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Awareness or consciousness in the context of stimulus perception can directly

be assessed in well controlled test situations with humans via the persons’

reports about their subjective experiences with the stimuli. Since we have no

direct access to subjective experiences in animals, their possible awareness

or consciousness in stimulus perception tasks has often been inferred from

behavior and cognitive abilities previously observed in aware and conscious

humans. Here, we analyze published human data primarily on event-related

potentials and brain-wave generation during perception and responding to

sensory stimuli and extract neural markers (mainly latencies of evoked-

potential peaks and of gamma-wave occurrence) indicating that a person

became aware or conscious of the perceived stimulus. These neural correlates

of consciousness were then applied to sets of corresponding data from

various animals including several species of mammals, and one species each

of birds, fish, cephalopods, and insects. We found that the neural markers

from studies in humans could also successfully be applied to the mammal

and bird data suggesting that species in these animal groups can become

subjectively aware of and conscious about perceived stimuli. Fish, cephalopod

and insect data remained inconclusive. In an evolutionary perspective we have

to consider that both awareness of and consciousness about perceived stimuli

appear as evolved, attention-dependent options added to the ongoing neural

activities of stimulus processing and action generation. Since gamma-wave

generation for functional coupling of brain areas in aware/conscious states

is energetically highly cost-intensive, it remains to be shown which animal

species under which conditions of lifestyle and ecological niche may achieve

significant advantages in reproductive fitness by drawing upon these options.

Hence, we started our discussion about awareness and consciousness in

animals with the question in how far these expressions of brain activity are

necessary attributes for perceiving stimuli and responding in an adaptive way.

KEYWORDS

brain energy costs, brain waves, EEG, ERP, event-related potentials, gamma-band
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Introduction

How to scientifically approach animal consciousness when
human consciousness has already been named an ill-defined
explanandum (Singer, 2019), i.e., an ill-defined term to be
explained scientifically? Hence, it is not surprising that 29
theories (and various definitions) of consciousness in humans
have been identified in an analysis of 68 studies that remained
suitable from a scan of 1130 articles published between 2007
and 2017 (Sattin et al., 2021). In many of the publications,
consciousness was defined as being aware of something or as the
subject experience (Sattin et al., 2021).

In the subjective experience of humans, consciousness
can be found attached to basically three domains of neural
processing, (a) the detection and perception of the content
of sensory input from outside and inside the own body,
(b) the cognition-based preparation for actions, and (c) the
observation and/or intentional control of own ongoing thoughts
and emotional/motivational states (e.g., Dehaene and Naccache,
2001; Zeman, 2001; Raffone and Pantani, 2010; Dehaene and
Changeux, 2011; Brown et al., 2019). Points (a) and (b) relate
to phenomenal and access consciousness, respectively (Block,
2005), point (c) relates to bodily self-awareness, introspective
awareness, and metacognition (e.g., Metcalfe, 2008; DeGrazia,
2009; Terrace and Son, 2009). Since we know much about the
neurobiology of stimulus processing and perception in animals,
we will concentrate in our present account on aspect (a), and
will name the subjectively experienced stimulus perception as
becoming aware of something, i.e., “awareness.” We will use the
term “consciousness” in contexts of aspects (b) and (c) and
consider these aspects when they help to interpret animal data
obtained from the evaluation of (a). Our analysis will show
that the thus defined differentiation between stimulus-related
awareness and cognitive action-related consciousness has neural
correlates in measures of brain activity.

In our present use of the term “awareness” we make
a distinction to the use of the terms “sentience,” “primitive
awareness” and “minimal consciousness” as they sometimes
occurred in the context of discussions about consciousness
(e.g., Merker, 2007; Denton et al., 2009; Bronfman et al.,
2016). We relate these terms to instinctive behavior, or goal-
directed behavior in the context of instincts, i.e., inherited,
rather stereotyped and stimulus-guided selection of actions,
which can function without implying both subjective awareness
about the content of perception and consciousness about the
action as necessary variables (see later paragraphs on awareness
and consciousness in animals).

So far, possible awareness and/or consciousness in a given
animal has been inferred from its brain anatomy and physiology
in relation to structures and processes in human brains known
to support consciousness, and from behavior and cognitive
abilities which, in humans, are closely related to awareness
and/or consciousness (e.g., Griffin, 2000; Seth et al., 2005;

Edelman and Seth, 2009; Damasio, 2010; Boly et al., 2013;
Mashour and Alkire, 2013; Fabbro et al., 2015; Bronfman et al.,
2016; Le Neindre et al., 2017; Pennartz et al., 2019; Birch
et al., 2020a,b; Irwin, 2020; Nieder et al., 2020; Ben-Haim et al.,
2021; Kaufmann, 2021; Mallatt and Feinberg, 2021). In our
present neuroscience approach, we follow the search for neural
correlates of consciousness (NCCs) in brain activity of humans,
a main topic of human neuroscience for many years (e.g.,
Crick and Koch, 1990; Dehaene and Naccache, 2001; Gaillard
et al., 2009; Aru et al., 2012b; Koch et al., 2016; Tononi et al.,
2016; Seth, 2018; Owen and Guta, 2019; Rowe et al., 2020;
Dembski et al., 2021; Lepauvre and Melloni, 2021; Sergent et al.,
2021). The understanding of how awareness and consciousness
may emerge from brain activity is not only essential to bridge
the gap from subjective experience to brain mechanisms in
humans. If neural markers in activity patterns of the human
brain reliably reported about awareness and/or consciousness,
this knowledge could be used as a new objectifiable gate for
getting experimentally reproducible access to study the possible
presence of awareness and consciousness in animals.

Therefore, we analyze and discuss response data from the
human brain concerned with neural signatures of aware and/or
conscious processing in the light of recent progress and search
for such neural markers in comparable studies on animals.
We also discuss with several examples from different stages
in evolution, in which conditions animals may perceive and
act non-consciously, and in how far at all animals need to be
subjectively aware and, possibly, conscious of the stimuli they
perceive and respond to. Brain waves in humans and animals
show that, after stimulus onset, awareness, as a neural processing
option, may come first and then consciousness as another option
may follow. The same order may become apparent in the
evolutionary perspective.

In search for neural markers of
awareness and consciousness in
human brain activity

In humans, basis conditions for generating awareness and
consciousness comprise sufficient activation in the ascending
reticular activation system (ARAS) to induce and support
arousal and wakefulness (e.g., Parvizi and Damasio, 2001; Edlow
et al., 2012; Lewis et al., 2015), and sufficient activation in
cortico-thalamic loops in order to stabilize the cortical stimulus
representation (e.g., Newman and Baars, 1993; Seth and Baars,
2005; Edelman and Seth, 2009; Dehaene and Changeux, 2011;
Ward, 2011; Nani et al., 2019). Therefore, we assume that
awareness and consciousness in animals also critically depend
on sufficient arousal and wakefulness and on activation of neural
loops in higher brain centers in order to stabilize the stimulus
representation for awareness/consciousness to be generated.
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NCCs in sensory processing and perception have extensively
been studied using event-related potentials (ERPs) and
brain wave synchrony [electroencephalographic (EEG)
measurements] with adult humans who were able to report
(verbally or via instrumental behavior) about their awareness
of the experimental stimuli in various experimental settings
(e.g., Sergent et al., 2005; Del Cul et al., 2007; Bekinschtein
et al., 2009; Lamy et al., 2009; Dehaene and Changeux, 2011;
Silverstein et al., 2015; Sanchez et al., 2020; Eklund et al.,
2021). In such recordings, NCCs of three neural processes
may be identified (Aru et al., 2012b; de Graaf et al., 2012; Li
et al., 2014) – those preceding or leading to the conscious
experience, those representing the conscious experience, those
following the conscious experience (e.g., the report about the
experience). In order to separate NCCs of awareness (domain
(a), see Introduction) from those of following conscious actions
(domain (b), see Introduction), several experiments without or
with modified/controlled task requirements have been reported
in studies on humans (e.g., Pitts et al., 2014b; Tsuchiya et al.,
2015; Koivisto et al., 2016; Ye et al., 2019; Cohen et al., 2020;
Mazzi et al., 2020; Rowe et al., 2020; Faramarzi et al., 2021;
Schröder et al., 2021) and also in a recent study on macaque
monkeys (Kapoor et al., 2022).

With regard to event-related potentials
as possible neural correlates of
consciousness

The following general picture emerged (e.g., Gaillard et al.,
2009; Railo et al., 2011; Castelhano et al., 2013; Pitts et al.,
2014b; Koivisto et al., 2016; Ye et al., 2019; Dembski et al.,
2021; Faramarzi et al., 2021; Jimenez et al., 2021): Brain
waves following the onset of stimuli (visual, auditory, or
somatosensory) with less than about 180 ms latency relate
to unconscious processing in sensory cortical areas. These
waves include the mismatch-negativity with a peak between
around 150–200 ms after stimulus onset, a wave signaling
a deviation within a series of stimuli (e.g., Näätänen et al.,
2004; Harms et al., 2016). A negative-going wave (waveform
depending on electrode locations and stimulus modality)
peaking around 200–250 ms after stimulus onset correlates
with visual (V), auditory (A), or somatosensory (S) awareness
of the stimuli, even if illusionary (Faramarzi et al., 2021).
These awareness negativities (AN; i.e., VAN, AAN, SAN;
see examples in Figure 1) are lateralized in the brain, i.e.,
their amplitudes are highest contralateral to the side of the
sensory input (Koivisto and Grassini, 2016; Dembski et al.,
2021; Eklund et al., 2021). Thus, they reflect neural processing
rather closely related to the modality-specific sensory cortical
representations.

Importantly, the occurrence of the ANs seems to indicate
only a necessary, but not a sufficient, brain activation for

generating awareness. In several visual perception paradigms, a
VAN was present when the person was subjectively unaware of
the stimulus (Railo et al., 2011; Tsuchiya et al., 2015; Koivisto
and Grassini, 2016; Mazzi et al., 2020; compare Figure 1).
In other words, VANs signal the potential to become aware
which, however, does not automatically lead to awareness of the
perceiving person. The probability of awareness of the person
and with it the VAN amplitude increased with the degree of
selective (focused) attention the person directed to the stimulus
(Koivisto and Revonsuo, 2008, 2010; Koivisto and Grassini,
2016; compare Figure 1). Similarly, processing of visual stimuli
(letter sequences) in studies of implicit learning elicited an
ERP peak near 250 ms with implicit (unconscious) learning
compared to non-learning (Fu et al., 2013). This shows again
that the brain activity in a time window of about 200–250 ms
after stimulus onset can be used as an indicator of awareness
that may or may not become effective. Whether the person
actually experienced awareness seems to depend on the directed
attention. In other words, awareness of a stimulus appears as
the perceptual target to be reached through selective attention.
Attention has been found to be necessary for awareness of details
of something (van Boxtel et al., 2010) or of something at all to
be reached (Dehaene and Naccache, 2001; Cohen et al., 2012).
Therefore, the level of selective attention, initiated either by
the stimulus itself (bottom-up effect) or by expectation of the
stimulus in a given context (top-down effect) is an important
modulator of awareness to become effective (Nani et al., 2019;
Sikkens et al., 2019).

More global brain activation starts about 250 ms after
stimulus onset and may continue with various waveforms
(e.g., late positive potentials) for more than 700 ms (compare
Figure 1). These late positive potentials are often summarized
under the term P3 or P300 (e.g., Pitts et al., 2014a,b; Koivisto
et al., 2016; Cohen et al., 2020; Mazzi et al., 2020; Schröder
et al., 2021), reflecting the influence of focused attention,
working memory, confidence about perception, decisions and
preparations for tasks or, in general, the further neural handling
of the stimulus input on a noetic (Fabbro et al., 2015)
or metacognitive (Fernandez-Duque et al., 2000; Shimamura,
2000) level. This handling can be conscious or non-conscious.
Importantly, about 250–300 ms after stimulus onset, the
dynamics of brain activation suggest a bifurcation in further
conscious (global) or non-conscious processing (Gaillard et al.,
2009; Sergent et al., 2021).

With regard to EEG waves as possible
neural correlates of consciousness

Cognitive acts including the conscious perception of stimuli
and the conscious planning of actions are based on the
integration of information via high synchrony of neuronal
activation over large scales of the human cortex (Varela et al.,
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FIGURE 1

Event-related potentials (ERPs) in response to visual stimuli (starting at the point of origin) in human observers. (A) Potentials recorded from
surface electrodes above the occipital cortex contralateral to the stimulated visual field. Red curve, correct response with high-awareness; blue
curve, correct response reported without awareness; gray curve, incorrect response without awareness. The red and blue curves show
significant visual awareness with peaks near 200 ms latency (N200, visual awareness negativity, VAN) after stimulus onset. In addition, the red
curve shows a so called P3 (positive peak later than 300 ms after stimulus onset), which is related to a conscious response [modified from
Koivisto and Grassini (2016); part of their Figure 2]. (B) Potentials recorded from surface electrodes above the left-side posterior-temporal
cortex to stimuli in the center of the visual field. Red curve, high-awareness with behavioral response to relevant stimulus; purple curve,
low-awareness without response to irrelevant stimulus; brown curves, looking at masked relevant (solid line) or masked irrelevant stimulus
(dashed line) without response requirement. The visual awareness negativities (peaks near 200 ms latency after stimulus onset) increase with
increasing visibility and relevance of the stimuli corresponding to a respective increase in the awareness of the stimuli. Only the red curve shows
a broad P3-like peak in the latency range of about 350–500 ms, possibly related to the required (conscious) behavioral response [modified from
Koivisto and Revonsuo (2008); their Figure 7 at T5 of the left side].

2001). The synchrony of neuronal activation can be measured
as brain-wave prevalence and synchrony between waves in
various frequency bands in the EEG (Singer, 1999). This also
applies to animals (Engel and Singer, 2001). The comparability
of brain waves has been shown for mammals and suggested
also for birds (Buzsáki et al., 2013). The following essence
can be distilled from the data and summaries in numerous
studies on humans (e.g., Edwards et al., 2005; Canolty et al.,
2006; Melloni et al., 2007; Gaillard et al., 2009; Dehaene
and Changeux, 2011; Arnal and Giraud, 2012; Aru et al.,
2012a; Castelhano et al., 2013; Li et al., 2014; Pitts et al.,
2014a; Fries, 2015; Faramarzi et al., 2021): Local gamma-
band activity (EEG wave frequencies of >30 Hz), for example
from the occipital cortex for visual input stimuli or from the
temporal cortex for auditory stimuli, may have been induced
in the processing of the respective input stimuli from sensory
detection to awareness. At about 200–250 ms after stimulus
onset, strong gamma-band activity coincides with awareness
becoming effective, especially when attention was directed to the
stimuli (Bosman et al., 2012). Importantly, the stimulus-induced
gamma-band activity being related to the possible awareness of

the stimuli started earlier than further gamma-band activity in
a higher frequency band related to selective attention directed
to the stimuli about 350 ms after stimulus onset (Wyart and
Tallon-Baudry, 2008; Figures 2A,B). Therefore, local gamma-
band activity in sensory cortical areas starting about 200–
250 ms after stimulus onset appears to correlate with possible
awareness of stimuli, but seems not to be a sufficient marker of
conscious perception.

Additional gamma-band activity occurring later than about
250 ms after stimulus onset and related to the onset of selective
attention – in the Wyart and Tallon-Baudry (2008) study
selective spatial attention started about 350 ms after stimulus
onset (Figure 2B) – may support the stimulus processing toward
consciousness. This later stimulus-induced and attention-
supported gamma-band activity often concerned larger brain
areas including, besides sensory and multimodal-integrative
areas, parts of the frontal cortex (Melloni et al., 2007; Gaillard
et al., 2009; Fries, 2015; Nani et al., 2019). Therefore, this
gamma-band activity being related to more global processing
seems to be characteristic for conscious perception with the
option to respond accordingly.

Frontiers in Systems Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnsys.2022.941534
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-941534 July 14, 2022 Time: 11:47 # 5

Ehret and Romand 10.3389/fnsys.2022.941534

FIGURE 2

Separation of (A) awareness-related and (B) attention-related gamma-band activity when humans respond to a faint visual stimulus. Whether
attended or not, a stimulus perceived with awareness induced mid-frequency gamma-band activity (about 54–64 Hz) at a latency of about
240 ms after stimulus onset (left panel). If spatial (selective) attention was directed to the stimulus, high-frequency gamma-band activity (about
76–90 Hz) occurred at a latency of about 350 ms after stimulus onset (right panel). In both panels the three stars indicate the highly significant
effects in the framed areas. The brackets indicate the areas of a possible attention-related effect added to the awareness effect (left panel) or an
awareness-related effect added to the attention effect (right panel). [Modified from Wyart and Tallon-Baudry (2008); their Figure 3C].

In conclusion

Collectively, these studies in humans have shown that it
is possible to separately identify NCCs related to awareness
and others related to consciousness in the course of stimulus
perception. Early stimulus processing in the central nervous
system happens while the persons are unaware of the stimuli.
Then awareness of the stimuli may be initiated as a rather
locally (in rather modality-specific neural substrates) generated
and attention-supported phenomenon of brain activity. Then
consciousness of the stimulus may follow, supported by
selective attention and expressed by a more globally generated
neural activity and by EEG gamma-waves which indicate
synchronization in large neural networks. Conscious stimulus
perception needs at least 250–300 ms time after stimulus
onset to be realized on a cognitive level. The immediately
preceding stimulus-related brain activity is associated with the
state of awareness. Awareness seems to be a necessary, but
not a sufficient, prerequisite for conscious stimulus perception.
Importantly, both awareness of and consciousness about
perceived stimuli appear as phenomena of brain activation
added after the initial stimulus analysis, as attention-dependent
options, to the ongoing neural activities of further stimulus
processing and action generation.

The described distinction between awareness and
consciousness of stimulus perception, as derived from the
discussed empirical measures of human brain waves, needs
further confirmation with human ERP, EEG, and brain imaging
studies in order to be established as a general guideline for

the understanding of brain processes in conscious stimulus
perception. The distinction may become also important for
the clarification of the use of the terms “awareness” and
“consciousness” in the context of consciousness studies in
humans (e.g., Morin, 2006). For example, in the following
definition of consciousness “consciousness is the subjective
awareness of momentary experience interpreted in the context
of personal memory and the present state” (John, 2003), the
first part of the definition (subjective awareness of momentary
experience) is related to awareness, and the second part,
the interpretation of the momentary experience, is related
to consciousness. This distinction between awareness and
consciousness will also be useful to guide the search for
awareness and consciousness in animals. In the following, we
give a strongly condensed review of the main facts that could be
helpful for the analysis and interpretation of animal data.

Awareness and consciousness in
animals and their relationship to
behavior

Awareness or, in how far is awareness
necessary for stimulus perception and
action generation?

It is our own human experience that sensing and
responding via reflexes happens without awareness both of
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the stimuli and the reflex behavior. Examples are the acoustic
startle (Koch, 1999) and the vestibulo-ocular reflex (Sadeghi
et al., 2010). Such kinds of reflexes can also be conditioned
without awareness, for example, when the mammalian subjects
are under anesthesia (Ghoneim and Block, 1997). That is,
awareness/consciousness are not necessary conditions for
sensing, responding, and learning via classical conditioning.
Even learning of vocabulary, the formation of declarative
memory, can be observed in the non-conscious state of sleep
(Ruch and Henke, 2020). Usually, however, explicit (declarative)
learning requires awareness/consciousness while implicit (non-
declarative) learning does not require awareness/consciousness
(e.g., Squire and Knowlton, 1995; Rolls, 2014; Squire and Dede,
2015; Knowlton et al., 2017). Therefore, acquiring knowledge
about procedures expressed by skills and habits in humans and
animals can and usually do happen without subjects becoming
aware that they learn and improve in sensorimotor association
and coordination. A further unconscious type of learning
concerns priming. A perceived stimulus (independent of the
awareness of the stimulus) increases the ability to detect and
perceive again this stimulus and/or with this stimulus associated
stimuli, also of other modalities, when it/they occur another
time (e.g., Squire and Knowlton, 1995; Horga and Maia, 2012;
Elgendi et al., 2018). In conclusion, stimulus-guided action
generation in the context of implicit learning and priming
does not require awareness. Even in a task of declarative
visual learning, the formation of working memory and its
sustainment over several seconds (up to 4 s in the respective
study) can happen unconsciously (Trübutscheck et al., 2017).
It is evident that there is broad potential in the kinds of
implicit learning, by being primed to respond to certain stimuli,
and to work with short-term memory in order to arrange
with environmental diversity and variability via adjustment of
sensorimotor behavior without awareness.

Perhaps yet more puzzling are reviews presenting evidence
that the non-conscious mind can do everything in the life of
humans and animals (see summaries in Bargh and Morsella,
2008; Hassin, 2013). First of all, this “everything” concerns
fixed action patterns that are inherited behavioral routines.
For example, walking, flying and swimming in vertebrates
are movements coordinated by neural networks in the spinal
cord. Awareness or consciousness are not necessary since these
movements are possible when the spinal cord is cut from
the brain (Barbeau and Rossignol, 1991; Baev and Shimansky,
1992; Martinez et al., 2012). Similarly, fixed action patterns
coordinated in the abdominal ganglion of male insects (praying
mantis, cockroach) are sufficient for successful copulation
without head (Roeder et al., 1960; Matsumoto and Sakai,
2001). Next, this “everything” concerns behavioral routines
acquired by implicit (non-declarative) learning or initiated
via priming as mentioned above. Finally, this “everything”
concerns evolutionary old complex behavior (instincts, goal-
directed behavior) based on inherited a-priori knowledge and

executed in rather stereotyped ways. Among such behavioral
patterns are feeding, drinking, detecting and pursuing prey,
navigating, attracting mates, mating, fighting, and care for
offspring, all adapted to sustain physiological homeostasis
and/or reproductive fitness of a given organism in its
ecological niche (examples in e.g., Tinbergen, 1951, 1963;
Lorenz, 1981; Wang, 2020). An interesting example of innate,
complex prey-catching strategies of a jumping spider has been
reviewed by Cross et al. (2020).

Different from reflexes, instincts and goal-directed behavior
are motivated (e.g., Lorenz, 1981; Epstein, 1982; Wise, 1987;
Rolls, 2014), i.e., behavior does not only depend on sensorimotor
relationships (Gallistel, 1980, points 1–17 in the summary;
Robinson, 1994; Ehret, 1998; Grillner, 2006) but also on internal
processes which define the evolved conformity of stimuli
and behavior with a biologically relevant goal. These internal
processes may be called motivations. Therefore, motivation
generating neural systems have to be added to and integrated
with sensorimotor processing. In a given environment and
behavioral context, we observe animals which seemingly
select both proper stimuli and fitting actions in order to
reach a certain goal according to the actually prevailing
motivation. The term motivation stands for the neural output
of physiological homeostasis regulation of the body (via food,
water, temperature, etc.) able to generate inherited stimulus-
controlled actions (e.g., Tinbergen, 1951, 1963; Gallistel, 1980;
Lorenz, 1981; Epstein, 1982). How instinctive decision making
and action selection in many behavioral contexts such as
predator avoidance or navigation can be implemented in
evolved brain functions has been shown, for example, by Cisek
(2007, 2012), Heinze (2017) and Hoke et al. (2017). Other
authors (e.g., Merker, 2007; Denton et al., 2009) stress the
contribution of the brainstem of vertebrates for the creation
of conscious content and primordial emotion as the origin
of consciousness. Likewise, the separation of self-generated
sensation from perceived external stimuli via the principle of
reafferent processing (von Holst and Mittelstaedt, 1950) shall
allow animals to become phenomenally conscious (Merker,
2013; Vallortigara, 2021). Here, we explore neural correlates
of the subjective awareness of the content of a given stimulus
(phenomenal consciousness according to Block, 2005) which
can be understood as the gate to further cognitive handling of
the stimulus in the brain. Several examples of the generation
of instinctive behavior without implying awareness or even
consciousness, in animals can be found in Supplementary
Material.

We, as human observers, have to be aware that motivations
must not equal subjectively controlled urge or intention to
behave in a certain way. We know, for example, how little
subjective control we demonstrate when we, without awareness,
are hustled by subtle advertisement into buying something in
the supermarket (Martin and Morich, 2011). Another amazing
example is women mate choice, which appears to be governed
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by unconscious subcortical processes rather than by conscious
rational decisions made via implication of the neocortex (Flegr
et al., 2019). The extent of unconscious motivated actions in
humans is discussed by Lumer (2019). The critical question in
our discussion about awareness in animals is whether at all or
in how far awareness is a necessary variable in these processes
of motivational evaluation and stimulus/action selection in
rather stereotyped, stimulus-guided, instinctive or goal-directed
behavior. This bottom-up approach in an evolutionary view
from subconscious, pre-cognitive behavior (Roth, 1996) to
advanced cognition and metacognition is opposite to the usual
top-down approach starting with consciousness in humans and
then continue with searching for consciousness in behavior of
animals, whether or not this is appropriate for the animal species
in focus. Similarly, de Waal and Ferrari (2010) proposed a
bottom-up approach in the comparison of human and animal
cognition. In the same vein, LeDoux (2012) proposed an
approach to the understanding of animal emotions. Instead of
projecting human emotions such as joy, fear, love, jealousy,
etc. onto animals, functions of emotions in animals serving
their survival, also in evolutionary terms of fitness, should be
reassessed in contexts of human life.

Since the sensorimotor and the central nervous systems
need, compared to the rest of the body, high amounts of
energy in order to operate adequately, there is evolutionary
selective pressure on limiting energy consumption of the
brain as far as feasible (de Polavieja, 2002; Niven and
Laughlin, 2008; Niven, 2016). For example, for producing high-
frequency gamma-wave information exchange between groups
of neurons in order to generate awareness and even more
consciousness as explained in the first part of this review
(compare Figure 2), the energy consumption of the brain
would especially be high (Shulman et al., 2009; Chen and
Zhang, 2021). By arguments of natural selection, such a high
energy consumption of the aware/conscious brain could be an
evolutionary meaningful adaptation only if the individuals of a
species were not affected by energy shortage in their ecological
niche and/or gained a significant advantage in their own or kin
reproductive fitness (e.g., West and Gardner, 2013) by having
awareness/consciousness as a behaviorally-relevant variable.

In conclusion

We can state that awareness as subjective experience (for
definition, see Introduction) can be absent and may play no role
as variable for stimulus selection and generation of behavior as
far as stimulus selection and behavior rely only on knowledge
acquired via expression of inherited functions, priming, implicit
learning, and use of short-term memory. This knowledge
concerns stimulus-guided sensorimotor coordination and
action selection during the whole course of a behavioral cycle
in accordance with the motivational background and with the

goals to be reached as defined by the ecological niche of a
given animal. When we observe, for example, ants transporting
material to their nest, bees visiting flowers for obtaining nectar,
fish in agonistic interactions for occupying a territory in a too
small aquarium, or female frogs selecting a male according to
the acoustic structure of his mating calls, we see in execution
adaptive behavior controlled via inherited knowledge. Following
the concept of parsimony or Occam’s razor (e.g., Epstein,
1984; Sober, 2015), we can assume that these animals, in
the mentioned behavioral contexts, must not be aware of,
i.e., must not subjectively experience, the stimuli which their
brains perceive and respond to. Awareness, and even more
consciousness, can be seen as an energetically expensive luxury
that came up in evolution only when it could provide significant
advantage in reproductive fitness to the individual and/or its kin.

Awareness or, do we find neural
correlates of awareness in
animals?

According to the criteria for reaching the state of awareness
derived from brain activity data in humans as mentioned
above (ERP peak latencies, selective attention, local gamma-
band activity in EEG recordings from higher sensory processing
areas), we searched for correlates of awareness in animals.
Since animals have brains of various sizes and, possibly, various
levels of signal processing, ERP latencies of animals may differ
from those of humans, e.g., animals with smaller than human
brains may have shorter ERP latencies associated with signaling
awareness/consciousness (Siegel et al., 2003; Woodman, 2012).
On this background, we selected animal data which allowed a
separation of brain waves by our criteria into those that could be
addressed as awareness response and those suggesting conscious
perception. As a result, we could find correlates of possible
awareness in a bird, non-primate mammals and non-human
primates. The following examples shall demonstrate this.

Birds

Crows were trained to respond to a certain visual stimulus
and to ignore a different stimulus in a delayed detection
task (Nieder et al., 2020). Recordings from single neurons in
the nidopallium caudolaterale, the analogue structure to the
mammalian prefrontal cortex (Güntürkün, 2005; Herold et al.,
2011; Güntürkün and Bugnyar, 2016), of the behaving crows
showed (Nieder et al., 2020) that many neurons discriminated
both between absence and presence of the trained visual
stimulus (strong response around 225 ms after onset of the
trained stimulus; Figure 3A) and between responding and non-
responding of the crow in a latency period of about 380–1000 ms
(Figure 3B). This neural behavior strongly suggests awareness of
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FIGURE 3

Response behavior of neurons from the crow nidopallium caudolaterale to visual stimuli in a stimulus detection task. (A) Cumulative spike rate
of an example neuron responding only to a highly visible, supra-threshold stimulus with a response peak about 225 ms after stimulus onset
(stimulus duration is shown by the gray area). The neurons of this response type signaled the intensity of the correct stimulus and, thus, the
ability to become aware of it. (B) Cumulative spike rate of an example neuron responding in the preparation of a response to a perceived
(supra-threshold or near-threshold) or allegedly perceived (false alarm) stimulus. The response was trained to be given after a 2800 ms delay
from stimulus onset (dashed vertical line in A and B). Response rates in a latency window of about 380–1000 ms after stimulus onset (see arrow
at 700 ms) were significantly higher when the animal responded compared to the cases when it did not respond (correct rejection or miss). The
neurons of this type signaled the conscious response preparation. [Modified from Nieder et al. (2020); their Figure 2C (here Figure 3A) and
Figure 2E (here Figure 3B)].

the correct stimulus by the early response peak after stimulus
onset (Figure 3A), corresponding to a suggested ERP peak
with this latency.

Non-primate mammals, rodents

In a test on the perception of laser-beam generated local heat
spots on front or hind paws (Peng et al., 2018), rats showed
ERP peaks over the sensory-motor cortex with latencies to heat
onset of near 150 and 280 ms (Figure 4A) and high gamma-
band EEG cortical waves with intensity peaks at similar latencies
(Figure 4B). The peak near 150 ms latency might correspond
to awareness, the peak near 280 ms to conscious perception. In
rats, similar to human studies (Wyart and Tallon-Baudry, 2008;
compare Figure 2), earlier gamma-waves, possibly signaling
awareness, had lower frequencies than later gamma-waves,
possibly associated with the conscious initiation of a response
behavior. The amplitudes of the gamma-waves in the rats
correlated positively with the strength of the behavioral response
to the heat. The ERP data and the gamma activity together with
the behavior suggest awareness of the stimulus and its strength.

Dot motion in the visual field of awake mice consistently
induced strong gamma-band waves about 200 ms after stimulus
onset in the visual cortex both to random (incoherent) motions
of the dots and to coherent motions of the dots in one direction.
Interestingly, consistent and strong gamma-wave responses
both in the visual and frontal cortex were recorded only to the
coherent dot motions (Han et al., 2017). This suggests that the
mouse could have become aware of the dot motions (visual

cortex gamma wave) and, possibly, conscious of a coherent
object moving in the visual field (visual and frontal cortex
gamma waves).

Non-primate mammals

Dolphin ERPs were taken in awake and behaving animals
in response to frequent and rare tones which were delivered
in a water tank with the animal’s lower jaw being under water
to provide adequate listening conditions (Woods et al., 1986).
In passive listening and task-related tests, rare tones elicited a
negative going ERP peak near 200 ms tone response latency, and
a late and broad positive peak around 550 ms latency (Figure 5).
The 200 ms peak can be addressed as reflecting awareness, the
550 ms peak conscious perception with response option.

Non-human primates

Macaque monkeys showed ERP visual awareness
negativities with similar properties as humans do, with
response latencies at about 170 ms, which is about 50 ms shorter
than those of humans in a comparable task (Woodman et al.,
2007). In an auditory paradigm, ERPs were present about
200 ms (awareness negativity) and 300 ms (late positivity) after
tone onset when monkeys were required to attentively listen to
do a task when they heard an odd tone. These potentials were
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FIGURE 4

Responses of freely moving rats to a heat stimulus applied to one of the paws. (A) Averaged ERP (4 central electrodes on the rat head, 12
animals in the experimental group) in response to a heat stimulus to the right forepaw. Two negativity peaks are visible, one at about 149 ms
latency after heat onset, the other at about 285 ms latency. (Modified from Peng et al., 2018; their Supplementary Figure 3). (B) EEG group
response to a single heat stimulus averaged to display the gamma-band event-related synchronization (γ-ERS) for frequencies of 50–100 Hz.
There are two intensity peaks of the gamma-waves, one at about 55 Hz with a 150 ms latency after heat onset, the other at about 65 Hz with a
280 ms latency. The latencies of these peaks in the gamma-band activity correspond closely to the ERP peaks shown in (A). [Modified from
Peng et al. (2018); their Figure 2].

FIGURE 5

Average ERP recorded from the head of a dolphin in response to a target tone. This tone had a duration of 300 ms (horizontal line above
latency axis). It was followed by a second tone signaling conditioned access to a food reward. The ERP shows a prominent negativity peaking
near 200 ms latency (N200) after tone onset, and a prominent positivity around 550 ms latency (P550). [Modified from Woods et al. (1986); their
Figure 3.2 response to tone #3, target tone].
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absent when no task was required or a given tone was present
during the whole test time (Arthur and Starr, 1984).

Neurons in the prefrontal cortex of awake and behaving
macaque monkeys responded in a visual signal detection task
with a response peak about 210 ms after stimulus onset when
they had perceived a trained stimulus (hit; van Vugt et al., 2018).
In another test, monkey prefrontal neurons showed a response
peak about 230 ms after stimulus onset to a naturally preferred
(not to a neutral) visual stimulus and, in addition, a significant
increase in gamma-band activity in the high frequency range
above 50 Hz (Panagiotaropoulos et al., 2012). Together with
adequate controls, these data indicate awareness of a visually
significant stimulus signaled by monkey prefrontal neurons
about 200–230 ms after stimulus onset, corresponding to a
suggested ERP peak with this latency.

Cases that need further studies to be
settled

Fish
Local gamma-band waves have been recorded in the

pallium (part of the telencephalon) of the electric fish
Gnathonemus in response to various sensory stimuli and also
as coherent activations in neighboring brain areas (Prechtl
et al., 1998). These gamma-waves start with latencies of
about 50 ms after stimulus onset. They are accompanied
by a large ERP negativity also peaking near 50 ms latency.
Although telencephalic gamma-waves, especially corresponding
to multimodal processing, may suggest awareness of the stimuli,
the response latencies are short and inconclusive. Therefore,
further tests, also in combination with behavioral responses,
have to show whether possible awareness may have neural
correlates in the fish brain.

Cephalopods
Visual ERPs have been obtained from awake unrestrained

cuttlefish (Bullock and Budelmann, 1991). The largest ERPs
to a 20 ms light flash were found in the anterior part of the
median basal lobe or precommissural lobe near the midline.
ERPs had positive peaks at about 50 ms, 75 ms and 100 ms,
and a broad negative wave around 130 ms after the onset
of the light flash (Figure 6). Further late waves could have
followed this negativity. On the first view, the early positive
waves may correspond to ERPs in the human brain signaling
unconscious processing. The late negativity might correspond to
the human visual awareness negativity. Since we could not find
further ERP studies and, especially, ERP studies combined with
behavioral tests for supporting awareness of perception, or EEG
studies showing gamma-waves in associative brain centers, we
must remain inconclusive about brain activities in cephalopods
related to the possible awareness of the animals.

Insects
Local field potentials recorded from the mushroom bodies

(van Swinderen and Greenspan, 2003) and the central body
(Grabowska et al., 2020) of the drosophila brain show high-
frequency (20–30 Hz) neural activity when a fly fixates a visual
object in the center of its visual field. The amplitude of the
20–30 Hz response is increased when the fly puts selective
attention on the visual object, for example, by associating
banana smell with the object. The 20–30 Hz activity does
not equal but comes close to gamma-band activity in the
human brain indicating the possibility of becoming aware.
Also, the amplitude increase of the brain activity with an
attention increase of the animal, because the object may
turn out as a valuable food source, suggests that the fly
may have subjectively experienced the object. Further studies
have to clarify, however, whether the 20–30 Hz activity in
the mushroom bodies or the central body and the activity
increase by smell association is due to automatic sorting for
positive or negative action generation guided by prepared
learning of certain stimuli conditional by evolution (Webb,
2012; Smid and Vet, 2016) or reflects action planning due
to free associative learning. Further, in the case of associative
learning, the use of long-term memory for the association
(vision-smell) has to be tested in order to make sure that
the attention on the visual object is not based on inherited
bottom-up stimulus-specific attentional mechanisms possibly
supporting prepared learning (Dunlap and Stephens, 2014; Smid
and Vet, 2016).

In conclusion

The example data of brain activity from birds and mammals
provide evidence to suggest that, besides humans, animals
of these groups can become aware of, i.e., can subjectively
experience, sensory stimuli. The brain activity data from fish,
cephalopods, and insects (drosophila), provide some hints for
possible awareness. They are, however, inconclusive so far,
because further studies have to clarify in how far the brain
activities represent inherited knowledge and/or the results of
priming, implicit learning and short-term memory, as explained
in the previous section of this review.

Consciousness or, do we find
neural correlates of consciousness
in animals?

Some previously mentioned ERP studies in the context
of signaling awareness (late negativities) also showed late
positive ERP peaks (compare Figures 3–5) suggesting conscious
stimulus perception with the option of responding. These late
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FIGURE 6

ERP recorded from the central nervous system of a cuttlefish (Sepia) in response to a single light flash. The light flash had a duration of 20 ms.
The ERP response showed main positivities at about 50, 75, and 100 ms latency and a negativity around 130 ms latency. [Modified from
Bullock and Budelmann (1991); their Figure 2, lower part].

ERP peaks concern a bird, the crow visual study with late spike-
rate maxima corresponding to suggested ERP peaks with this
latency (Nieder et al., 2020), rats (ERPs and gamma-waves to
heat stimuli, Peng et al., 2018), dolphins (auditory ERPs, Woods
et al., 1986), and macaque monkeys (auditory ERPs, Arthur and
Starr, 1984).

Paller (1994) reviewed ERP studies with further mammals
(cats, dogs, rabbits, squirrel monkeys), specifically concerning
late positive ERP responses such as P300 to a variety of stimuli
in passive and task-related perception tests. He discussed the
animal data in relation to those available from humans and
found a large variability in P300-like ERP waves in animals. This
variability concerned peak latency, peak polarity, relative peak
amplitude, the relationships of P300-like peaks to other ERP
waves, the P300-like dependence on task requirements, and on
the control of the attention of the animals in the tests. To ensure
optimal comparability of animal and human data, the data sets
should be taken with the same kind of stimulus paradigm and
with the same or similar (adapted to the animal’s behavioral
abilities and preferences) task requirements (Paller, 1994). This
may be difficult experimentally, however, not impossible as the
reported results in our review demonstrate.

In conclusion

Similar to the conclusions of the awareness part, the example
data of brain activity from a bird and mammals provide evidence
supporting the hypothesis that, besides humans, animals of
these groups may become conscious of the perceived sensory
stimuli. Further studies are, however, necessary, especially
combining behavioral responses with neural activity recordings,
to clarify consciousness not only in mammals and certain

bird species but also, and especially, in the other animal
groups mentioned.

General discussion

Besides humans, mammals and birds
may perceive stimuli with awareness
and consciousness

By making a distinction between awareness and
consciousness in defining these terms (see Introduction),
we could separate NCCs of these attributes of brain function
in data of brain activities related to stimulus perception
and responding in humans. Valuable NCCs were found in
recordings of ERPs and EEG gamma-waves from which
correlations mainly between latencies of EEG peaks, latencies
of strong gamma-wave occurrence locally or globally, and
behavioral indicators of awareness and consciousness could
be extracted. Remarkably, these correlations were not only
consistent among numerous studies from humans but could
also successfully be applied to data sets from animals. Thus, our
comparative analysis identified measures of brain activity that
can be used as neural markers indicating potential awareness
and consciousness while perceiving sensory stimuli, at least in
mammals and birds.

To be careful, for this review we could locate only few
appropriate data samples for mammals, and only a single one for
birds. That is, our conclusions are promising, however, tentative,
and need more experimental support with data from many more
bird and mammalian species in order to be generalized. With
further scientific validation, these common neural markers can
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be useful in well controlled and objectifiable animal tests in the
laboratory to get a better understanding of how awareness of and
consciousness about perceived stimuli may be generated by and
represented in mammalian and bird brain activity.

We saw that awareness and consciousness in stimulus
perception of humans depended on the concomitance of
selective attention with the stimuli. Selective attention may
even be necessary for awareness to be realized (Dehaene
and Naccache, 2001; Cohen et al., 2012). Selective attention
has been described for mammals (e.g., Rizzolatti, 1983;
Thiele and Bellgrove, 2018), non-mammalian vertebrates (e.g.,
Krauzlis et al., 2018), cephalopods (e.g., Schnell et al., 2021)
and arthropods (e.g., de Bivort and van Swinderen, 2016;
Nityananda, 2016; Bruce et al., 2021). This presence of selective
attention in various animal groups supports the notion that
members of these groups may become aware or even conscious
of perceived stimuli.

Together with several other brain functions, selective
attention has been observed with an advantage of expression
in the left brain-hemisphere of vertebrates (e.g., Ehret, 2006;
Rogers and Vallortigara, 2015; Güntürkün et al., 2020). Because
of the crossed projections of sense organs to their higher
processing areas in vertebrate brains, this suggests that sensory
stimuli (auditory, visual, somatosensory) picked up from the
right side of the body and processed preferentially in the left
brain-hemisphere may reach awareness at lower perception
thresholds or more intensively than those perceived via the left
body side. This is a broad field open for further research.

The ERP data from humans showed awareness negativities
lateralized in the brain, i.e., their amplitudes were highest
contralateral to the side of the sensory input. We did not
see this phenomenon reported in the animal studies. In
future ERP studies on animals, it would be highly informative
to analyze ERPs separately for the left and right brain
hemisphere. Lateralized ERP peaks with the appropriate
latencies could be related to awareness while later peaks related
to consciousness are expected to have the same amplitudes on
each hemisphere because of the more global brain activation
associated with conscious perception. This is another promising
field of research.

Our analysis did not concern consciousness in contexts of
cognition-based action generation and higher-level cognitive
functions such as introspective awareness and metacognition,
as indicated in the Introduction. If we considered behavioral
evidence for animal consciousness in the context of higher-
level cognitive functions, we could have predicted the possibility
of awareness/consciousness in several species of mammals and
birds as suggested by (a) self-recognition in great apes (Gallup
and Anderson, 2020), and possibly in elephants, dolphins,
magpies (Derégnaucourt and Bovet, 2016; de Waal, 2019),
(b) tool manufacturing in apes, monkeys (macaque, cebus),
mammals such as beaver, elephant, dolphin, and several bird
species such as crows and parrots (Bentley-Condit and Smith,

2010), (c) other examples of metacognition or insight in
problem-solving tasks as found in apes (Jolly, 1991; Emery
and Clayton, 2004), macaques (Hampton, 2001; Chang et al.,
2017), marmoset monkeys (Burkart and van Schaik, 2020),
rats (Foote and Crystal, 2007), corvids and parrots (Heinrich,
2000; Emery and Clayton, 2004; Baciadonna et al., 2021).
These behavioral data derived from tests of higher cognitive
functions in animals are in general agreement with the
neural data derived from ERP and gamma-wave brain activity
what possible awareness/consciousness in animal groups are
concerned. According to these data, species of mammals
(including humans) and certain bird species show the ability
to become aware and conscious both in stimulus perception
tasks and in tasks requiring thinking over before starting
to do something.

Can we assess the data from fish,
cephalopods and insects?

The criteria which we used to evaluate ERP and gamma-
wave data did not lead to conclusive suggestions about
awareness and consciousness in stimulus perception by
heterothermic vertebrates and invertebrates. Responsible for
this inconclusiveness is the obvious paucity of adequate
neurophysiological data recorded in behaviorally relevant
contexts. Therefore, we may consider in addition behavioral
evidence for animal consciousness in the context of higher-level
cognitive functions according to the above-mentioned aspects
(self-recognition, tool manufacturing, metacognition or insight
in problem solving tasks).

Here, we could find possible self-recognition in a fish
species, the cleaner wrasse, via mirror tests (Kohda et al., 2019,
2022; see however, reservations about the significance of mirror
tests for assessing self-recognition by de Waal, 2019), but no
tool manufacturing and no metacognition or insight in problem
solving tasks. In comprehensive reviews about cognition in
cephalopods (Schnell et al., 2021) and insects, especially bees
(Giurfa, 2015), metacognition-like use of associative memory
has been suggested. In addition, episodic-like memory has
been reported in studies of learning to manage food access in
cuttlefish (Jozet-Alves et al., 2013) and bees (Pahl et al., 2007).
Since formation and recall of episodic memory usually requires
awareness/consciousness in humans (Squire and Knowlton,
1995; Squire and Dede, 2015; Knowlton et al., 2017), data on
episodic memory in cephalopods and insects would support
the suggestion that species in these groups of animals may at
least become aware of the stimuli they perceive, i.e., which
stimuli, where, and when. The ability for and the realization
of associative learning in contexts of stimulus perception and
action generation is, however, not per se sufficient for assuming
that awareness/consciousness may be important factors in the
learning processes (e.g., Dehaene and Naccache, 2001; Webb,
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2012). Therefore, further recordings of brain activity in behaving
animals may provide decisive evidence for the presence of
awareness/consciousness in a cognitive task, for example when
changes of brain activity correlate with the gating of functional
connectivity between centers of associative signal processing
while the animal directs selective attention to certain signals in
order to determine their significance (arising from information
in long-term memory) in a given task.

What can we infer from the data with
regard to the evolution of awareness
and consciousness?

Current evidence suggests that, in addition to instinctive
routines, arthropods, cephalopods and vertebrates have access to
brain processes of selective attention that can be directed toward
stimuli, so that the stimuli can, in principle, be subjectively
experienced. Animals may become aware of the stimuli with
the option to consciously respond. Metzinger (2009; cited in
Le Neindre et al., 2017) expressed the relationship between
attention and consciousness as . . .in essence, consciousness is
the space of attentional agency. Transformed to the substrate of
the brain, we can reformulate: Consciousness is the spatial and
temporal space of brain activity that can actually be activated
by selective attention. Awareness can be integrated in this
metaphor as a spot in consciousness, i.e., as a spot in the space
of attentional agency or, transformed, as a spatial and temporal
spot in the space of potential brain activity to be activated by
selective attention.

These metaphors for awareness and consciousness can
be used for a straightforward understanding of some aspects
concerning the evolution of awareness and consciousness
in animals (awareness and consciousness as defined in
the Introduction). Irrespective of the actual anatomical
organization of the central nervous system of a given animal,
the functional organization should be compatible with the
Global Neuronal Workspace hypothesis (GNW; Dehaene
and Changeux, 2011; Figure 7) describing the interactional
processes in large neuronal networks in order to produce
consciousness. According to our definition of awareness and
consciousness, the interaction of perceptual, long-term memory
and attentional systems could produce awareness of stimulus
content. The interaction of evaluative systems, long-term
memory, and attentional systems could produce consciousness
for the preparation of actions. Accordingly, we predict that
animals without systems of attention, especially of selective
attention, and without long-term memory will not experience
awareness of the content of something or consciousness about
something to do.

With the above metaphoric transformation of Metzinger’s
(2009) relationship between consciousness and attention to

the brain and to the GNW, we can propose that animals
with an inherited possibility to couple very different stimuli
of one or several modalities, i.e., a broad input of perceptual
systems to be coupled with memory in the GNW, to a single
type of response behavior – this is the spot in Metzinger’s
space of attentional agency – may become aware of the stimuli.
Animals with an inherited possibility to couple one stimulus
or stimulus context with several types of response behavior,
i.e., a broad network of adjustment of motor systems to the
processing in evaluative systems and long-term memory – this
is the wide space of attentional agency – may become conscious
of the stimulus. An example of the first case: Awareness of
stimuli relates to a spectrum of food items, the abundance and
distribution of which may vary across time (seasons) and/or
structure of the environment, but all have been learned to
serve as potential food and could initiate behavior for getting
access to the food and finally eating it. An example of the
second case: Consciousness of response options to a given
stimulus relates to a conspecific in a social group with which
the subject can have several types of interactions (friendly
ones, agonistic ones, etc.) of learned outcome. Therefore,
in animals with rich sensory input capacities (various and
interacting sensory systems) and rich and variable capacities
of behavioral output, awareness may have evolved to serve
stimulus detection, identification, integration and attribution
of stimuli in order to generate adaptive response behavior,
and consciousness may have evolved to serve the selection
of an adaptive response or an adaptive action in a certain
context given that there are several response/action options
available. Serving in the case of awareness means opening a
time window during unaware stimulus processing in order
to allow adequate coupling of stimulus information with
information about the animal’s state for the preparation of
storing this combined information in long-term memory
to be used later in comparable situations. Serving in the
case of consciousness means opening a time window for
the evaluation of conditions (actual motivational tendencies,
actual environmental conditions, content of long-term memory
related to the actual experience) in order to allow selection,
adjustment and control of the response/action for optimal
adaptivity with regard to genetic fitness. Without addressing
awareness and consciousness separately, Keller (2014) in
discussing the possible evolutionary function of consciousness
in information processing in the olfactory system, proposed a
very similar conclusion for consciousness as we did (see above),
namely . . .the evolutionary function of conscious information
processing [is] to guide behaviors in which the organism has to
choose between many possible responses.

The analysis of ERP and EEG data of the human brain
has clearly shown the time windows associated with awareness
or consciousness (see Figures 1, 2). After stimulus onset,
first ERP peaks up to about 200 ms latencies indicated
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FIGURE 7

Global Neuronal Workspace (GNW) hypothesis for the generation of consciousness in the brain. The input arrows to the global workspace show
systems (perceptual, long-term memory, evaluative, attentional) which can contribute to an interactive processing with the result of the
generation of awareness of the content of stimuli and consciousness about the preparation and execution of behavior (motor systems output
arrow). [Modified from Dehaene and Changeux (2011); their Figure 6, upper right panel].

non-conscious signal processing followed by the ERP awareness
peak and the onset of gamma-band activity associated with
the generation of awareness. Even later ERP peaks and onset
of global gamma-band activity indicated conscious preparation
of behavior. The actual latencies of ERP peaks and gamma-
wave occurrence in animals may differ from those in humans
according to the sizes of the animals’ brains and the number
of evaluative levels to be passed in a GNW analogue.
However, we suggest that this stimulus-activated temporal
sequence of brain activity from non-conscious to aware to
conscious in adult humans reflects the possible evolution in
various animal phyla from non-conscious signal processing
and acting to becoming aware of signals and, finally, toward
consciousness of acting.

Since awareness and consciousness reflect optional brain
activity added with high energy costs to the basic, non-
conscious signal processing, further animal studies should
consider this energy aspect as an important factor of natural
selection in the evolution toward possible context-dependent
awareness/consciousness of a given species. A recent review
(Chen and Zhang, 2021) framed this new field of research.

Conclusion

Neural markers in human ERPs and gamma-wave brain
activity can differentiate between awareness of stimulus
perception and consciousness in response generation. These
markers can successfully be used to assess the possibility of
becoming aware of a stimulus and of responding consciously in
species of mammals and birds. These conclusions are promising,
however, tentative, and need more experimental support with
data from many more bird and mammalian species in order to
be generalized. The results of applying these markers to data
from fish, cephalopods and insects remained inconclusive. Since
the original data have not been recorded with the aim of testing
awareness/consciousness in the animals, the experimental
designs were not optimized for giving answers to these questions
of our interest and, thus, may have led to inconclusive results.
Besides methodological reasons for preventing conclusive
statements about awareness/consciousness, for example
the experimental control of selective (focused) attention
which seems necessary for awareness and consciousness
to be generated, biological conditions have to be studied
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in an evolutionary perspective in order to predict in how
far subjective experiences would be helpful and advantageous
to increase the reproductive fitness of members of a given
species. In other words, studies should investigate the ability
to display selective attention and long-term memory in a given
species, and study whether awareness and/or consciousness
are necessary vital factors in the natural lifecycle of that
species. The aware and conscious brain causes high energy
costs which, in an evolutionary approach, can be tolerated
only if a significant gain in reproductive fitness for the
individual and/or its kin can be achieved by becoming aware or
conscious, at least in some behavioral contexts, with promising
fitness rewards.
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