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Simple Summary: Neuroblastoma is a highly heterogeneous malignancy with a wide range of
outcomes from spontaneous regression to fatal chemoresistant disease, as currently treated according
to the risk stratification of the Children’s Oncology Group (COG), resulting in some high COG risk
patients receiving excessive treatment, due to lacking predictors for treatment response. Here, we
sought to complement COG risk classification by using the tumor intracellular microbiome, which is
part of the tumor’s molecular signature. We determine that an intra-tumor microbial gene abundance
score, namely M-score, separates the high COG-risk patients into two subpopulations (Mhigh and
Mlow) with higher accuracy in risk stratification than the current COG risk assessment, thus sparing
a subset of high COG-risk patients from being subjected to traditional high-risk therapies.

Abstract: Currently, most neuroblastoma patients are treated according to the Children’s Oncology
Group (COG) risk group assignment; however, neuroblastoma’s heterogeneity renders only a few
predictors for treatment response, resulting in excessive treatment. Here, we sought to couple COG
risk classification with tumor intracellular microbiome, which is part of the molecular signature of a
tumor. We determine that an intra-tumor microbial gene abundance score, namely M-score, separates
the high COG-risk patients into two subpopulations (Mhigh and Mlow) with higher accuracy in risk
stratification than the current COG risk assessment, thus sparing a subset of high COG-risk patients
from being subjected to traditional high-risk therapies. Mechanistically, the classification power of
M-scores implies the effect of CREB over-activation, which may influence the critical genes involved
in cellular proliferation, anti-apoptosis, and angiogenesis, affecting tumor cell proliferation survival
and metastasis. Thus, intracellular microbiota abundance in neuroblastoma regulates intracellular
signals to affect patients’ survival.

Keywords: neuroblastoma; genetic risk stratification; machine learning; microbial-based cancer
prognosis; RNA-seq; microbial signature
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1. Introduction

Cancers emerge from dormant sub-clonal selection switched to mutate, adapt, and
grow for spatiotemporally activated dominating sub-clonal expansion [1]. Next-generation
sequencing has provided technical tools to explore the genetic landscape of illustrating
the intra-tumor genetic heterogeneity of cancer evolutionary patterns [2]. Neuroblastoma
is the most common extra-cranial solid tumor occurring in childhood and has diverse
clinical presentations, ranging from rapid progression associated with metastatic spread
and recurrence to self-limited occupation. About 800 children aged 0 to 14 are diagnosed
with neuroblastoma in the United States yearly, and it accounts for 6% of all childhood
cancers in the United States [3]. Almost 90% of neuroblastoma patients are children younger
than five years old. For pediatric patients with low-risk neuroblastoma, the 5-year overall
survival (OS) rate is almost 100%; on the other hand, the 5-year OS is only 50% for those
children with high risk. Due to the heterogeneity of tumor biology and invasiveness, the
stratification of neuroblastoma risk is vital for medical decision making [4]. Currently, the
evaluation criteria before biopsy are imaging and age. A biopsy provides the most accurate
and specific evaluation. In the method developed by the Children’s Oncology Group
(COG), age at diagnosis, disease stage, tumor histology by the International Neuroblastoma
Pathology Classification (INPC) criteria, MYCN status, and DNA ploidy are employed to
stratify risk groups [5]. Children in the low-risk group can often be cured with limited
treatment, such as surgery alone, whereas those in a high-risk group often need intensive
treatments to achieve a cure. The low-risk group has better outcomes, whereas a high COG-
risk suggests a poor outcome and will be treated with intensive treatments [6–9]. There
is a need for a more accurate model to help guide medical decisions to avoid excessive
treatment. A complementary risk stratification method coupled with genetic landscapes
must be established to improve clinical outcomes of neuroblastoma.

Several studies have shown that tissue microbiome was associated with oncogene-
sis [10]. Traditional microbiome studies focus on extra-cellular microbiome DNA sequences.
However, the extra-cellular microbiome (e.g., bacterial and virus) vary with tumor environ-
mental factors such as tissue locations (e.g., oral cavity or gut) and individual difference
(e.g., race, sex, age, and nutrients). In contrast, the intracellular microbiome is part of the
cancer cell molecular signature [11–13], allowing the molecular crosstalk to influence tumor
progression. We hypothesize that treatment outcomes may be associated with microbiome
alterations, but no studies have linked these changes to treatment. To explore this possibil-
ity, we investigate the association of intra-tumor microbial RNA sequences and the survival
time of neuroblastoma patients.

Most DNAs in a cell have never been transcribed into RNAs or proteins to alter
cellular functions. On the other hand, RNAs (coding or non-coding RNAs) are transcribed
in a needed base from human or microbial DNA to participate and alter cellular functions.
Consequently, RNAs are a natural selector of functioning human/microbial DNA sequences
needed in a cancer cell. Because multiple copies of RNAs, especially those required to alter
cellular functions, are transcribed from a single copy of a DNA sequence, RNA-seq can
also better detect functional sequences than DNA-seq from the microbiome. Specifically,
we demonstrated and optimized an intracellular microbiome prediction score, namely
M-score, for high accuracy in risk evaluation. The study design is summarized in Figure 1.
Based on the M-score, the high and low M-score subpopulations (Mhigh and Mlow) can be
used as neuroblastoma risk stratification to improve neuroblastoma’s clinical outcomes by
coupling with the current COG stratification. We further analyzed the related molecular
characteristics of Mhigh and Mlow subpopulations. The CREB expression was more activated
in the Mhigh subpopulation, directly affecting the expression of BCL-2, VEGF, NGF, and
IGF2 in regulating tumor cell proliferation and survival or metastasis.
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Figure 1. Summary of study design. Machine learning was developed to overcome COG risk
stratification’s limitation for identifying patients with high survival probability in the high COG-risk
group. The algorithm determines the intratumoral and intracellular microbial gene abundance
score, namely M-score, to separate the high COG-risk patients into two subpopulations (Mhigh and
Mlow) with higher accuracy in risk stratification and is complementary to the current COG risk
assessment, thus sparing a subset of high COG-risk patients from being subjected to traditional
high-risk therapies.

2. Methods
2.1. Datasets and Annotations

The raw RNA-seq data were downloaded from NCI Genomic Data Commons (GDC)
Data Portal (https://docs.gdc.cancer.gov, accessed on 1 May 2021) using the GDC data
transfer tool available from the National Cancer Institute data portal (https://gdc.cancer.
gov/access-data/gdc-data-transfer-tool, accessed on 1 May 2021). A total of 120 neuroblas-
toma patients with their complete RNA-seq data and clinical information were used in the
final analysis. Previous work identified just six contaminants in TCGA (Staphylococcus
epidermidis, Propionibacterium acnes, Ralstonia spp., Mycobacterium, Pseudomonas, and
Acinetobacter) based on expected low-read abundances across types of cancer [14]. We
used in silico decontamination methods to remove contaminants, as described in a recent
study with the TCGA dataset [13], and eliminated these microbial contaminants from
subsequent analyses.

2.2. K-Mer Dissimilarity

Alignment-free approaches based on k-mer frequencies have frequently compared
metagenomic samples [15]. Compared to alignment-based methods that can only map
about 50% of the reads to reference genomes in specific databases [16], alignment-free
metagenome comparison methods consider all reads. Thus, we used Skmer, an assembly-
free and alignment-free tool, to calculate dissimilarity among different samples using long
k-mers (k up to 32) [17]. Since we focused on microbial contributions to neuroblastoma, we
first removed reads mapped to all human genes from the RNA-seq data. Therefore, Skmer
took the remaining reads after removing human reads from the 120 patients’ RNA-seq
as input. The output was a dissimilarity matrix in which each cell represents a pairwise
dissimilarity of any pair of the 120 samples. Furthermore, principal coordinates analysis
(PCoA) plot was drawn based on the dissimilarity matrix computed by Skmer.

https://docs.gdc.cancer.gov
https://gdc.cancer.gov/access-data/gdc-data-transfer-tool
https://gdc.cancer.gov/access-data/gdc-data-transfer-tool
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2.3. Predicting Survival with Microbial Gene Abundance Using Random Forest Survival Analysis

HUMAnN2 [18] is a tiered fast search method with three search phases. The first phase
of screening metagenomic and metatranscriptomic samples to search for known species
and then concatenate annotated pangenomes of detected species into a custom sequence
dataset. Second, all reads were aligned with the custom dataset built in the first phase
using Bowtie 2 [19]. Finally, through a translated search, HUMAnN2 used DIAMOND
to align the reads against a protein database, UniRef90 [20]. Based on these three phases,
HUMAnN2 can generate the weighted normalized counts of microbial gene abundance in
reads per kilobase for each of the 120 samples.

Next, we used the random forest survival analysis in the R package “randomForest-
SRC” [21] to predict patients’ survival based on the gene abundance profiles with a micro-
biome prediction score (M-score) [22,23]. The input of the random ForestSRC algorithm
was the microbial gene abundance profiles, and the output was the survival time. First, we
divided the 120 samples into two datasets, training (70%) and testing (30%). Next, we used
all of the microbial gene relative abundance levels computed by HUMAnN2 as features to
predict individuals’ survival duration 1,000 times. Finally, Harrell’s C-index (concordance
C) measured the average prediction performance, employing the cumulative hazard esti-
mate to the values for comparison. Then, prediction accuracy was always between 0 and
1, which assessed how well the selected model correctly ranked two observations in their
observed survival times.

Meanwhile, the predicted values of our developed model were used to define an
M-score consisting of 9063 microbial genes of interest. Higher values (Mhigh) indicated a
higher risk of dying from neuroblastoma and a shorter survival time. We stratified high-risk
COG patients into high- and low-risk groups based on the M-score.

2.4. Signaling Analysis in the Two Microbiome K-Mers Profile (MKP) Clusters

To understand the underlying mechanisms involved in the superior classification
performance of the M-score, we analyzed the related human gene pathways that are
differentially expressed between the Mhigh and Mlow groups. Read counts per gene of
human genes for all samples were normalized using Counts per Million (CPM). The average
gene expression values of human genes from the two different M risk clusters were used for
pathway analysis. We calculated the gene expression ratio of Mhigh/Mlow to assess possible
mechanisms. Partek’s Gene Specific Analysis method (Partek® Genomics Suite® software,
version 7.0 Copyright ©; 2020 Partek Inc., St. Louis, MO, USA) was used to generate a list of
significantly differentially expressed genes between MKP clusters (genes with < 10 reads in
any sample were excluded). Significance was determined using a false discovery rate (FDR)
adjusted p-Value (q-value < 0.05). Ingenuity Pathway Analysis (IPA) software (Qiagen
Bioinformatics, Redwood City, CA, USA) was used to analyze gene-specific pathways, and
genes enriched in the most significant pathway (lowest p-Values) were selected.

3. Results
3.1. The High-Risk Group of Patients Defined by the COG Criterion

Recent studies [11] showed that the intra-cellular microbiome inside tumor cells im-
pacts clinical outcomes. To investigate the microbial features of neuroblastoma, we analyzed
RNA sequencing data, including both human and microbial sequences for 120 neuroblas-
toma patients recorded in the National Cancer Institute (NCI) Office of Cancer Genomics
Therapeutically Applicable Research To Generate Effective Treatments (TARGET) neurob-
lastoma project (https://ocg.cancer.gov/programs/target, accessed on 1 May 2021). The
demographical and clinical characteristics of the 120 patients are summarized in Table 1. In
this patient cohort, the mean age at the time of diagnosis is 4.3 years old, and the average
survival time of patients who died from neuroblastoma is 1009 days since diagnosis. The
majority (80.8%) of patients in the cohort was male, white, without MYCN gene ampli-
fication, and classified into a high-risk group according to the COG criterion. The most
common primary location of specimens is the abdomen.

https://ocg.cancer.gov/programs/target
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Table 1. Characteristics of 120 neuroblastoma patients.

Characteristics N (%)

Gender
Male 70 (58.3)

Female 50 (41.7)
Ethnicity

White 85 (70.8)
Others 35 (29.2)
MKI
Low 35 (29.2)

Intermediate 34 (28.3)
High 26 (21.7)

Unknown 25 (20.8)
MYCN Status

Amplified 23 (19.2)
Not Amplified 96 (80)

Unknown 1 (0.8)
COG Risk
Low Risk 12 (10.0)

Intermediate Risk 11 (9.2)
High Risk 97 (80.8)

Location of tumor
Abdomen 104 (86.7)

Others 16 (13.3)
Mean (SD)

Age(in years) 4.3 (2.5)
Survival Time(in days)

Event 1009.2 (617.2)
Censored 2204.5 (734.5)

3.2. Distinct Microbiota Was Found Among Neuroblastoma Patients

After removing reads that could be mapped to the human genome, we performed
pattern analysis on the non-human reads, mainly from the microbiome. Skmer [17] ex-
tracted k-mer (k = 32) patterns from the non-human sequence for each sample. We named
those microbiome patterns Microbiome K-mers Profile (MKP). PCoA [18] took the dissimi-
larity matrix of MKP computed by Skmer as input to cluster patients by MKP similarity.
It showed that the 120 patients were grouped into two MKP clusters, MKP1 and MKP2
(Figure 2). Cox proportional hazards regression analysis (Table 2) showed that the survival
times of the patients in these two clusters are significantly different (p = 9.505 × 10−8).
Additionally, it suggested that MKI and COG risk are particularly associated with the
patient’s survival time (p = 0.05555, p = 2.659 × 10−5, respectively), while other factors
are not statistically significantly associated with the two clusters in our study (Table 2).
Notably, MKP is associated with patient survival time with higher significance than all
other factors.

Figure 2. Principal coordinate analysis of the gene dissimilarity matrix computed by Skmer (MKP).
Based on microbial sequence similarity, 120 neuroblastoma patients were grouped into two MKP
clusters, which were defined as MKP1 and MKP2. Patients in these two groups had significantly
different microbial profiles in their tumor tissues. The survival probability of patients in MKP1 was
statistically lower than that of patients in MKP2 (p = 9.505 × 10−8).
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Table 2. Cox proportional hazards regression model test result.

Variables p-Value

MKP Clusters 9.505 × 10−8

Gender 0.6899
MKI 0.0556

MYCN Status 0.2449
COG Risk 2.659 × 10−5

Location 0.9878
Ethnicity 0.5443

It is known that distinct microbial organisms are present in different human body
locations among individuals. To investigate whether the two MKP clusters formed due
to specimen sources or other clinical factors, we analyzed the association of additional
clinical features with the two MKP clusters. The p-Value of Pearson’s Chi-squared test
indicated that only the COG risk between the two MKP groups was statistically different.
However, other factors, including gender, ethnicity, MKI, MYCN status, and location,
were not associated with the MKP clusters (Table 3), suggesting that MKP clusters were
associated with COG risk but not related to specimen collections. The MKP clusters were
not associated with other factors such as gender, ethnicity, tumor location, MKI, and MYCN
status either.

Table 3. Chi-square test of independence between MKP clusters and other potential factors.

Variables Chi-Square (df) p-Value

Gender 0.0898(1) 0.7645
Ethnicity 0.1997(1) 0.655

MKI 5.0892(3) 0.1654
MYCN Status 0.6865(1) 0.4074

COG Risk 7.8701(2) 0.0195
Location of tumor 0.0005(1) 0.9827

We further explored the distributions of patients’ COG risks in the two MKP clusters.
Based on the COG risk stratification, children were classified into three different risk
groups: low, intermediate, and high. Risk groups were used to help predict the likelihood
a child could be cured. However, COG risk stratification is inaccurate, e.g., low COG risk
patients could relapse, and high COG risk patients may receive redundant treatment [24].
In our data set, most cases defined as high COG risk patients were distributed in both
MKP clusters, but low and intermediate COG risk patients were only presented in the
MKP2 cluster (Figure 3). This result suggested that MKP clusters were associated with
COG risk, and high COG risk patients could be further classified with MKP as some high
COG risk patients were clustered with low and intermediated COG risk patients together
in MKP2. Therefore, we compared the survival time of patients in different MKP clusters
within various COG risk levels through Cox regression for survival analysis (Table 4).
Remarkably, the survival probabilities of high COG risk patients in MKP1 were statistically
significantly lower than those of patients with high COG risk in MKP2 (p = 6.422 × 10−6,
hazard ratio = 3.78, Figure 4, Table 4). Moreover, high COG risk patients in MKP2 had
significantly lower survival probabilities than patients with low and intermediate COG risk
in MKP2 (p = 0.0004, hazard ratio = 5.56). In fact, since the stratification for patients with
high-risk neuroblastoma is not perfect, the therapy regimen after surgery mainly depends
on the experience of physicians. Thus, according to our results, COG risk stratification could
be refined more precisely, which is helpful for more accurately assigning the treatment
options to improve prognosis. Microbial gene profiles may be employed to classify high
COG risk patients into different risk levels precisely.
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Figure 3. Principal coordinate analysis of the gene dissimilarity matrix computed by Skmer (COG
Risk). One of the microbiome clusters, MKP2, contained patients defined by COG criteria as high,
medium, and low risk. The COG high-risk patients had distinct microbiome characteristics. Some
COG high-risk patients in MKP2 had similar microbiome features to those with COG medium and
low risk. Red, orange, and blue points represent patients categorized by COG criteria as high,
intermediate, and low risk. Remarkably, all patients clustered in MKP1 were COG high-risk; however,
MKP2 contained patients in all three different COG risk levels.

Table 4. p-Values and hazard ratios between different risk groups in MKP1 and MKP2.

Variables p-Value Hazard Ratio

MKP1 vs. MKP2 9.505 × 10−8 5
MKP1 vs. COG high risk in MKP2 6.42210−6 3.78
MKP1 vs. COG low and intermediate risk in MKP2 4.60510−9 17.1
MKP2 vs. COG high risk in MKP2 0.2119 0.75
MKP2 vs. COG low and intermediate risk in MKP2 0.0041 4.07
COG high risk in MKP2 vs. COG low/intermediate
risk in MKP2 0.0004 5.56

Figure 4. Kaplan-Meier estimator within four different MKP and COG risk groups. The COG high-
risk patients in MKP1 and MKP2 had lower survival probabilities than COG low and intermediate-risk
patients in MKP2. The hazard ratio (HR) for death among high-risk patients in MKP1 was 17.1 times
that of patients with low and intermediate COG risk in MKP2 (p = 4.605 × 10−9). The HR for death
among high-risk patients in MKP2 was 5.56 times that of patients with low and intermediate-risk in
MKP2 (p = 0.0004). However, the survival probability of high-risk patients in MKP1 was lower than
that of patients with high risk in MKP2. The HR for death among high-risk patients in MKP1 was
3.78 times that of those in MKP2 (p = 6.422 × 10−6). Additionally, the total survival probability for
patients in MKP1 was lower than those in MKP2. The HR for death in MKP1 was 5 times that in
MKP2 (p = 9.505 × 10−8).
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3.3. The Patient’s Survival Time Is Associated with Microbial Gene Abundance

The analysis of clinical features showed a strong association of microbiota with sur-
vival time, indicating that the microbiota of neuroblastoma patients could be better used to
predict their survival time than COG risk. This result prompted us to use machine-learning
methods with patients’ tumor microbiome characteristics to predict the survival probabil-
ity of neuroblastoma patients. Firstly, we employed HUMAnN2 to calculate the relative
abundance of microbial gene families in each tumor sample. The number of microbial gene
families in each sample ranged from 1501 to 53,769. Microbial gene families not expressed
in more than 80% of patients (i.e., at least 96 patients did not have those gene families) were
excluded for further analysis resulting in 9036 microbial gene families. Then, we conducted
a random forest using the abundance of 9036 gene families calculated by HUMAnN2 for
survival analysis built-in R package ‘randomForestSRC’ to predict patients’ survival time
after prioritizing the microbiome features. A randomly selected 70% of patients were used
to train a prediction model, and the other 30% were used for validation. The average
C-index for the training data is 0.68 and for the validation data is 0.70. The estimated
survival function for each individual in our study was shown in Figure 5A (The thick red
line is overall ensemble survival; the thick green line is the Nelson–Aalen estimator).

Figure 5. Performance measures for the MKP model. (A) The estimated survival function for each
individual. The thick red line represents overall ensemble survival, and the thick green line represents
the Nelson–Aalen estimator. (B) The plot of survival probabilities is estimated for each patient based
on our prediction model in the OOB ensemble (points in blue correspond to death events; black
points are censored observations). (C) OOB time-dependent Brier Score (0 = perfect, 1 = poor, and
0.25 = guessing). The score is shown stratified by ensemble mortality into four groups corresponding
to the 0–25, 25–50, 50–75, and 75–100 percentile values of mortality. The red line is the overall
(non-stratified) time-dependent Brier score. (D) OOB time-dependent CRPS (0 = perfect, 1 = poor, and
0.25 = guessing). The score is shown stratified by ensemble mortality into four groups corresponding
to the 0–25, 25–50, 50–75, and 75–100 percentile values of mortality. The red line is the overall
(non-stratified) time-dependent CRPS.

Out-of-bag (OOB) errors were frequently used to evaluate random forests performance.
OOB errors were calculated for the samples that were not used for learning the model
for each bagged set of samples. Performance assessment results based on OOB errors are
shown in Figure 5. Figure 5B shows that individuals with OOB mortality scores above
60% have much shorter survival times than individuals with low OOB mortality scores
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of less than 0.60. Similarly, about 44 out of 52 individuals (85%) with a survival time
longer than 5 years had an OOB mortality score below 20%. In comparison, only 10 out
of 68 individuals (15%) with a survival time of fewer than 5 years had a mortality score
below 20%. In the OOB Brier Score plot shown in Figure 5C, the red line presents average
discrepancies between the observed survival status and the predicted values of patients’
survival time, demonstrating that the prediction model with microbial gene abundance
performed pretty well since overall average scores were all below 0.2 at any time. In detail,
the average Brier Score increases through the 3 years and then keeps stable after three
years. This indicates that our model performed better within a shorter observed period
after patients’ diagnosis.

Furthermore, the OOB Continuous Ranked Probability Score (CRPS) (Figure 5D) also
demonstrates the MKP model’s excellent performance; the average continuous ranking
probability score was below 0.17 all the time. Additionally, the CRPS of sample sets in each
risk level, including 0–25%, 25–50%, 50–75%, and 75–100 quantiles, are all lower than 0.25,
which is equivalent to guess. For comparison, we also used a random Forest SRC to predict
patient survival using other clinical factors mentioned above. The result demonstrated that
microbial gene abundance features had superior prediction accuracy than other traditional
indices used to estimate neuroblastoma patients’ survival probability (Table 5).

Table 5. Error rate comparison with different features.

Variables Error Rate (%)

Microbial Gene Abundance 29.87
Gender 71.67

MKI 53.65
MYCN Status 75.21

COG Risk 68.97
Location of tumor 82.39

3.4. High COG Risk Patients Were Further Separated into High- and Low-Risk Groups with
Differential Survival Rates

As mentioned above, we found that high COG risk patients could be stratified into
smaller subsets with different survival probabilities according to their various microbial
gene abundances. We defined our microbiome prediction score as M-score, applying
our prediction model’s predicted values. Higher M-score, Mhigh, means a higher risk for
patients dying from neuroblastoma within a specific period. Additionally, the result showed
that the distributions of M-scores of high COG risk patients in the training dataset are
clustered into two separated groups. The result from Cox regression for survival analysis
demonstrated that patients in Mhigh had a higher clinical risk (shorter survival time) than
those in Mlow (p-Value = 0.0016). Thus, we set 50 as a threshold of M-score to further classify
high COG risk patients into Mhigh or Mlow risk levels. Patients with M-scores higher than
50 were classified as Mhigh, and those with M-scores lower than 50 were classified as
Mlow. Next, we tested the accuracy of the M-score in our validation dataset (Figure 6).
Figure 6 indicates that M-score could stratify patients into two M risk groups, in which
the survival times of patients were significantly different (p-Value = 0.0018). According
to the above analysis, the microbiome prediction score based on the M-score can better
predict the survival probability of neuroblastoma patients than the current COG method.
Cox regression for survival analysis of the training dataset demonstrated that patients in
Mhigh had a higher risk of death than those in Mlow (p-Value = 0.0016).
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Figure 6. Predicting Patients’ Survival Probability with Microbial Gene Abundance. Distributions of
M-scores in COG high-risk patients were shown in the inset (upper right). Patients with M-scores
higher than 50 were classified as Mhigh, and those with M-scores lower than 50 were classified as
Mlow. Survival analysis indicated that Mhigh patients have significantly lower survival probability
(p-Value = 6.422 × 10−6). Line and points in red represent Mhigh; lines in blue represent Mlow.

Similarly, in the validation dataset, patients in Mhigh had a higher risk of death than
those in Mlow (p-Value = 0.0018). Cox regression for survival analysis of all high-risk
patients demonstrated that patients in the Mhigh group had a higher risk of death than
those in Mlow (p-Value = 6.422 × 10−6). The M-score can better predict patient survival
probability (clinical risk) than the current COG method.

3.5. The Molecular Crosstalk between Intracellular Microbiota and Tumor Microenvironment
Activates CREB and Improves Survival Probability

By analyzing the molecular characteristics of two separate M-score groups, Mhigh
and Mlow, we found the CREB expression was significantly activated in the Mhigh group.
CREB is a critical regulator of cell differentiation, proliferation, and survival in cancer
cells. We also analyzed the expression of CREB target genes involved in anti-apoptosis
and found BCL-2 to be up-regulated in the Mhigh group. Besides, the expression of VEGF
(Mhigh/Mlow = 1.48 fold, p-Value = 0.021), NGF (Mhigh/Mlow = 1.79 fold, p-Value = 0.005),
and IGF2 (Mhigh/Mlow = 2.12 fold, p-Value = 0.014), which were involved in tumor metas-
tasis were also increased in the Mhigh group. Based on the analysis above, we hypothesized
that the lower survival probability for patients in the Mhigh group was potentially due to
the over-activation of CREB, thus inhibiting tumor cell apoptosis and promoting metas-
tasis. The results indicated that CREB might be a potential therapeutic target in high-risk
neuroblastoma patients (Figure 7).
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Figure 7. CREB activation may be a key genetic event related to M-score that contributes to the
tumorigenesis in the Mhigh group with low-survival probability. Among the 120 patients, the CREB
was over activated in the Mhigh group relative to the Mlow group. This could be responsible for
activating downstream genes related to cell growth, survival, angiogenesis, migration, and invasion,
including BCL-2, VEGF, NGF, and IGF-2, thus leading to the lower survival probability in the Mhigh

group.

4. Discussion

Microbiota’s responses to cancer treatment reflect intracellular microbiota tumor
integration of tumor survival signals. Recent studies have revealed particular microbiome
characteristics in several cancers [25]. In particular, the gut microbiome has been shown to
have multiple effects on gastrointestinal cancer biology [26]. Thus, study of the intra-tumor
microbiome may be an essential step in unveiling the tumor microbiome contributions
to cancer progression and improving prognostic prediction. In the present study, we
sought to explore microbiome characteristics for risk stratification of neuroblastoma. We
characterized a microbiome dissimilarity matrix for 120 patients as MKP profiles and found
two groups of neuroblastoma patients with distinct MKP characteristics (MKP1 and MKP2)
and survival probability. Since the PCoA results showed that the 120 patients in our study
were separated into two MKP clusters, we used Cox proportional hazards regression model
to compare the average survival time in these two clusters. The comparison suggested
that the two clusters had statistically significant different survival times. Furthermore,
Kaplan–Meier curves showed different survival times among patients with high COG risk
in these two clusters. This observation prompted us to develop a new method to stratify
neuroblastoma patients’ risk more precisely based on their microbial gene expression.
Thus, we investigated the association between microbial gene profiles and neuroblastoma
patients’ survival time to improve the accuracy of COG risk prediction.

After identifying an association between MKP and COG risk, we set up a machine
learning model with microbial profiles to predict survival probability. Our microbiome
prediction score (M-score) indicates survival probability accurately coupled with current
COG risk stratification criteria, especially high-risk stratification. To minimize the potential
effects of contamination, in preparing data for our machine learning model, we utilized
a similar method as reported by Poore et al. to remove microbial contamination [13]. We
suspect that as neuroblastoma develop, their disorganized, leaky vasculature may allow
bacterial translocation, thus forming the specific type of microbiome groups in the tumor
tissue of neuroblastoma. The neuroblastoma tumor burden may directly relate to the
disorganization of the tumor tissues and microbiome invasion. Alternatively, the invasion
of the microbiome may promote an inflammatory reaction and suppression of immune
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response that worsens prognosis. Over 9190 intra-tumor bacterial species were reported
recently [11]. Whether or not the microbial profile of neuroblastoma plays a causal role
in tumorigenesis remain elusive. However, it is of interest to further explore effects of
intra-tumor microbiome on the immune system and its interactions with tumor cells.

Microbiome metabolic pathways were recently reported to associate with the response
to immunotherapy [11]. To investigate why the M-scores displayed better performance
in risk classification than COG risk stratification, we calculated Mhigh/Mlow gene expres-
sion ratios. We identified the over-activation of CREB and its regulating genes, including
BCL-2 [27], VEGF, NGF, and IGF-2 [28], in Mhigh patients. CREB plays an essential role
in various biological functions, including cellular proliferation, differentiation, and adap-
tive responses in the neuronal system [29,30]. Recently, accumulating evidence showed
that CREB participates in the regulation of immortalization and transformation of can-
cer cells, including prostate cancer, breast cancer, non-small-cell lung cancer, and acute
leukemia [27,31–33]. Our study also demonstrates that the microbiome could influence
the tumor microenvironment. The deeper mechanism underlying this effect needs further
exploration. The intra-tumor microbial signatures of neuroblastoma we reported here is
an intrinsic part of the neuroblastoma molecular signature. Although the pathology of
those microbial signatures remains elusive, such microbial molecular signatures could be
used to improve the diagnosis and prognosis of neuroblastoma via refining current risk
stratification.

5. Conclusions

We applied the machine-learning-mediated interface between the microbiome and
genetic risk stratification of neuroblastoma patients defined by the Children’s Oncology
Group (COG) to discover molecular pathways related to patient survival.
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