(j) is the largest index z < j such that aij and aiz are non-overlapping alignments. By

calculating Si(|Ai|) and backtracking, we obtain a sorted sub-list Ri = (ri1, r
i
2, . . . , r

i
|Ri|) of non-

overlapping alignments with maximal total identity score, which we call the compact representation
of read li. Note that since the input list is sorted, prev(.) can be calculated in logarithmic time
which makes the time complexity of this dynamic programming O(|Ai| log |Ai|).

The backbone graph is a directed graph BBG = (V,E). The set of nodes is defined as
V = {u+

j , u
−
j | 1 ≤ j ≤ |U |} where u+

j and u−j represent the forward and reverse strand of the
UC uj , respectively. The set of edges is defined as the oriented adjacencies between UCs implied by
the compact representations of LRs. Formally each edge is represented by a triplet (uh, ut, supp)
where uh, ut ∈ V and supp is the set of indices of LRs supporting the adjacency between uh and
ut; these triplets are obtained as follows:

E =
⋃

1≤i≤|L| , 1≤j<|Ri|

{(
uhsh , utst , {i}

)
,
(
u
REV (ts)
t , u

REV (hs)
h , {i}

)}

where h = rij [uid], hs = rij [ustrand], t = rij+1[uid], ts = rij+1[ustrand], REV (+) = −, and
REV (−) = +. Supplemental Figure S11 illustrates the construction of the backbone graph edges
for several combinations of UC alignments on LRs.

At the end of this stage, the resulting backbone graph is a multi-graph as there can be multiple
edges between two nodes with different supp. In order to make it easier to process the backbone
graph, we convert it into a simple graph by merging supp of all edges between every pair of nodes
into a set of supporting LRs.

S3.3 Graph cleaning and simplification

Ideally, with accurate identification of UCs and correct alignment of UCs onto LRs, the backbone
graph for a haploid genome will consist of a set of connected components, each of which is a simple
path of nodes. In practice, this ideal case does not happen – mainly due to sequencing errors, wrong
UC to LR alignments, and chimeric reads. As a result, some fake branches as well as artifactual
structures might be formed in the backbone graph.

We clean the backbone graph BBG in two stages. First, in order to reduce the effect of wrong
UC to LR alignments, we remove all edges e such that |e[supp]| < minSupp, for a given parameter
minSupp. Second, the graph is simplified to remove the artifactual structures. These structures are
known as tips and bubbles. Tips are dead-end simple paths whose length are small compared to
their parallel paths. Bubbles are formed when two disjoint simple paths occur between two nodes.
Supplemental Figure S12 shows examples of tips and bubbles in our backbone graph. There exist
well-known algorithms for removing tips and bubbles that are commonly used in assemblers (Zerbino
and Birney, 2008; Bankevich et al., 2012; Molnar et al., 2017). We adapt these algorithms for use
in HASLR. Note that our tip and bubble removal procedures require an estimation of the length of

simple paths. Such estimation can be obtained from the length of UCs corresponding to the nodes
contained in a simple path as well as the average length of all LR subsequences that are supporting
edges between consecutive nodes. In the following we provide more details about our tip and bubble
removal steps.

Estimation of length and coverage for simple paths. In order to perform tip and bubble
removal, HASLR requires an estimate for the length and coverage of each simple path. Here, we
explain how this estimation is calculated.

For each UC in a simple path, we can calculate the coordinates of region that is aligned to all long
reads (we refer to this region as shared region). Since the length of shared regions corresponding
to all UCs are known, we only need to find an estimation for the middle regions (between two
consecutive shared regions). To do this, for each long read supporting the edge connecting two
UCs, we calculate the length of the LR subsequence that falls between shared regions (using the
alignment’s CIGAR string). See Supplemental Figure S13 for a toy example. We use the average of
length of all these subsequences as the estimation for the region between shared regions. Finally,
the length of the simple path can be estimated as the sum of length of all shared regions plus the
estimated length of all middle regions.

In addition, the coverage of each simple path can be calculated based on the number of long
reads supporting each edge as well as the estimated length of the middle regions between two
consecutive shared regions.

Bubble removal. On a haploid genome, our identification of unique short read contigs is accurate,
bubbles are caused only by incorrect alignment of UCs in the middle of LRs. In this case, the bubble
is usually formed by two simple paths with same length while one of them has a significantly lower
coverage.

In contrast, in diploid genomes, it is possible to have natural bubbles corresponding to
heterozygous regions of the genome. The main characteristic of such bubbles is having similar
coverage on two paths forming the bubble. If the region contains a heterozygous insertion or
deletion, the length of two simple paths forming the bubble are different. On the other hand,
if the region contains an inversion, two paths have the same length. Therefore, looking at length of
the two paths forming the bubble is not a good criteria for identification of artificial bubbles. This
means, decision making should be solely based on the coverage of two paths.

Tip removal. Tips are mainly caused by incorrect alignment of UCs at the extremities of LRs.
As a result, the simple path causing the tip is expected to have a small length. In addition, the
coverage of such simple path is usually much lower than other simple paths. In our implementation,
a simple path is considered as tip if (i) it is a dead-end (only one end is connected to other nodes)
and (ii) contains less than 3 UCs. Based on our observations, most of the tips are dead-end simple
paths that contain only a single UC.

S3.4 Generating the assembly

Let G be the cleaned and simplified backbone graph. The principle behind the construction of the
assembly is that each simple path in the cleaned backbone graph G is used to define a contig of
this assembly. Suppose P = (v1, e12, v2, e23, v3, . . . , vn) is a simple path of G. Although we already
have the DNA sequence for each UC corresponding to each node vi, the DNA sequence of the
resulting contig cannot be obtained immediately. This is due to the fact that at this stage the
subsequence between vi and vi+1 is unknown for each 1 ≤ i < n. Here, we explain how these
missing subsequences are reconstructed.

For simplicity, suppose we would like to obtain the subsequence between the pair v1 and v2

in P . Note that by construction, e12[supp] contains all LRs supporting e12. We can extract the
subsequence between v1 and v2 from each LR in e12[supp]. To do this, we find the region of
UCs corresponding to v1 and v2 that are aligned to all LRs in e12[supp]. Using the alignment
transcript (i.e. CIGAR string) the unaligned coordinate of each long read is calculated (see
Supplemental Figure S13 for a toy example). By computing the consensus sequence of the extracted
subsequences, we obtain cns12. Therefore, the DNA sequence corresponding to P can be obtained
via CONCAT (u1, cns12, u2, cns23, u3, . . . , un) where CONCAT (.) returns the concatenated DNA
sequence of all its arguments.

In order to generate the assembly, HASLR extracts all the simple paths in the cleaned backbone
graph G and constructs the corresponding contig for each of them as explained above. It is important
to note that each simple path P has a twin path P ′ which corresponds to the reverse complement
of the contig generated from P . Therefore, during our simple path extraction procedure, we ensure
to not use twin paths to avoid redundancy.

S3.5 Implementation details.

(i) HASLR utilizes a SR assembler to build its initial SR contigs. However, a higher quality assembly
that has fewer misassemblies is preferred. For this purpose, HASLR utilizes Minia (Chikhi and Rizk,
2013) to assemble SRs into SR contigs. Based on our experiments, Minia can generate a high quality
assembly quickly using a small memory footprint. (ii) For finding UCs, HASLR calculates mean
k-mer frequencies with a small value of k (default k = 49). This information can be easily obtained
by performing a k-mer counting on the SR dataset (for example using KMC (Kokot et al., 2017))
and calculating the average k-mer count of all k-mers present in each SR contig. Nevertheless,
usually assemblers automatically provide such information (e.g Minia and SPAdes). HASLR takes
k-mer frequencies reported by Minia for this task. (iii) HASLR uses only longest 25× coverage
of long reads for building the backbone graph which are extracted based on the given expected
genome size. (iv) In order to align UCs to LRs, HASLR employs minimap2 (Li, 2018). (v) Graph
cleaning is done with minSupp = 3 meaning that any edge that is supported with less than 3 LRs
is discarded. (vi) Finally, consensus sequences are obtained using the Partial Order Alignment (Lee
et al., 2002; Lee, 2003) (POA) algorithm implemented in the SPOA package (Vaser et al., 2017).
We have provided the versions of the tools and the parameters that are used to execute them in
Supplemental Table S1 and Supplemental Section S5, respectively.

S4 Simulated data

We used PBSIM to generate the simulated datasets. PBSIM has an option to infer the mean and
standard deviation of read length and the error rate from a real dataset. So first, we prepare that
real dataset. We use the first 10 runs of CHM1 (P6C4) dataset:

$ for acc in SRR2183739 SRR2183740 SRR2183741 SRR2183742 SRR2183743 SRR2183744 SRR2183745

SRR2183746 SRR2183747 SRR2183748; do wget http://sra-download.ncbi.nlm.nih.gov/srapub_files/${
acc}_${acc}_hdf5.tgz; done

$ for acc in SRR2183739 SRR2183740 SRR2183741 SRR2183742 SRR2183743 SRR2183744 SRR2183745

SRR2183746 SRR2183747 SRR2183748; do tar -zxvf ${acc}_${acc}_hdf5.tgz; done

$ for bax in m15051*.bax.h5; do bash5tools.py ${bax} --outFilePrefix ${bax} --outType fastq --

readType subreads --minLength 50 --minReadScore 0.75; done

$ for seq in m15051*.fastq; do cat ${seq}; done > chm1_p6c4_first_10.fastq

For simulation of the long reads:

$ pbsim --seed 0 --data-type CLR --depth 50 --length-min 1 --length-max 500000 --sample-fastq

chm1_p6c4_first_10.fastq --prefix long <reference_fasta>

For simulation of the short reads:

$ art_illumina --paired --in <reference_fasta> --len 150 --mflen 500 --sdev 50 --fcov 50 --rndSeed

0 --noALN --out short

S5 Command details

• Running HASLR

$ python3 haslr.py --threads <cores> --type <pacbio|nanopore> --cov-lr 25 --minia-kmer 55 --

minia-solid 3 --aln-block 500 --out <output_directory> --genome <genome_size> --long <

lr_file> --short <sr_file_1> <sr_file_2>

• Running Canu

$ canu -p <assembly_prefix> -d <output_directory> genomeSize=<genome_size> -pacbio-raw <

lr_file> useGrid=false

• Running Flye

$ flye -t <cores> -o <output_directory> -g <genome_size> --pacbio-raw <lr_file>

• Running wtdbg2

$ perl wtdbg2.pl -t <cores> -x <rs|ont> -g <genome_size> -o <assembly_prefix> <lr_file>

• Running miniasm

$ minimap2 -t <cores> -x ava-pb <lr_file> <lr_file> > asm.ava.paf

$ miniasm -f <lr_file> asm.ava.paf > asm.graph.gfa

$ awk '/^S/{print ">"$2"\n"$3}' asm.graph.gfa > asm.draft.fa

$ minimap2 -t <cores> -x map-pb asm.draft.fa <lr_file> > asm.map.paf

$ racon -t <cores> <lr_file> asm.map.paf asm.draft.fa > asm.polish.fa

• Running SPAdes

$ spades.py -t <cores> -m <max_memory> -1 <sr_file_1> -2 <sr_file_2> -o <output_directory>

• Running hybridSPAdes

$ spades.py -t <cores> -m <max_memory> -1 <sr_file_1> -2 <sr_file_2> --pacbio <lr_file> -o <

output_directory>

• Running Unicycler

$ unicycler -t <cores> --no_rotate --no_miniasm --no_pilon -o <assembly_prefix> -1 <

sr_file_1> -2 <sr_file_2> -l <lr_file>

• Running DBG2OLC (based on suggestions on the github repository)

$ fastutils interleave -q -1 <sr_file_1> -2 <sr_file_2> | fastutils subsample -q -d 50 -g <

genome_size> > short.50x.fastq

$ fastutils subsample -l -d 30 -g <genome_size> -i <lr_file> > long.30x.fasta

$ SparseAssembler LD 0 k 51 g 15 NodeCovTh 1 EdgeCovTh 0 GS <genome_size> f short.50x.fastq

$ DBG2OLC k 17 AdaptiveTh 0.01 KmerCovTh 2 MinOverlap 20 RemoveChimera 1 Contigs Contigs.txt

f long.30x.fasta

$ cat Contigs.txt long.30x.fasta > ctg_pb.fasta

$ ulimit -n 4000

$ split_and_run_sparc.sh backbone_raw.fasta DBG2OLC_Consensus_info.txt ctg_pb.fasta ./

consensus_dir

• Running MaSuRCA
Content of config.txt

DATA

PE= pe <insert_mean> <insert_std> <sr_file_1> <sr_file_1>

PACBIO=<lr_file>

NANOPORE=<lr_file>

END

PARAMETERS

GRAPH_KMER_SIZE = auto

LHE_COVERAGE=25

CA_PARAMETERS = cgwErrorRate=0.15

KMER_COUNT_THRESHOLD = 1

CLOSE_GAPS=0

NUM_THREADS = <cores>

JF_SIZE = 200000000

END

Command

bash assemble.sh

• Running Wengan

perl wengan.pl -t <cores> -a M -p <assembly_prefix> -x <pacraw|ontraw> -g <genome_size> -s <

sr_file_1>,<sr_file_1> -l <lr_file>

Supplemental References

D. Antipov, A. Korobeynikov, J. S. McLean, and P. A. Pevzner. hybridspades: an algorithm for
hybrid assembly of short and long reads. Bioinformatics, 32(7):1009–1015, 2015.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I.
Nikolenko, S. Pham, A. D. Prjibelski, et al. Spades: a new genome assembly algorithm and its
applications to single-cell sequencing. Journal of computational biology, 19(5):455–477, 2012.

R. Chikhi and G. Rizk. Space-efficient and exact de bruijn graph representation based on a bloom
filter. Algorithms for Molecular Biology, 8(1):22, 2013.

A. Di Genova, E. Buena-Atienza, S. Ossowski, and M.-F. Sagot. Wengan: Efficient and high quality
hybrid de novo assembly of human genomes. bioRxiv, page 840447, 2019.

W. Huang, L. Li, J. R. Myers, and G. T. Marth. Art: a next-generation sequencing read simulator.
Bioinformatics, 28(4):593–594, 2011.

M. Kokot, M. D lugosz, and S. Deorowicz. Kmc 3: counting and manipulating k-mer statistics.
Bioinformatics, 33(17):2759–2761, 2017.

M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner. Assembly of long, error-prone reads using
repeat graphs. Nature biotechnology, 37(5):540–546, 2019.

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy. Canu: scalable
and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
research, 27(5):722–736, 2017.

C. Lee. Generating consensus sequences from partial order multiple sequence alignment graphs.
Bioinformatics, 19(8):999–1008, 2003.

C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial order graphs.
Bioinformatics, 18(3):452–464, 2002.

H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110, 2016.

H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100,
2018.

A. Mikheenko, A. Prjibelski, V. Saveliev, D. Antipov, and A. Gurevich. Versatile genome assembly
evaluation with quast-lg. Bioinformatics, 34(13):i142–i150, 2018.

M. Molnar, E. Haghshenas, and L. Ilie. Sage2: parallel human genome assembly. Bioinformatics,
34(4):678–680, 2017.

Y. Ono, K. Asai, and M. Hamada. Pbsim: Pacbio reads simulatortoward accurate genome assembly.
Bioinformatics, 29(1):119–121, 2012.

J. Ruan and H. Li. Fast and accurate long-read assembly with wtdbg2. BioRxiv, page 530972,
2019.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov.
Busco: assessing genome assembly and annotation completeness with single-copy orthologs.
Bioinformatics, 31(19):3210–3212, 2015.

J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using compressed data
structures. Genome research, 22(3):549–556, 2012.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol. Abyss: a parallel
assembler for short read sequence data. Genome research, 19(6):1117–1123, 2009.

R. Vaser, I. Sović, N. Nagarajan, and M. Šikić. Fast and accurate de novo genome assembly from
long uncorrected reads. Genome research, 27(5):737–746, 2017.

R. R. Wick, M. B. Schultz, J. Zobel, and K. E. Holt. Bandage: interactive visualization of de novo
genome assemblies. Bioinformatics, 31(20):3350–3352, 2015.

R. R. Wick, L. M. Judd, C. L. Gorrie, and K. E. Holt. Unicycler: resolving bacterial genome
assemblies from short and long sequencing reads. PLoS computational biology, 13(6):e1005595,
2017.

C. Ye, C. M. Hill, S. Wu, J. Ruan, and Z. S. Ma. Dbg2olc: efficient assembly of large genomes using
long erroneous reads of the third generation sequencing technologies. Scientific reports, 6:31900,
2016.

D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly using de bruijn
graphs. Genome research, 18(5):821–829, 2008.

A. V. Zimin, D. Puiu, M.-C. Luo, T. Zhu, S. Koren, G. Marçais, J. A. Yorke, J. Dvořák, and
S. L. Salzberg. Hybrid assembly of the large and highly repetitive genome of aegilops tauschii,
a progenitor of bread wheat, with the masurca mega-reads algorithm. Genome research, 27(5):
787–792, 2017.

	ISCI101389_proof_v23i8.pdf
	HASLR: Fast Hybrid Assembly of Long Reads
	Introduction
	Results
	HASLR's Overview
	Identification of Unique Short Read Contigs
	Experimental Setup
	Experiment on Simulated Dataset
	Experiment on Real Dataset
	Long Read Coverage Analysis

	Discussion
	Limitations of the Study
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References

	isci_101389_mmc1.pdf
	HASLR: Fast Hybrid Assembly of Long Reads

