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NEURAL REGENERATION RESEARCH 

Mesenchymal stem cells and the neuronal 
microenvironment in the area of spinal cord injury

Introduction
Spinal cord injury (SCI) leads to activation/inhibition of 
numerous cascades of intracellular and intercellular com-
munication, and a change of transcription and translation 
levels of different genes involved in post-traumatic response 
(Mortazavi et al., 2015; Witiw and Fehlings, 2015; Quadri 
et al., 2018). Despite advances in understanding of the 
pathogenesis of a traumatic injury of the nervous system, 
current treatments for SCI are insufficient. There is a com-
pelling need for novel treatment approaches based on the 
understanding of molecular and cellular mechanisms of 
SCI. Cell-based therapy is one of the approaches to prevent 
consequences of traumatic injury and to maintain the regen-
eration of nerve fibers. The use of stem and progenitor cells 
is aimed at restoring a tissue matrix with pathways to guide 
axonal growth, maintenance and re-myelination of axons, a 
trophic supply of injured and viable neurons, and the prolif-
eration of the spinal cord’s own stem cells (Sabapathy et al., 
2015; Assinck et al., 2017; Galieva et al., 2017).

At present mesenchymal stem cells (MSCs) are considered 
a promising material to stimulate neuroregeneration, related 
to their high biosafety and immunomodulatory properties; 
their ability to synthesize neurotrophic and proangiogenic 
factors by promoting the survival and regeneration of neu-
rons and the growth of axons and angiogenesis (Laroni et al., 
2015; Qu and Zhang, 2017; Khan et al., 2018). Various meth-
ods of MSC transplantation, even under conditions of multi-

ple administrations, cause neither toxicity, nor induce tumor 
formation in animals and humans (Ra et al., 2011; Barkholt et 
al., 2013; Rengasamy et al., 2016). Preclinical studies demon-
strate positive and promising results of MSC-based therapy 
in SCI. Attempts are being made to discover cellular and mo-
lecular mechanisms of MSC-mediated effects on reactivity/
phenotype of astrocytes and microglia, the maintenance of a 
pool of myelin-forming cells and neurons, axonal growth and 
tissue integrity in general. Methods and sources for obtaining 
MSCs, as well as conditions of their culture might have a sig-
nificant impact on the metabolic and secretory profile and the 
membrane expression profile of a resulting cell-based prod-
uct. As the paracrine mechanism of MSCs action determines 
their therapeutic effect, special attention is paid to important 
aspects such as the preservation of MSCs viability and the op-
timal delivery of secreted therapeutic factors by them into the 
area of SCI. However, there is still a necessity to understand 
the cellular and molecular mechanisms by which MSCs ame-
liorate a SCI outcome (Park, 2018).

This review includes summaries of preclinical trials data 
evaluating the efficacy of MSCs in animal models of SCI. 
Based on the data collected we have tried (1) to establish 
the behavior of MSCs after transplantation in SCI with an 
evaluation of cell survival, migration potential, distribution 
in the area of injured and intact tissue and possible differen-
tiation; (2) to determine effects MSCs on neuronal microen-
vironment and correlate them with the efficacy of functional 
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recovery in SCI; (3) to ascertain the conditions under which 
MSCs demonstrate their best survival and greatest efficacy.

An electronic search of the Medline datebase for articles 
describing animal model of SCI from 1992 to 2018 was per-
formed using the folowing conditions: SCI model (animal: 
rats, mice, pigs, dogs, non-human primates), MSC trans-
plantation, animal behavior/physiology. The results were 
further screened by title/abstract and non-SCI experiments 
and review articles were excluded.

Behavior of MSCs in the Area of SCI  
Essential cytogenetic processes such as the viability of MSCs, 
their migration potential, proliferative activity, self-main-
tenance and differentiation are controlled by numerous 
molecular signals from their microenvironment. These sig-
nals converge via specific receptor inputs on intracellular 
signaling pathways whose number is quite limited. Despite 
a large number of studies where MSC viability in the area of 
SCI was evaluated, to date there are still contradictory data. 
Additional Table 1 contains the published data available on 
the duration of MSC survival in the area of SCI, their migra-
tion potential and possible differentiation.

The behavior of MSCs in the area of SCI depends on the 
route (intraspinal, intrathecal, intravenous and others) and 
type of cell transplantation, (xenogenic, allogenic), methods 
of cell labeling (green fluorescent protein-transgenic mice/
rats, antibodies, green fluorescent protein-expressing viral 
vectors, fluorescent nanoparticles and other tracers of cells) 
and imaging techniques (confocal microscopy, in vivo im-
aging instruments (IVIS) system etc.). The SCI model (con-
tusion, compression, ischemia, hemisection or transection) 
can also play a great role in homing and survival of MSCs. 
The latter is due to the different nature of nervous tissue 
alterations leading to disimilar pathophysiological mech-
anisms. Among SCI models, the most suitable for clinical 
use is the model of a dosed contused injury of spinal cord 
(Gruner, 1992). As a result of this contusion, the destruction 
of the nervous tissue occurs is similar to the damage ob-
served in humans, including gliosis, demyelination and cyst 
formation. 

MSCs demonstrate good survival (for at least 4–8 weeks) 
after an intraspinal injection of allogenic cells in the area of 
SCI (Ryu et al., 2012; Takahashi et al., 2018a). The results 
obtained are associated with an increased expression by 
implanted MSCs of the prosurvival signaling factors such as 
Akt and extracellular regulated protein kinase 1/2. Howev-
er, intraspinal injections of MSCs were shown preferential 
distribution in the spinal cord lesion site (Ryu et al., 2012; 
Ribeiro et al., 2015; Takahashi et al., 2018a) and less often 
rostrally and caudally from the epicenter (Nakajima et al., 
2012). Neirinckx et al. (Neirinckx et al., 2015) detected no 
Cell Tracker Green labeled MSCs in the area of SCI at 4 
weeks after an intraspinal injection that might be due to 
low signal retention of fluorescent dye data. For example, it 
has been previously shown that Cell Tracker Green CMF-
DA cannot be reliably used to evaluate the migration of 
bone-marrow derived angiogenic cells (Beem and Segal, 

2013).
Intravenously implanted MSCs are capable of targeted mi-

gration towards the SCI epicenter (Kim et al., 2015; Ramalho 
et al., 2018). At the same time, they demonstrated a better 
survival rostrally from the injury epicenter with distribution 
both in the grey and white matter of the spinal cord and 
around the cavitation area (Yang et al., 2018). The data ob-
tained by Matsushita et al. (2015) stand out from the studies 
available, who found no migration of intravenously implant-
ed MSCs into either contused or intact spinal cords. The au-
thors based the evidence on stabilization of the blood-spinal 
cord barrier and improved locomotor functions and related 
this with indirect effects (by means of secreted factors) of 
MSCs implanted in the spinal cord vasculature.

Intrathecal (an intraventricular injection is its special case) 
and intra-arterial injections of MSCs in SCI are less often 
used in preclinical trials of their transplantation. The latter is 
more often associated with technical difficulties of reproduc-
ing these manipulations. With the intrathecal injection there 
is a low MSC migration into the lesion site (Urdzíková et al., 
2014; Krupa et al., 2018). This might have caused the lack of 
available data on long-term survival of MSCs in the area of 
SCI after such administration.

The application of MSCs combined with scaffolds on top 
of the injury has become increasingly popular due to the 
possibilities of clinical use of this cell-based therapy in SCI. 
This type of transplantation demonstrates good MSC surviv-
al (for at least ten weeks) in the area of SCI (Mukhamedshina 
et al., 2017a; Sabino et al., 2018), that might be due to the 
possibility of maintaining matrix-enclosed cells which cre-
ate a specific microenvironment similar to the natural one. 
It should be noted that the available data on MSCs survival 
in their xenotransplantation in SCI are not significantly 
different when compared to similar options of allogenic 
cells transplantation (Additional Table 1). A comparative 
analysis of survival of MSCs derived from different sources 
(adipose tissue, bone marrow, umbilical cord blood and 
Wharton’s jelly) in the area of SCI showed a shorter survival 
of bone marrow derived-MSCs (Ryu et al., 2012; Takahashi 
et al., 2018a). This might be due to a low expression level of 
chemokine (C-X-C motif) ligand (CXCL)12 in bone marrow 
derived-MSCs which can improve MSC survival and prolif-
eration in vitro (Liu et al., 2011; Takahashi et al., 2018a).

The possibilities of unorthodox MSC plasticity/transdif-
ferentiation were shown in induction medium culture in 
vitro (Reyes and Verfaillie, 1999; Hermann et al., 2004) and 
in experimental models of various pathologies when these 
cells were administered in vivo, including in SCI (Ryu et 
al., 2012; Sabino et al., 2018). Previously investigators have 
most actively described the possibilities of MSC transdif-
ferentiation into the neural lineage, using the capabilities of 
these cells to acquire specific morphology and the expres-
sion of neuron and glial cell markers. However, video time-
lapse microscopy of the MSCs culture showed that specific 
morphological alterations (MSC’s assumption of a neural 
and glial cell shape) were not genuine transdifferentiation 
but resulted from degenerative changes when exposed to 
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the cell culture medium used to induce the neural lineage 
(Bertani et al., 2005). The expression of neural markers de-
tected with immunocytochemistry takes place very rapidly 
as a rule for genuine transformation to occur. For example, 
Sabino et al. (2018) showed that on day 7 after application 
of MSCs combined with a fibrin matrix in the site of tran-
section the transplanted cells had already started expressing 
Nestin, NG2, β-III tubulin, Vimentin, neurofilament (NF) 
and neuron specific enolase. In another study the MSCs 
injected into the area of SCI began to express NF160, NeuN 
and glial fibrillary acidic protein (GFAP) at eight weeks after 
transplantation (Ryu et al., 2012). However, the specificity 
of neural markers such as βIII-tubuline and NeuN raises 
doubts and their production might result from the increased 
expression of MSC-specific genes (Pontius et al., 2003). Im-
munophenotyping which analyzes few markers in the cells 
taken out of their physiological “context” is not considered 
to be sufficient evidence to identify a particular cell type 
(Vladimirskaya, 2007; Vellosillo et al., 2017).

Gene expression profiling which makes it possible to 
analyze the transcriptome of hundreds and thousands of 
genes can be the most convincing evidence of MSC trans-
differentiation into non-mesenchymal cell types. However, 
in this respect MSCs are also considered to be a complex 
object owing to the very high gene expression by these cells. 
For example, the number and diversity of MSC expressed 
genes are significantly higher than those of hematopoietic 
stem cells (Silva et al., 2003). Expression profiling of more 
than 21,000 genes performed with chemical induction of 
MSC neural differentiation in vitro demonstrated the lack of 
transcription of nervous tissue-specific genes and activation 
of the same genes as in MSC transformation into other cell 
types (Bertani et al., 2005). Thus, it was concluded that there 
is no absolutely reliable evidence of MSC transdifferentia-
tion in vitro into non-mesenchymal cell types.

Rho/ROCK/PTEN Signaling Pathway in 
Mesenchymal Stem Cells 
Rho/ROCK/PTEN (small Rho GTPases, Rho-associated 
kinase, phosphatase and the tensin homolog that is deleted 
on chromosome 10) is one of the key intracellular signal-
ing pathways where numerous molecular signals from the 
microenvironment converge via special receptor inputs. 
Despite the significant interest of MSC researchers, the evi-
dence disclosing the role the intracellular Rho/ROCK/PTEN 
signaling pathway plays in phenotype control, survival, pro-
liferation and migration potential of MSCs is still lacking. 
ROCK inhibitors were shown to improve the physiological 
function of cryopreserved MSCs significantly within a cyto-
skeleton (Bit et al., 2017).

The effect of inhibiting the intracellular Rho/ROCK/
PTEN signaling pathway on the phenotype and behavior 
of cells when transplanted in vivo in order to prevent neu-
rodegeneration has not been studied. In this respect two 
approaches can be considered related. The first involves 
the management of neurodegeneration and stimulation of 

neuroregeneration using inhibitors of RhoА (Lord-Fontaine 
et al., 2008; McKerracher and Anderson, 2013; Drummond 
et al., 2014; Wu and Xu, 2016), ROCK (Furuya et al., 2009; 
Chiba et al., 2010; Yu et al., 2016; Li et al., 2017) and PTEN 
(Chen et al., 2015; Knafo et al., 2016) in different experi-
mental models. The second targets the silencing of genes en-
coding for key molecules of the Rho/ROCK/PTEN signaling 
pathway through genetic constructions such as anti-sense 
oligonucleotides (Huang et al., 2015), microRNA (Lu et al., 
2015), small interfering RNA (Wen et al., 2014; Ding et al., 
2015; Gwak et al., 2017), and RNA spikes (Zukor et al., 2013; 
Haws et al., 2014; Lewandowski and Steward, 2014), inserted 
with viral vectors directly into spinal cord structures as well 
as using the Cre-Lox recombination technology (Willenberg 
et al., 2016).

There are data on a combined use of selective inhibitors of 
small GTPase, ROCK and PTEN with stem cell transplanta-
tion in order to prevent consequences of neurodegeneration. 
For example, the administration of fasudil, a ROCK selective 
inhibitor, for two weeks combined with transplantation of 
bone marrow-derived stromal cells significantly increased 
the number of regenerating axons in the corticospinal tract 
ingrowing through the area of SCI in rats but did not en-
hance the locomotor recovery (Chiba et al., 2010). Howev-
er, another group of researchers managed to demonstrate 
improved locomotor rather than sense function, increased 
numbers of regenerating axons and serotonergic fibers in 
an area rostral to the injury epicenter as well as significantly 
reduced abnormal cavities with co-administration of fasudil 
intrathecally for 4 weeks and a single injection of bone mar-
row-derived stromal cells into the lesion site (Furuya et al., 
2009). A positive synergistic effect of fasudil and transplan-
tation of bone marrow-derived MSCs was demonstrated in 
experimental autoimmune encephalomyelitis in mice (Yu 
et al., 2016). In this case fasudil inhibited the effect of proin-
flammatory molecules such as TLR-4/MyD88, interferon 
(IFN)-γ, interleukin (IL)-1β and tumor necrosis factor-α 
(TNF-α), and activated the production of a glial-cell derived 
neurotrophic factor and a brain-derived neurotrophic fac-
tor (BDNF). It should be noted however that whether the 
ROCK inhibitor affects survival, phenotype characteristics 
and synthetic activity of the cells transplanted, MSCs in par-
ticular, remains unclear in all experiments of fasudil co-ad-
ministration with cell-based therapy.

Cdc42 is a significant factor in extension of axonal growth 
cones and regulation of cell proliferation, and is involved in 
lipotoxic effects of palmitate in culturing Wharton’s jelly-de-
rived MSCs. The delivery of constitutively active Cdc42 into 
the area of SCI reduces the number of reactive astrocytes 
and chondroitin sulfate proteoglycan deposition (Jain et al., 
2011). At the same time, the use of shRNA against Cdc42 
attenuated palmitate-induced synthesis of proinflammatory 
cytokines and cell death (Lu et al., 2017). These results indi-
cate a mechanistic role of Cdc42 in Wharton’s jelly-derived 
MSCs proliferation and determine that the Cdc42 activity is 
a promising pharmacological target to reduce lipotoxic cell 
dysfunction and death.
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Molecular and Cellular Mechanisms Mediating 
Impact of Mesenchymal Stem Cells on 
Neuronal Microenvironment in the Area of 
Spinal Cord Injury 
Astrocytes
Traditionally, studies aimed to assess the efficacy of MSCs 
use for the purpose of neuroregeneration in SCI are focused 
on the state of reactive astrocytes and extracellular matrix in 
the glial scar. For this purpose, usually the expression level 
of GFAP and less often that of proteoglycans are determined 
in the area of SCI (Additional Table 2). When the expres-
sion of these markers is decreased, it is often concluded that 
the glial barrier is reduced and axonal growth results (Liu et 
al., 2018; Yang et al., 2018). Such a judgement is not entirely 
objective, since the glial barrier is a complex and multicom-
ponent structure. The glial barrier is composed not only of 
reactive astrocytes, but also macroglia precursors and reac-
tive microglia/macrophages actively penetrating into a scar; 
there are also fibroblasts and perivascular cells present (Che-
lyshev et al., 2013; Yuan and He, 2013). Different post-trau-
matic periods are evaluated for changes in the glial scar and 
astrocyte activation in MSC transplantation. In this context 
the role of the glial barrier and reactive astrocytes is most of-
ten considered a negative one despite a known positive role 
in maintaining the spinal cord tissue structural integrity and 
the process of neuroregeneration during an early post-trau-
matic period (Adams and Gallo, 2018). Kim et al. (2015) 
demonstrated that an early intravenous administration of 
allogenic MSCs to dogs increased the expression of GFAP 
by 7 days after SCI. They consider the results obtained as 
positive taking into account the formation of a neuroprotec-
tive microenvironment by GFAP-expressing astrocytes for 
neurogenesis with transplanted MSCs.

However, most studies with MSC transplantation in SCI 
give evidence to reduced astrocyte responsiveness both in 
acute (Liu et al., 2018), subacute (Ruppert et al., 2018), and 
chronic periods after injury (Ryu et al., 2012; Krupa et al., 
2018; Mukhamedshina et al., 2018; Yang et al., 2018). The 
possibilities of preventing astrocytosis are attributed to the 
ability of MSCs to decrease cyclooxygenase-2 (COX-2) and 
IL-6 cytokine levels (Nakajima et al., 2012; Ryu et al., 2012; 
Liu et al., 2018; Sun et al., 2018) (Figure 1). It has previously 
been shown that reactive and hypertrophic astrocytes start 
expressing COX-2 within the area of ischemia in response 
to proinflammatory stimuli or an injection of neurotoxins 
(Hirst et al., 1999; Maślińska et al., 1999; Font-Nieves et 
al., 2012). Thus there are approaches involving the use of 
COX-2 inhibitors after SCI, that reduce oxidative stress and 
promote neuroprotection (Hakan et al., 2011; Hou et al., 
2015; Yuksel et al., 2018). A decreased COX-2 level in MSC 
transplantation in SCI can be considered positive and results 
from reduced levels of prostaglandins which regulate MSC 
differentiation into osteoblastic cells (Zhang et al., 2002; 
Banovac et al., 2004). Heterotypic ossification is thereby pre-
vented which is the most common orthopedic complication 
after SCI (Banovac et al., 2004).

IL-6 can play a double role, being involved in either a clas-
sic signaling pathway and thereby promoting a reduction of 
inflammation and enhanced regeneration, or a trans-signal-
ing pathway important for cellular communication (Camp-
bell et al., 2014; Scheller et al., 2014; Schaper and Rose-John, 
2015). IL-6 is synthesized mainly by activated astrocytes in 
the central nervous system (Guptarak et al., 2013; Choi et al., 
2014; Gruol, 2016). Decreased IL-6 levels are mediated by 
MSC secretion of TNF-stimulated gene-6 (TSG-6), released 
within exosomes (Wang et al., 2012; Qi et al., 2014; Song et 
al., 2017; Chaubey et al., 2018). Later TSG-6 reduces NF-κB 
(nuclear factor kappa-light-chain-enhancer of activated B 
cells) signaling, thereby modulating a diminishing cascade 
of proinflammatory cytokines (TNF, IL-1β, IL-6, IL-1α, etc.).

It should be noted that astrocytes exist in at least two 
distinct reactive states such as A1 neuroinflammatory re-
active astrocytes and ischemia-induced A2 neuroprotec-
tive reactive astrocytes (Liddelow and Barres, 2017). A1 
reactive astrocytes induced by microglia activation quite 
rapidly respond to neurotrauma and lead to death of axo-
tomized neurons (Liddelow and Barres, 2017). It was not 
until recently that it became possible to distinguish between 
different activation states of reactive astrocytes by means 
of complement component C3 which is specifically upreg-
ulated only in A1 neuroinflammatory reactive astrocytes 
(Liddelow and Barres, 2017). This resulted in the advent of 
publications evaluating a phenotype of reactive astrocytes 
in the area of SCI following MSC-based therapy. For exam-
ple, Liu et al. (2018) were the first to demonstrate that an 
intravenous injection of MSCs-derived exosomes after SCI 
resulted in a decreased number of C3+/GFAP+-astrocytes in 
the lesion area as early as in 24 hours. The results obtained 
may be attributed to the secretion of TSG-6 by MSCs and 
consequently decreased NF-κB signaling, which induces А1 
neuroinflammatory reactive astrocytes (Lian et al., 2015; 
Liddelow et al., 2017).

Despite the great progress in studying astrocytes in gen-
eral and the MSC impact on them in particular, there is a 
need for communications between these cells in the setting 
of the pathological conditions in SCI to be more completely 
elucidated. Eventually this would provide a more complete 
understanding of the contribution of astrocytes during var-
ious post-traumatic periods and how we can modulate their 
inflammatory or neuroprotective potential with the use of 
MSCs.

Microglia and inflammation
The activation of microglia which are the first to respond 
to nervous tissue damage is one of the essential events of 
post-traumatic reactions. The phase of primary microglia 
activation peaks at post-traumatic day 7, its reactivation oc-
curring in 2 weeks and lasting for up to 180 days (Kigerl et 
al., 2006; Beck et al., 2010). Activated microglia can synthe-
size not only trophic biomolecules such as neurotrophins, 
glutamate transporters and antioxidants, but also effectors 
that can be potentially neurotoxic, such as nitric oxide and 
pro-inflammatory cytokines (Persson et al., 2005; Lai and 
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Figure 1 Schematic diagram for some effects 
of mesenchymal stem cells (MSCs) on the 
neuronal microenvironment in the area of 
spinal cord injury (SCI). 
Activated resident microglia and peripher-
al macrophages attracted in the area of SCI 
produce proinflammatory cytokines such as 
interleukin (IL)-1α, IL-1β, tumor necrosis 
factor (TNF)-α, C1q and so on and activate 
A1 astrocytes and MSCs. In response to these 
stimuli and probably other signals the MSCs 
start to secret anti-inflammatory factors such as 
IL-1ra, TNF-stimulated gene-6 (TSG-6), pros-
taglandin E2 (PGE2), and IL-10 and modulate 
a phenotype of microglia/macrophages toward 
the anti-inflammatory M2 one and reduce 
the reactivity of astrocytes. The MSCs induce 
neural progenitor cells differentiation into 
oligodendrocytes and prevent differentiation 
into astrocytes. They facilitate myelination and 
axon growth by producing miR-146-5p and 
neurotrophic factors, lead not only to influx of 
Schwann cells in the area of SCI, but promote 
an increased expression of brain-derived neu-
rotrophic factor (BDNF), nerve growth factor 
(NGF) and its high- and low-affinity receptors 
(TrkA and LNGFR) in these cells. COX-2: Cy-
clooxygenase-2; NT-3: neurotrophin-3.

Todd, 2006; Hellwig et al., 2013). Owing to this dual nature 
the role that microglia play in regulating neuroregeneration 
at different port-traumatic time points is still controversial.
To date several states of microglia polarization are distin-
guished - they are classic activation (M1), alternative activa-
tion (M2a), alternative type II activation (M2b) and acquired 
deactivation (M2c). A number of investigators question 
whether the microglia can acquire a М3 phenotype (Walker 
and Lue, 2015). A number of proliferation studies showed 
which markers were specific for the microglia activated by a 
classic or alternative pathway (Martinez et al., 2006, 2013). 
Classically activated (M1) cells can produce reactive oxygen 
intermediates as well as proinflammatory cytokines such as 
TNF-α, IL-1β and IL-6, concurrently mediating inflamma-
tory tissue damage. М2 microglia/macrophages are a pheno-
type of cells responding to IL-4 and IL-13, at present known 
as M2a. The phenotype M2a microglia is considered to have 
increased phagocytic activity and to produce growth factors 
such as an insulin-like growth factor-1 and proinflamma-
tory cytokines such as IL-10 (Martinez and Gordon, 2014). 
The microglia of this type can dispose of cellular debris and 
stimulate tissue regeneration. An alternative activation was 
subdivided into two subcategories such as M2b and M2c. 
M2b is induced by ligation of immunoglobulin Fc-gam-
ma-receptors that results in the IL-12 expression, increased 
IL-10 secretion and HLA-DR expression. This phenotype is 
also characterized by an increased expression of CD32 and 
CD64, which were found to be expressed by the cerebral 
microglia in Alzheimer’s disease (Peress et al., 1993) and to 
be related to increased phagocytosis activity. M2c (acquired 
deactivation) can be caused by the anti-inflammatory cyto-
kine IL-10 or glucocorticoids, an increased expression of the 
transforming growth factor), sphingosine kinase (SPHK1) 
and CD163, a membrane-bound receptor for haptoglobin/
hemoglobin complexes (Wilcock, 2014).

Some evidence indicates that MSCs can modulate a phe-
notype of microglia/macrophages toward the anti-inflamma-
tory M2 phenotype in SCI (without detection of alternative 
activation) (Additional Table 2). Previous studies in vitro 
may have attracted separate attention to the polarization of 
microglia/macrophages in MSC transplantation after SCI. 
MSCs co-cultured with macrophages showed a high expres-
sion level of soluble (IL-10) and surface (CD206) markers 
for M2 macrophages and increased phagocytic activity (Kim 
and Hematti, 2009). Subsequently it was shown in models 
of sepsis and peritonitis that mechanisms of MSC-mediat-
ed regulation on macrophages might depend upon PGE2 
and TSG-6 secretion (Németh et al., 2009; Choi et al., 2011) 
(Figure 1). In SCI models transplantation of both MSCs and 
MSC-derived microvesicles increased the number of М2 
microglia/macrophages on post-injury day 7–9, promoting a 
proregenerative environment (Nakajima et al., 2012; Caron 
et al., 2016; Sun et al., 2018). This effect of MSCs might be 
attributed to MSC-mediated increased level of IL-4, IL-13 
and IL-10, which promote modulation of microglia/macro-
phages toward М2а and М2с neuroprotective phenotypes, 
respectively, as well as decreased levels of TNF-α and IFN-γ 
which promote polarization into the M1 phenotype. This 
assumption was confirmed by studies in vitro (Zhang et al., 
2010; Pietilä et al., 2012; Shin et al., 2016) and in vivo (Naka-
jima et al., 2012; Sun et al., 2018).

In addition to polarization into the M2 phenotype MSC 
transplantation in SCI results in a decreased total number of 
microglia/macrophages in the area of injury. Pan markers 
such as Iba1 and CD68 are often used for this evaluation. 
There was a decreased total microglia/macrophages num-
ber in the area of SCI after MSC injection in acute (Liu et 
al., 2018), subacute (Zeng et al., 2011; Ruppert et al., 2018) 
and chronic periods of SCI (Neirinckx et al., 2015; Liu et al., 
2018; Mukhamedshina et al., 2018; Yang et al., 2018). Only 
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a few publications provide evidence for the lack of changes 
in total number of microglia/macrophages at a lesion site 
following transplantation of MSCs or their microvesicles 
(Neirinckx et al., 2015; Sun et al., 2018).

There is a direct relationship between the М2 microglia 
activation and anti-inflammatory effects in MSC transplan-
tation in SCI. IL-1α and other molecules released within a 
focus of tissue destruction activate the resident microglia 
and migrating macrophages in the area of injury. The latter 
in turn activate MSCs by producing proinflammatory cyto-
kines such as IL-1α, IL-1β or TNF-α. In response the MSCs 
start secreting anti-inflammatory factors such as TSG-6, 
PGE2 and IL-1ra, which both modulate the activation of M2 
microglia/macrophages and reduce the effects of proinflam-
matory cytokines (Prockop and Oh, 2012). A subsequent 
decrease in IL-1β and TNF-α, which was observed in MSC 
transplantation in SCI and correlates with a functional out-
come (Zeng et al., 2011, 2016; Urdzíková et al., 2014; Liu et 
al., 2018), is related to MSC-mediated suppression of NLRP3 
inflammasome including by means of PGE2 action (Oh et 
al., 2014; Shin et al., 2016).

In conclusion, MSCs can act as cellular modulators of mi-
croglia/macrophages polarization by regulating the produc-
tion of different cytokines and a proinflammatory response 
as a whole that results in attractive therapeutic outcomes for 
such type of stem cells.

Oligodendrocytes and Schwann cells
Demyelination is part of a general process of secondary 
degeneration in SCI. The number of demyelinated axons 
was shown in a rat model of SCI to peak 24 hours after 
injury, to decline over the next 1–2 weeks and to increase 
progressively by 450 days post injury (Totoiu and Keirstead, 
2005). There were demyelinated axons at all experimental 
time points, indicating that post-traumatic processes were 
still ongoing. At the same time, not only oligodendrocytes 
but also Schwann cells were involved in the process of re-
myelination by the end of week 2. The latter were shown to 
migrate from peripheral nervous structures resulting from a 
disruption of the barrier integrity, to participate not only in 
remyelination of central axons in the area of injury, but also 
in the restoration of conduction (Franklin and Hinks, 1999; 
Jasmin et al., 2000; Shaymardanova et al., 2013; Mukhamed-
shina et al., 2017b; Galieva et al., 2018).

MSC-derived soluble factors have been previously shown 
to induce oligodendrogenesis by reducing the anti-oligo-
dendrogenic determinant Id2 and increasing the pro-oligo-
dendrogenic factor Olig2 expression in neural progenitor 
cells (Li et al., 2009; Steffenhagen et al., 2012). It was shown 
in vitro that MSCs could not only direct proliferating NPCs 
toward an oligodendrocyte fate but also induce oligoden-
drocyte differentiation (Rivera et al., 2006). The MSCs facil-
itate myelination by producing miR-146-5p and delivering 
them via exosomes (Lindsay et al., 2016). In co-culture the 
MSCs lead not only to improved survival and proliferation 
of Schwann cells, but promote an increased expression of 
BDNF, nerve growth factor (NGF) and its high- and low-af-

finity receptors (TrkA and LNGFR) in these cells (Wang et 
al., 2009) (Figure 1).

Not more than 1/3 of publications devoted to the evalua-
tion of MSCs efficacy in SCI in vivo, carry out an analysis of 
post-traumatic changes in the population of myelin-produc-
ing cells and myelination as a whole (Additional Table 2). 
Various MSC transplantations demonstrate an increase of 
myelin retention and the number of myelinated axons in the 
lesion site during a chronic post-injury period (Papa et al., 
2018; Ramalho et al., 2018). Using electron microscopy Na-
kano et al. (2013) found in the same period that the number 
of Schwann cells associated with axons in the astrocyte-de-
void lesion site increased following an intraventricular 
injection of MSCs. It was shown that MSCs could elicit the 
influx of Schwann cells into the site of injury and improve 
their survival (Ding et al., 2014). The influx and proliferation 
of Schwann cells can also be attributed to MSC secretion of 
BDNF, vascular endothelial growth factor (VEGF) and other 
unknown inducing factors. BDNF was shown to promote 
a significant expansion in the number of Schwann cells at 
three weeks after SCI, with VEGF stimulating their prolifer-
ation (Sondell et al., 2000; Blesch and Tuszynski, 2007). An 
intravenous injection of MSCs in the early post-injury peri-
od increased the expression of GalC, a marker of mature oli-
godendrocytes (Kim et al., 2015). However, the expression 
of an oligodendrocyte transcription factor (Olig2), which 
regulates oligodendrocyte differentiation does not seem to 
change, since the mRNA analysis of the Olig2 gene shows no 
significant differences with control groups (Urdzíková et al., 
2014; Mukhamedshina et al., 2018).

Thus an increased number of functioning oligodendro-
cytes and Schwann cells in the area of demyelination in SCI 
is important for assessing the effectiveness of its regener-
ation following cell-based therapy that must maintain the 
survival and differentiation of not only the spinal cord cells 
but also endogenous migrants. The further elucidation of 
molecular mechanisms of MSC-derived activity in relation 
to myelin-producing cells will be essential for the treatment 
of not only neurotrauma, but also demyelinating diseases.

Axonal outgrowth
The issue of axon regeneration, which is normally low due to 
the small intrinsic capacity of central nervous system axons 
for regeneration as well as the synthesis of growth inhibitor 
molecules upon injury is pressing in SCI (Sakamoto and 
Kadomatsu, 2017). The MSC capacity to stimulate axonal 
outgrowth has been identified (Lin et al., 2018). However, 
molecular and cellular mechanisms of stimulating axonal 
growth and sprouting by MSCs are not completely clarified.
In order to evaluate possible effects of transplanted MSCs on 
axon regeneration usually the expression level of neurofila-
ments (NF200) and less often that of GAP-43 (axon growth 
associated protein) are determined in the area of SCI (Addi-
tional Table 2). However, it must be remembered that the 
increased expression of these proteins cannot yet indicate 
successful axon regeneration. The process of axonal regener-
ation involves 5 stages and has to end in synapse formation 
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and the restoration of conduction along the axons as a result 
(Sakamoto and Kadomatsu, 2017). Therefore, axonal re-
generation following MSC therapy must be confirmed with 
electrophysiological studies.

Axon growth following MSC transplantation is most often 
associated with their ability to form bridges via a spinal cord 
cavity and reduce a glial scar (Zurita and Vaquero, 2006; 
Wright et al., 2007; Lin et al., 2018). In vitro studies demon-
strate that MSCs can act as “cellular bridges” and stimulate 
neurite outgrowth by reducing inhibitory substrates (Wright 
et al., 2007). Krupa et al. (2018) found the expression of 
GAP-43 increased and that of GFAP decreased in a dose-de-
pendent manner – the higher the number of cells trans-
planted, the more intense axonal sprouting was at 9 weeks 
post injury after an intrathecal injection of MSCs. It has pre-
viously been demonstrated in vitro that MSCs cultured with 
brain slices start secreting trophic factors such as NGF and 
NT-3 (Pisati et al., 2007). These results were translated in 
vivo, therefore some researchers attribute a positive effect of 
MSCs on axon growth to the increased expression of NGF 
and NT-3, which play an important role in this process (Li 
et al., 2016; Ramalho et al., 2018).

The search for a most effective promoter for axonal regen-
eration in SCI is still ongoing. MSC-based therapy can me-
diate axonal outgrowth that has been shown in some animal 
experiments. However, studies which evaluate post-trau-
matic changes in axonal regeneration following MSC trans-
plantation in SCI have to be more detailed, and to reveal not 
only the potential for axonal growth and sprouting but also 
the functional competence of the changes observed, that is, 
the possibilities for the restoration of long-term conduction 
along these axons.

Neuroprotection
The anti-apoptotic effect of MSCs which is associated with 
the synthesis of bioactive molecules capable of inhibiting 
apoptosis is of a great importance in their gross neuro-
protective effects. It was shown in experiments in vivo in a 
model of SCI that MSCs can affect a decrease in the expres-
sion of pro-apoptotic molecules and an increase of that of 
anti-apoptotic ones (Mukhamedshina et al., 2017a; Liu et 
al., 2018). However, when assessing the efficacy of MSCs in 
SCI most often terminal dexynucleotidyl transferase-medi-
ated dUTP nick end labeling (TUNEL)+-cells are generally 
assessed, where their decrease following therapy has been 
reported (Xiong et al., 2017; Liu et al., 2018; Takahashi et al., 
2018b; Yang et al., 2018). Still, the molecular mechanisms 
of MSC-mediated anti-apoptotic effects have not yet been 
completely discovered.

The maintenance of adequate blood perfusion in the site 
of injury, in rostral and caudal regions of the spinal cord 
is essential for neuroprotection. Therefore the angiogenic 
activity of MSCs is significant for neuroregeneration. When 
detecting the MSCs in the walls of blood vessels an assump-
tion was made that these cells might be involved in regu-
lation of their growth and maintenance of a stable vessel. 
Subsequently the ability of MSCs to stimulate the growth of 

blood vessels including those regenerating after various inju-
ries was established. The main mechanisms of angiogenic ac-
tivity of MSCs are due to their ability to secrete pro-angiogen-
ic factors and cytokines (VEGF, fibroblast growth factor-2, 
transforming growth factor-β, hepatocyte growth factor, etc.), 
as well as to express the adhesion receptor integrin α6β1, pro-
mote vessel sprouting, MSC proliferation and pericyte differ-
entiation (Carrion et al., 2013). The transplantation of MSCs 
was shown to promote angiogenesis and reconstruction of 
the microvasculature network that enhances a functional re-
covery after SCI (Zeng et al., 2011; Zhou et al., 2016; Huang et 
al., 2017). This effect is most often interpreted when increased 
CD31+- and rat endothelial cell antigen‐1+-cell levels and en-
hanced VEGF expression are detected. An increased VEGF 
expression by MSCs is in turn related to the action of IL-8 
(Hou et al., 2014). The MSCs transplanted closely associate 
with endothelial cells after SCI, that is due to performing a 
pericyte function and the possibility of contact stabilization 
of growing and formed blood vessels in later stages of angio-
genesis (Zeng et al., 2011).

In general the neuroprotective effect of MSCs is due to 
their secretion of neurotrophic factors and cytokines. The 
latter have the above effects which MSCs exert through 
various signaling pathways, activated via specific receptors 
on target cells. Therefore the quality of MSCs derived from 
various sources is now top priority, being ahead of issues of 
delivery, dosage, etc.

Tissue integrity
The primary injury of the spinal cord associated with pro-
gressive tissue necrosis results in post-traumatic cavitation 
and triggers processes of a secondary injury which cause 
death of neurons and glial cells away from the injury epicen-
ter (Priestley et al., 2012; Ward et al., 2014). The regulation 
of a cell response in an acute period is critical to inhibit 
rapid progression of a secondary injury after SCI. Therefore, 
MSC transplantation during the acute period of SCI may be 
targeted not only to replace the cells lost, but also to modu-
late a cell response, to enhance anti-oxidant and pro-inflam-
matory mechanisms preventing further injury.

The reduction of both a total area of abnormal cavities and 
lesion/cavity volumes were reported in numerous publica-
tions on MSC transplantation in SCI (Nakajima et al., 2012; 
Nakano et al., 2013; Neirinckx et al., 2015; Liu et al., 2018; 
Mukhamedshina et al., 2018; Sun et al., 2018). In this case tis-
sue integrity also increases; however, there are controversial 
data on the integrity of the white and grey matter (Urdzíková 
et al., 2014; Krupa et al., 2018; Mukhamedshina et al., 2018). 
MSC-mediated anatomical improvement is due to their com-
plex action by which the MSC graft induces tissue protection/
repair in a manner unlike that in acute and chronic periods 
of SCI. For example, MSC transplantation in an acute period 
may have beneficial effects through their anti-inflammatory 
activity and microglia polarization, whereas in the subacute/
chronic phase after SCI, the MSCs may be used for neu-
rostimulatory, glial scar reducing and cell bridging effects 
(Wright et al., 2011; Nakajima et al., 2012).
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Not all studies confirm the MSC ability to improve the re-
tention of spinal cord injured tissue (Kim et al., 2015; Taka-
hashi et al., 2018b). The contradictory results might be at-
tributed to different approaches to MSC transplantation and 
a too early evaluation of their efficacy under these criteria 
(in post-injury week 1). The timing of cell transplantation 
and the cell number, routes of administration (intraspinal, 
intrathecal, intravenous, application to the area of injury as 
part of a matrix), immunosuppression, as well as the quality 
of MSCs generated in culture are certain to be relevant. In 
general, all these issues have a direct impact on the efficacy 
of MSC-mediated regulation of the neuronal microenviron-
ment discussed above.

Conclusion 
The use of MSCs is presently associated with possible ad-
vances of regenerative medicine. The number of advocates 
and opponents of this trend is more and more rising both 
in science and in society. The increased number of skeptics 
is largely due to the lack of a complete disclosure of mech-
anisms underlying the therapeutic effect of MSCs and data 
on long-term results of their use. Existing preclinical studies 
give evidence to the ability of MSCs to stimulate neurore-
generation, in SCI in particular. Nevertheless, it seems dif-
ficult to interpret the results obtained and draw a parallel 
between observed posttraumatic reactions, which often 
lack a complete and objective evaluation, and the resulting 
functional outcome. Sometimes observed controversial data 
on the efficacy evaluation of MSC-based therapy in SCI are 
primarily due to a different secretory profile of the cells ob-
tained, and only then by differences in protocol details.
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