organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Dihydroxy-4-oxo-2-(pyridin-1-ium-3yl)-4*H*-1,3,2-benzodioxaborinin-2-ide 0.67-hydrate

Blanca A. Garcia-Grajeda,^a Herbert Höpfl,^b Jorge A. Guerrero-Alvarez,^b José J. Campos-Gaxiola^a and Adriana Cruz-Enríquez^a*

^aFacultad de Ingenieria Mochis, Universidad Autónoma de Sinaloa, Fuente Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México, and ^bCentro de Graduados e Investigación en Química, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, México Correspondence e-mail: cenriqueza@yahoo.com.mx

Received 8 February 2014; accepted 24 February 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.053; wR factor = 0.092; data-to-parameter ratio = 12.3.

The asymmetric unit of the title compound, $C_{12}H_{10}BNO_{5}$.-0.67H₂O, contains three independent pyridinylboronic acid esters adopting zwitterionic forms and two water molecules. The six-membered heterocyclic rings in the boronic esters have half-chair conformations and the deviations of the B atoms from the boronate mean planes range from 0.456 (3) to 0.657 (3) Å. All of the B atoms have tetrahedral coordination environments, with B–O and B–C bond lengths of 1.446 (4)– 1.539 (3) and 1.590 (5)–1.609 (5) Å, respectively. In the crystal, the ester and water molecules are linked into a three-dimensional network by a large number of O–H···O, N–H···O and C–H···O hydrogen bonds. The crystal packing is further accomplished by π – π interactions, with centroid–centroid distances of 3.621 (4)–3.787 (4) Å.

Related literature

For the synthesis and applications of boronic esters, see: Höpfl (2002); Fujita *et al.* (2008); Severin (2009). For related structures, see: Barba *et al.* (2010).

Crystal data

 $C_{12}H_{10}BNO_5 \cdot 0.67H_2O$ $\gamma = 87.213 (5)^{\circ}$
 $M_r = 271.03$ $V = 1799.8 (7) Å^3$

 Triclinic, $P\overline{1}$ Z = 6

 a = 10.350 (2) Å Mo K α radiation

 b = 13.916 (3) Å $\mu = 0.12 \text{ mm}^{-1}$

 c = 14.340 (3) Å T = 100 K

 $\alpha = 65.785 (4)^{\circ}$ $0.45 \times 0.41 \times 0.28 \text{ mm}$

Data collection

Bruker APEX CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)

 $T_{\min} = 0.95, \ T_{\max} = 0.97$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.092$ S = 1.027051 reflections 571 parameters 13 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O62−H62A···O25	0.84	1.86	2.702 (4)	174
$O45 - H45' \cdots O23^{i}$	0.84	1.94	2.777 (2)	177
$O4 - H4' \cdots O45^{ii}$	0.84	1.77	2.579 (3)	162
$O61 - H61A \cdot \cdot \cdot O43^{ii}$	0.84	1.95	2.749 (3)	159
$O5-H5' \cdot \cdot \cdot O3^{iii}$	0.84	1.93	2.773 (2)	178
$O24-H24'\cdots O5^{iv}$	0.84	1.8	2.638 (3)	179
$O25-H25'\cdots O4^{v}$	0.84	1.95	2.791 (3)	173
$O62 - H62B \cdot \cdot \cdot O24^{vi}$	0.84	2.02	2.810 (4)	157
$O44 - H44' \cdots O61^{vii}$	0.84	1.82	2.656 (3)	177
$O61 - H61B \cdot \cdot \cdot O62^{viii}$	0.84	1.83	2.673 (3)	178
$N1-H1'\cdots O23^{i}$	0.84	1.89	2.725 (4)	176
$N21 - H21' \cdots O3^{ix}$	0.84	1.89	2.727 (4)	170
$N41 - H41' \cdots O43^{x}$	0.84	1.92	2.749 (5)	169
$C11-H11\cdots O62^{iv}$	0.95	2.57	3.348 (4)	140
C23−H23···O5 ^{iv}	0.95	2.59	3.215 (4)	123
C43−H43···O61 ^{vii}	0.95	2.57	3.201 (4)	124

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z - 1; (iii) -x + 2, -y + 1, -z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z; (vi) -x, -y + 2, -z + 1; (vii) -x + 1, -y, -z + 1; (viii) x, y - 1, z; (ix) x - 1, y, z; (x) -x + 1, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus-NT* (Bruker, 2001); data reduction: *SAINT-Plus-NT*; program(s) used to solve structure: *SHELXTL-NT* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported financially by the Consejo Nacional de Ciencia y Tecnología (CONACyT, project No. 177616). The authors gratefully acknowledge access to the X-ray facilities in the Chemical Research Center at the Autonomous State University of Morelos (CIQ–UAEM).

18938 measured reflections

 $R_{\rm int} = 0.092$

refinement $\Delta \rho_{\text{max}} = 0.71 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

7051 independent reflections 3529 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5341).

References

Barba, V., Hernández, R., Santillan, R. & Farfán, R. (2010). *Inorg. Chim. Acta*, **363**, 4112–4116.

Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076-1091.
- Höpfl, H. (2002). Struct. Bond. 103, 1-56.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Severin, K. (2009). Dalton Trans. pp. 5254-5264.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2014). E70, o388-o389 [doi:10.1107/S1600536814004267]

2,6-Dihydroxy-4-oxo-2-(pyridin-1-ium-3-yl)-4*H*-1,3,2-benzodioxaborinin-2-ide 0.67-hydrate

Blanca A. Garcia-Grajeda, Herbert Höpfl, Jorge A. Guerrero-Alvarez, José J. Campos-Gaxiola and Adriana Cruz-Enríquez

1. Comment

The O—H groups of boronic acids are able to react with alcohols to give boronic esters through the formation of covalent B–O bonds (Fujita *et al.*, 2008). The high thermodynamic stability of boronic esters has been employed for the formation of *cyclo*-oligomeric and polymeric boron compounds with potential applications in gas storage and separation (Höpfl *et al.*, 2002; Severin *et al.*, 2009). Herein, we report on the solid-state structure of a new boronic ester formed between 2,5-dihydroxybenzoic acid and 3-pyridine boronic acid.

The molecular components of the title compound, 6-hydroxy-2-(pyridinium-3-yl)-4*H*-benzo-1,3,2-dioxaborininato-4one) 0.67-hydrate, are shown in Fig. 1. The asymmetric unit contains three crystallographically independent ester molecules with similar conformations and two water molecules. The six-membered heterocyclic rings in the boronic esters have half-chair conformations, and the deviation of the B atom from the boronate mean planes range from 0.456 (3) to 0.657 (3) Å. The B atoms have tetrahedral coordination environments with B—O and B—C bond distances of 1.446 (4)–1.539 (3) Å and 1.590 (5)–1.609 (5) Å, respectively. The tetrahedral character of the boron atoms was evidenced also by ¹¹B-NMR spectroscopy, giving a chemical shift of 3.8 p.p.m. (Barba *et al.*, 2010). In the crystal, the molecular entities are linked into a three-dimensional network by a large number of O—H…O and N⁺—H…O hydrogen bonds. Crystal packing is accomplished by additional C—H…O and π - π contacts (Table 1 and Fig 2), of which the latter are formed between pyridinium and phenyl rings. The centroid-centroid distances are Cg1… $Cg2^{1i}$ = 3.787 (4) Å and Cg2… $Cg3^{3ii}$ = 3.621 (4) Å, where Cg1, Cg2, Cg3 and Cg4 are the centroids of C1–C6, N21/C28–C32, C41–C46 and N41/C48–C52 rings, respectively. [symmetry codes: (i) 1 - *x*, 1 - *y*, -*z*; (ii) 1 - *x*, 1 - *y*, 1 - *z*; (iii) -*x*, 1 - *y*, 1 - *z*.]

2. Experimental

 $C_{12}H_{10}BNO_5$ was formed from a solution of 3-pyridin boronic acid (0.05 g, 0.41 mmol), 2,5-dihydroxybenzoic acid (0.06 g, 0.41 mmol) in a solvent mixture of CH₃OH (8 ml) and H₂O (2 ml), which was heated under reflux for 1 h, giving a clear transparent solution. Cooling the reaction mixture slowly to room temperature afforded yellow crystals suitable for X-ray diffraction in approximately 55% yield. ¹¹B NMR (64 MHz, DMSO-d₆) δ : 3.8 p.p.m..

3. Refinement

H atoms bonded to C atoms were positioned geometrically and constrained using the riding-model approximation [C—H = 0.95 A and $U_{iso}(H) = 1.2U_{eq}(C)$]. H atoms bonded to O and N were initially located in a difference Fourier map; then, the positions were refined with O(N)—H distance restraints of 0.840 (1) A and with $U_{iso}(H) = 1.5U_{eq}(O,N)$.

Figure 1

Molecular structures in the asymmetric unit of the title compound, with the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A crystal packing diagram of the title compound viewed along the *b* axis, showing the three-dimensional hydrogenbonded network. Hydrogen bonds were drawn as dashed lines.

2,6-Dihydroxy-4-oxo-2-(pyridin-1-ium-3-yl)-4H-1,3,2-benzodioxaborinin-2-ide 0.67-hydrate

Crystal data	
$C_{12}H_{10}BNO_5 \cdot 0.67H_2O$	$\gamma = 87.213 (5)^{\circ}$
$M_r = 271.03$	V = 1799.8 (7) Å ³
Triclinic, $P\overline{1}$	Z = 6
Hall symbol: -P 1	F(000) = 844
a = 10.350 (2) Å	$D_{\rm x} = 1.500 { m Mg} { m m}^{-3}$
b = 13.916 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 14.340(3) Å	Cell parameters from 1641 reflections
$\alpha = 65.785 \ (4)^{\circ}$	$\theta = 2.5 - 21.2^{\circ}$
$\beta = 73.421 \ (4)^{\circ}$	$\mu = 0.12 \text{ mm}^{-1}$

T = 100 KBlock, light yellow

Data collection

Bruker APEX CCD area-detector diffractometer	18938 measured reflections 7051 independent reflections
Radiation source: fine-focus sealed tube	3529 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.092$
Detector resolution: 8.3 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^\circ, \ \theta_{\text{min}} = 1.8^\circ$
phi and ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan	$k = -17 \rightarrow 17$
(SADABS; Sheldrick, 1996)	$l = -17 \rightarrow 17$
$T_{\min} = 0.95, \ T_{\max} = 0.97$	
Refinement	
Refinement on F^2	Secondary atom site location: difference
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.02	H atoms treated by a mixture of indepen
7051 reflections	and constrained refinement
571	$1/(2^{2}/(2^{2})) + (0.0125)^{2}$

571 parameters 13 restraints Primary atom site location: structure-invariant direct methods

 $0.45 \times 0.41 \times 0.28 \text{ mm}$

Fourier dent $w = 1/[\sigma^2(F_0^2) + (0.0125P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. IR (KBr): 3520, 3370, 2950, 3024, 2942, 1648, 1615, 1562, 1480, 1305 and 786 cm⁻¹. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
B1	0.9002 (3)	0.3451 (3)	0.2383 (3)	0.0221 (9)	
N1	0.8273 (3)	0.4137 (2)	0.4822 (2)	0.0249 (7)	
H1′	0.837 (3)	0.4691 (13)	0.490 (2)	0.037*	
01	0.83252 (17)	0.25852 (15)	0.23193 (14)	0.0223 (5)	
O2	0.86471 (17)	0.45237 (15)	0.16481 (14)	0.0196 (5)	
03	0.82959 (17)	0.55863 (15)	0.01161 (15)	0.0204 (5)	
O4	0.76584 (19)	0.30256 (15)	-0.15147 (16)	0.0230 (5)	
H4′	0.752 (3)	0.3656 (7)	-0.185 (2)	0.034*	
05	1.04678 (19)	0.34308 (16)	0.20681 (14)	0.0237 (5)	
H5′	1.083 (2)	0.374 (2)	0.1405 (4)	0.036*	
C1	0.8181 (3)	0.2723 (3)	0.1362 (2)	0.0210 (8)	
C2	0.8197 (2)	0.3732 (2)	0.0568 (2)	0.0162 (7)	

C3	0.8017 (2)	0.3854 (2)	-0.0408 (2)	0.0195 (7)
H3	0.8042	0.4540	-0.0954	0.023*
C4	0.7803 (3)	0.2968 (2)	-0.0568 (2)	0.0189 (8)
C5	0.7774 (2)	0.1964 (2)	0.0234 (2)	0.0195 (7)
Н5	0.7624	0.1359	0.0118	0.023*
C6	0.7958 (3)	0.1834 (2)	0.1190 (2)	0.0203 (8)
H6	0.7935	0.1145	0.1730	0.024*
C7	0.8381 (3)	0.4674 (3)	0.0756 (2)	0.0207 (8)
C8	0.8476 (3)	0.3359 (2)	0.3585 (2)	0.0204 (8)
C9	0.8663 (3)	0.4209 (2)	0.3818 (2)	0.0258 (8)
H9	0.9080	0.4860	0.3250	0.031*
C10	0.7715 (3)	0.3239 (3)	0.5661 (2)	0.0249 (8)
H10	0.7465	0.3211	0.6363	0.030*
C11	0.7504 (3)	0.2356 (3)	0.5504 (2)	0.0252 (8)
H11	0.7115	0.1709	0.6093	0.030*
C12	0.7875 (3)	0.2433 (2)	0.4464 (2)	0.0223 (8)
H12	0.7711	0.1830	0.4349	0.027*
B21	-0.0548 (3)	0.8085 (3)	0.2594 (3)	0.0228 (9)
N21	-0.1361 (2)	0.7302 (2)	0.0507 (2)	0.0203 (6)
H21′	-0.147 (3)	0.6730 (11)	0.046 (2)	0.030*
O21	-0.12591 (17)	0.88671 (15)	0.29523 (15)	0.0223 (5)
O22	-0.09568 (17)	0.69622 (15)	0.34851 (15)	0.0217 (5)
O23	-0.14161 (18)	0.58725 (16)	0.51874 (15)	0.0241 (5)
O24	-0.14430 (19)	0.83893 (16)	0.70031 (16)	0.0263 (5)
H24′	-0.113 (3)	0.7810 (11)	0.729 (2)	0.039*
O25	0.08854 (18)	0.83243 (16)	0.23529 (16)	0.0241 (5)
H25′	0.139 (2)	0.7942 (19)	0.210 (2)	0.036*
C21	-0.1338 (3)	0.8719 (3)	0.3963 (2)	0.0206 (8)
C22	-0.1302 (3)	0.7722 (2)	0.4743 (2)	0.0178 (7)
C23	-0.1363 (3)	0.7592 (2)	0.5777 (2)	0.0212 (8)
H23	-0.1352	0.6907	0.6312	0.025*
C24	-0.1440 (3)	0.8462 (2)	0.6014 (2)	0.0213 (8)
C25	-0.1537 (3)	0.9453 (2)	0.5241 (2)	0.0255 (8)
H25	-0.1638	1.0045	0.5419	0.031*
C26	-0.1489 (3)	0.9593 (2)	0.4221 (2)	0.0245 (8)
H26	-0.1559	1.0273	0.3701	0.029*
C27	-0.1224 (3)	0.6792 (3)	0.4487 (2)	0.0199 (8)
C28	-0.0973 (3)	0.8118 (2)	0.1587 (2)	0.0182 (7)
C29	-0.1085 (3)	0.7234 (2)	0.1394 (2)	0.0213 (8)
H29	-0.0965	0.6561	0.1900	0.026*
C30	-0.1534 (3)	0.8226 (2)	-0.0245 (2)	0.0212 (8)
H30	-0.1701	0.8247	-0.0871	0.025*
C31	-0.1470 (3)	0.9131 (2)	-0.0107 (2)	0.0251 (8)
H31	-0.1602	0.9790	-0.0629	0.030*
C32	-0.1203 (2)	0.9070 (2)	0.0823 (2)	0.0216 (8)
H32	-0.1180	0.9696	0.0934	0.026*
B41	0.5523 (3)	0.5007 (3)	0.7575 (3)	0.0271 (10)
N41	0.5362 (3)	0.7370 (3)	0.8323 (2)	0.0331 (7)
H41′	0.549 (3)	0.746 (3)	0.8832 (17)	0.050*

O41	0.47752 (18)	0.48464 (17)	0.69074 (15)	0.0278 (6)	
O42	0.49835 (18)	0.42130 (17)	0.87233 (15)	0.0253 (5)	
O43	0.44602 (18)	0.25267 (16)	0.98428 (16)	0.0293 (6)	
O44	0.4175 (2)	0.07153 (18)	0.74251 (18)	0.0370 (6)	
H44′	0.452 (3)	0.035 (2)	0.7914 (17)	0.056*	
O45	0.69516 (18)	0.47905 (17)	0.72686 (15)	0.0255 (5)	
H45′	0.743 (2)	0.514 (2)	0.6640 (8)	0.038*	
C41	0.4587 (3)	0.3823 (3)	0.7069 (2)	0.0257 (8)	
C42	0.4645 (3)	0.2998 (3)	0.8004 (2)	0.0222 (8)	
C43	0.4520 (3)	0.1950 (3)	0.8145 (2)	0.0275 (8)	
H43	0.4589	0.1389	0.8786	0.033*	
C44	0.4293 (3)	0.1734 (3)	0.7338 (2)	0.0257 (8)	
C45	0.4154 (3)	0.2559 (3)	0.6422 (2)	0.0277 (8)	
H45	0.3957	0.2411	0.5884	0.033*	
C46	0.4301 (3)	0.3593 (3)	0.6284 (2)	0.0277 (8)	
H46	0.4207	0.4153	0.5652	0.033*	
C47	0.4713 (3)	0.3225 (3)	0.8912 (3)	0.0275 (8)	
C48	0.5329 (3)	0.6165 (3)	0.7528 (2)	0.0245 (8)	
C49	0.5463 (3)	0.6392 (3)	0.8358 (3)	0.0300 (9)	
H49	0.5629	0.5839	0.8965	0.036*	
C50	0.5167 (3)	0.8196 (3)	0.7474 (3)	0.0361 (9)	
H50	0.5147	0.8887	0.7456	0.043*	
C51	0.4998 (3)	0.8035 (3)	0.6645 (3)	0.0350 (9)	
H51	0.4834	0.8607	0.6050	0.042*	
C52	0.5070 (3)	0.7020 (3)	0.6678 (2)	0.0309 (9)	
H52	0.4938	0.6907	0.6100	0.037*	
O61	0.4664 (2)	0.0441 (2)	0.10850 (19)	0.0460 (7)	
H61A	0.468 (3)	0.1027 (14)	0.0576 (19)	0.069*	
H61B	0.3878 (13)	0.028 (3)	0.151 (2)	0.069*	
O62	0.2191 (2)	0.98825 (19)	0.24779 (19)	0.0329 (6)	
H62A	0.175 (3)	0.9429 (18)	0.242 (3)	0.049*	
H62B	0.175 (3)	1.0343 (18)	0.264 (2)	0.049*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
B1	0.024 (2)	0.019 (2)	0.021 (2)	-0.0021 (17)	-0.0106 (18)	-0.0041 (19)
N1	0.0314 (16)	0.026 (2)	0.0243 (17)	0.0072 (15)	-0.0157 (13)	-0.0130 (16)
01	0.0317 (12)	0.0254 (14)	0.0138 (13)	0.0026 (10)	-0.0129 (10)	-0.0079 (10)
O2	0.0264 (12)	0.0219 (13)	0.0147 (12)	0.0037 (9)	-0.0125 (10)	-0.0075 (10)
03	0.0280 (12)	0.0197 (13)	0.0141 (12)	0.0034 (10)	-0.0092 (10)	-0.0058 (11)
O4	0.0318 (12)	0.0257 (14)	0.0190 (14)	0.0090 (11)	-0.0165 (10)	-0.0112 (11)
05	0.0267 (13)	0.0311 (15)	0.0120 (12)	0.0024 (10)	-0.0094 (10)	-0.0053 (11)
C1	0.0194 (17)	0.028 (2)	0.0165 (19)	-0.0002 (15)	-0.0074 (14)	-0.0081 (17)
C2	0.0154 (16)	0.020(2)	0.0141 (18)	0.0028 (14)	-0.0050 (14)	-0.0079 (16)
C3	0.0164 (16)	0.022 (2)	0.0201 (19)	0.0022 (14)	-0.0088 (14)	-0.0060 (16)
C4	0.0155 (17)	0.025 (2)	0.0198 (19)	0.0054 (15)	-0.0106 (14)	-0.0099 (17)
C5	0.0207 (17)	0.018 (2)	0.022 (2)	0.0044 (14)	-0.0067 (15)	-0.0103 (16)
C6	0.0231 (17)	0.021 (2)	0.0157 (19)	0.0023 (15)	-0.0076 (14)	-0.0057 (16)
C7	0.0136 (17)	0.032 (2)	0.019 (2)	0.0037 (15)	-0.0046 (14)	-0.0138 (18)

C8	0.0208 (17)	0.024 (2)	0.022 (2)	0.0052 (15)	-0.0130 (15)	-0.0097 (17)
C9	0.0336 (19)	0.033 (2)	0.0109 (19)	0.0014 (16)	-0.0128 (16)	-0.0048 (17)
C10	0.0254 (18)	0.033 (2)	0.0141 (19)	0.0068 (17)	-0.0088 (15)	-0.0067 (18)
C11	0.0285 (18)	0.028 (2)	0.0155 (19)	-0.0004 (16)	-0.0064 (15)	-0.0049 (16)
C12	0.0253 (18)	0.024 (2)	0.025 (2)	0.0060 (15)	-0.0132 (15)	-0.0132 (17)
B21	0.024 (2)	0.022 (2)	0.024 (2)	0.0031 (18)	-0.0151 (18)	-0.0059 (19)
N21	0.0208 (14)	0.0213 (18)	0.0225 (16)	0.0019 (13)	-0.0085 (12)	-0.0112 (15)
O21	0.0301 (12)	0.0268 (14)	0.0156 (13)	0.0106 (10)	-0.0124 (10)	-0.0112 (11)
O22	0.0255 (12)	0.0278 (14)	0.0134 (13)	0.0019 (10)	-0.0085 (10)	-0.0083 (11)
O23	0.0333 (12)	0.0204 (14)	0.0172 (13)	-0.0001 (10)	-0.0096 (10)	-0.0049 (11)
O24	0.0406 (14)	0.0272 (15)	0.0187 (14)	0.0121 (11)	-0.0180 (11)	-0.0116 (12)
O25	0.0243 (13)	0.0319 (15)	0.0227 (13)	0.0050 (10)	-0.0088 (10)	-0.0165 (11)
C21	0.0207 (17)	0.031 (2)	0.018 (2)	0.0040 (15)	-0.0108 (15)	-0.0150 (17)
C22	0.0166 (16)	0.023 (2)	0.0174 (19)	0.0023 (14)	-0.0094 (14)	-0.0089 (16)
C23	0.0197 (17)	0.025 (2)	0.019 (2)	0.0029 (15)	-0.0101 (14)	-0.0063 (16)
C24	0.0224 (17)	0.026 (2)	0.020 (2)	0.0059 (15)	-0.0123 (15)	-0.0098 (17)
C25	0.0332 (19)	0.027 (2)	0.026 (2)	0.0100 (16)	-0.0141 (16)	-0.0182 (18)
C26	0.0324 (19)	0.023 (2)	0.019 (2)	0.0080 (16)	-0.0134 (16)	-0.0072 (16)
C27	0.0133 (16)	0.032 (2)	0.018 (2)	0.0027 (15)	-0.0095 (15)	-0.0108 (18)
C28	0.0168 (16)	0.019 (2)	0.0169 (19)	0.0011 (14)	-0.0049 (14)	-0.0056 (16)
C29	0.0225 (17)	0.027 (2)	0.0153 (19)	0.0048 (15)	-0.0104 (14)	-0.0064 (16)
C30	0.0248 (18)	0.024 (2)	0.0145 (19)	0.0017 (15)	-0.0107 (15)	-0.0047 (16)
C31	0.0281 (19)	0.022 (2)	0.025 (2)	0.0031 (15)	-0.0127 (16)	-0.0069 (17)
C32	0.0214 (17)	0.022 (2)	0.024 (2)	0.0050 (14)	-0.0103 (15)	-0.0094 (16)
B41	0.026 (2)	0.035 (3)	0.017 (2)	0.0007 (19)	-0.0083 (18)	-0.006 (2)
N41	0.0249 (16)	0.041 (2)	0.036 (2)	0.0050 (14)	-0.0090(15)	-0.0192 (18)
O41	0.0315 (13)	0.0310(15)	0.0220 (13)	0.0021 (11)	-0.0159 (10)	-0.0066 (12)
O42	0.0271 (12)	0.0286 (15)	0.0176 (13)	0.0018 (11)	-0.0084 (10)	-0.0058 (11)
O43	0.0302 (12)	0.0322 (15)	0.0197 (13)	-0.0023(11)	-0.0093 (10)	-0.0033 (12)
O44	0.0433 (15)	0.0343 (17)	0.0420 (17)	0.0069 (12)	-0.0229(12)	-0.0176 (14)
O45	0.0239 (12)	0.0344 (15)	0.0157 (13)	0.0035 (10)	-0.0053 (10)	-0.0084(12)
C41	0.0215 (18)	0.030 (2)	0.023 (2)	-0.0005 (16)	-0.0094 (15)	-0.0066 (18)
C42	0.0211 (18)	0.031 (2)	0.017 (2)	0.0017 (15)	-0.0104 (15)	-0.0086(17)
C43	0.0253 (18)	0.030 (2)	0.023 (2)	-0.0005 (16)	-0.0106 (16)	-0.0043 (17)
C44	0.0223 (18)	0.030 (2)	0.023 (2)	0.0009 (16)	-0.0073(15)	-0.0087 (18)
C45	0.0225 (18)	0.038 (2)	0.023 (2)	-0.0017 (17)	-0.0076 (15)	-0.0110 (18)
C46	0.0229 (18)	0.037 (2)	0.021 (2)	0.0050 (16)	-0.0109(15)	-0.0067 (18)
C47	0.0161 (18)	0.031 (2)	0.029 (2)	-0.0005 (16)	-0.0077 (16)	-0.0057(19)
C48	0.0181 (17)	0.035 (2)	0.020 (2)	0.0043 (15)	-0.0048(15)	-0.0120(18)
C49	0.0242 (19)	0.035 (2)	0.033 (2)	0.0082 (17)	-0.0136(16)	-0.0127(19)
C50	0.033 (2)	0.031 (2)	0.045(3)	0.0061 (17)	-0.0132(19)	-0.015 (2)
C51	0.037(2)	0.035(3)	0.033(2)	0.0121 (18)	-0.0164(18)	-0.0112(19)
C52	0.0264 (19)	0.038 (2)	0.027(2)	0.0083 (17)	-0.0078(16)	-0.0135(19)
O61	0.0400 (14)	0.0447 (19)	0.0402 (19)	0.0037 (15)	-0.0133(13)	-0.0038(14)
O62	0.0376 (15)	0.0347 (18)	0.0381 (15)	0.0054 (12)	-0.0178 (12)	-0.0220 (13)
	<pre>、 /</pre>	· · ·	· · ·	· · ·		· · ·

Geometric parameters (Å, °)

B1—O1	1.469 (5)	C23—C24	1.379 (5)
B1—O2	1.533 (3)	C24—C25	1.391 (3)
B1—O5	1.456 (3)	С25—Н25	0.950
B1—C8	1.604 (5)	C25—C26	1.381 (5)
N1—H1′	0.84 (3)	С26—Н26	0.950
N1—C9	1.340 (4)	C28—C29	1.384 (5)
N1—C10	1.334 (3)	C28—C32	1.392 (3)
O1—C1	1.357 (4)	С29—Н29	0.950
O2—C7	1.316 (4)	С30—Н30	0.950
O3—C7	1.241 (3)	C30—C31	1.360 (5)
O4—H4′	0.840 (12)	C31—H31	0.950
O4—C4	1.377 (4)	C31—C32	1.406 (5)
O5—H5′	0.839 (6)	С32—Н32	0.950
C1—C2	1.395 (3)	B41—O41	1.476 (5)
C1—C6	1.398 (5)	B41—O42	1.512 (3)
C2—C3	1.404 (4)	B41—O45	1.471 (3)
C2—C7	1.474 (5)	B41—C48	1.590 (5)
С3—Н3	0.950	N41—H41′	0.84 (3)
C3—C4	1.381 (5)	N41—C49	1.342 (5)
C4—C5	1.392 (3)	N41—C50	1.347 (4)
С5—Н5	0.950	O41—C41	1.359 (4)
C5—C6	1.375 (4)	O42—C47	1.315 (4)
С6—Н6	0.950	O43—C47	1.247 (3)
C8—C9	1.390 (5)	O44—H44′	0.84 (3)
C8—C12	1.391 (3)	O44—C44	1.380 (4)
С9—Н9	0.950	O45—H45′	0.839 (11)
C10—H10	0.950	C41—C42	1.376 (4)
C10—C11	1.374 (5)	C41—C46	1.397 (5)
С11—Н11	0.950	C42—C43	1.395 (5)
C11—C12	1.390 (4)	C42—C47	1.480 (6)
C12—H12	0.950	C43—H43	0.950
B21—O21	1.467 (4)	C43—C44	1.389 (5)
B21—O22	1.539 (3)	C44—C45	1.384 (4)
B21—O25	1.446 (4)	C45—H45	0.950
B21—C28	1.609 (5)	C45—C46	1.380 (5)
N21—H21′	0.84 (2)	C46—H46	0.950
N21—C29	1.346 (5)	C48—C49	1.393 (6)
N21—C30	1.340 (3)	C48—C52	1.392 (4)
O21—C21	1.355 (4)	C49—H49	0.950
O22—C27	1.302 (4)	С50—Н50	0.950
O23—C27	1.242 (3)	C50—C51	1.353 (6)
O24—H24′	0.840 (18)	C51—H51	0.950
O24—C24	1.378 (4)	C51—C52	1.394 (5)
O25—H25′	0.84 (3)	С52—Н52	0.950
C21—C22	1.386 (3)	O61—H61A	0.840 (18)
C21—C26	1.399 (5)	O61—H61B	0.840 (14)
C22—C23	1.400 (4)	O62—H62A	0.84 (3)
C22—C27	1.475 (5)	O62—H62B	0.84 (3)

С23—Н23	0.950		
01—B1—02	110.5 (3)	C24—C25—C26	121.3 (3)
O1—B1—O5	112 (3)	H25—C25—C26	119.0
O1—B1—C8	108.9 (3)	C21—C26—C25	119.1 (3)
O2—B1—O5	107.9 (3)	C21—C26—H26	120.0
O2—B1—C8	107.8 (3)	С25—С26—Н26	120.0
O5—B1—C8	109.8 (3)	O22—C27—O23	120.0 (4)
H1′—N1—C9	117 (1)	O22—C27—C22	117.6 (3)
H1′—N1—C10	120(1)	O23—C27—C22	122.4 (3)
C9—N1—C10	122.3 (3)	B21—C28—C29	123.4 (3)
B1-01-C1	118.5 (2)	B21—C28—C32	120.9 (3)
B1—O2—C7	122.4 (2)	C29—C28—C32	115.7 (3)
H4′—O4—C4	106 (2)	N21—C29—C28	121.7 (3)
B1—O5—H5′	113.5 (6)	N21—C29—H29	119.0
O1—C1—C2	121.3 (3)	С28—С29—Н29	119.0
O1—C1—C6	119.0 (3)	N21—C30—H30	120.0
C2—C1—C6	119.7 (3)	N21—C30—C31	119.8 (3)
C1—C2—C3	120.2 (3)	H30—C30—C31	120.0
C1—C2—C7	120.1 (3)	С30—С31—Н31	121.0
C3—C2—C7	119.7 (3)	C30—C31—C32	118.5 (3)
С2—С3—Н3	120.0	H31—C31—C32	121.0
C2—C3—C4	119.4 (3)	C28—C32—C31	121.9 (3)
H3—C3—C4	120.0	С28—С32—Н32	119.0
O4—C4—C3	122.7 (3)	С31—С32—Н32	119.0
O4—C4—C5	117.3 (3)	O41—B41—O42	110.4 (3)
C3—C4—C5	120.0 (3)	O41—B41—O45	111.9 (3)
С4—С5—Н5	119.0	O41—B41—C48	108.8 (3)
C4—C5—C6	121.2 (3)	O42—B41—O45	103.7 (3)
H5—C5—C6	119.0	O42—B41—C48	108.9 (3)
C1—C6—C5	119.6 (3)	O45—B41—C48	113.1 (3)
С1—С6—Н6	120.0	H41′—N41—C49	117 (2)
С5—С6—Н6	120.0	H41′—N41—C50	120 (2)
O2—C7—O3	119.5 (3)	C49—N41—C50	122.2 (4)
O2—C7—C2	117.5 (3)	B41—O41—C41	114.8 (3)
O3—C7—C2	123.0 (3)	B41—O42—C47	118.5 (3)
B1—C8—C9	121.0 (3)	H44′—O44—C44	104 (2)
B1-C8-C12	123.6 (3)	B41—O45—H45′	119 (1)
C9—C8—C12	115.3 (3)	O41—C41—C42	121.5 (3)
N1—C9—C8	121.9 (3)	O41—C41—C46	119.8 (3)
N1—C9—H9	119.0	C42—C41—C46	118.6 (3)
С8—С9—Н9	119.0	C41—C42—C43	121.3 (3)
N1-C10-H10	120.0	C41—C42—C47	119.2 (3)
N1-C10-C11	119.7 (3)	C43—C42—C47	119.2 (3)
H10-C10-C11	120.0	C42—C43—H43	120.0
C10-C11-H11	120.0	C42—C43—C44	119.3 (3)
C10-C11-C12	118.4 (3)	H43—C43—C44	120.0
H11—C11—C12	120.0	O44—C44—C43	122 (3)
C8—C12—C11	122.4 (3)	O44—C44—C45	118.3 (3)

C8—C12—H12	119.0	C43—C44—C45	119.7 (3)
C11—C12—H12	119.0	C44—C45—H45	120.0
O21—B21—O22	110.4 (3)	C44—C45—C46	120.5 (3)
O21—B21—O25	107.4 (3)	H45—C45—C46	120.0
O21—B21—C28	109.5 (3)	C41—C46—C45	120.5 (3)
O22—B21—O25	109.1 (3)	C41—C46—H46	120.0
O22—B21—C28	107.3 (2)	C45—C46—H46	120.0
O25—B21—C28	113.1 (3)	O42—C47—O43	119.8 (3)
H21′—N21—C29	116 (1)	O42—C47—C42	117.8 (3)
H21′—N21—C30	121 (1)	O43—C47—C42	122.4 (3)
C29—N21—C30	122.4 (3)	B41—C48—C49	120.2 (3)
B21—O21—C21	115.9 (3)	B41—C48—C52	124.5 (3)
B21—O22—C27	120.9 (2)	C49—C48—C52	115.2 (3)
H24′—O24—C24	105 (2)	N41—C49—C48	121.8 (4)
B21—O25—H25'	114 (2)	N41—C49—H49	119.0
021—C21—C22	121.4 (3)	C48—C49—H49	119.0
021 - C21 - C26	118.8 (3)	N41—C50—H50	120.0
C_{22} C_{21} C_{26}	119.8 (3)	N41-C50-C51	119.5 (3)
$C_{21} - C_{22} - C_{23}$	120 3 (3)	H50-C50-C51	120.0
$C_{21} = C_{22} = C_{23}$	119.8 (3)	C50-C51-H51	120.0
C_{23} C_{22} C_{27} C_{27}	119.0(3)	C_{50} C_{51} C_{52}	119 1 (4)
$C_{22} = C_{23} = H_{23}$	120.0	$H_{51} - C_{51} - C_{52}$	120.0
$C^{22} = C^{23} = C^{24}$	119.8 (3)	$C_{48} - C_{52} - C_{51}$	120.0 122.2(3)
H_{23} C_{23} C_{24}	120.0	$C_{48} = C_{52} = H_{52}$	119.0
024 - C24 - C23	122.0	$C_{10} = C_{52} = H_{52}$	119.0
024 - 024 - 025	122.4(3) 118 1 (3)	$H_{61}A = O_{61} = H_{61}B$	108 (3)
C_{23} C_{24} C_{25}	119 5 (3)	H62A = O62 = H62B	100(3)
$C_{23} = C_{23} = C_{23}$	119.0	110211 002 11020	110 (3)
024 025 1125	119.0		
O5—B1—O1—C1	-84.3 (3)	B21—O22—C27—O23	-172.6 (2)
O2—B1—O1—C1	36.0 (3)	B21—O22—C27—C22	8.1 (3)
C8—B1—O1—C1	154.2 (2)	C21—C22—C27—O23	-167.6 (2)
O5—B1—O2—C7	92.1 (3)	C23—C22—C27—O23	11.3 (4)
O1—B1—O2—C7	-30.6 (3)	C21—C22—C27—O22	11.6 (4)
C8—B1—O2—C7	-149.4 (2)	C23—C22—C27—O22	-169.5 (2)
B1-01-C1-C2	-23.2 (4)	O25—B21—C28—C29	94.2 (3)
B1-01-C1-C6	159.4 (2)	O21—B21—C28—C29	-146.0 (3)
O1—C1—C2—C3	-178.6 (2)	O22—B21—C28—C29	-26.2 (4)
C6—C1—C2—C3	-1.3 (4)	O25—B21—C28—C32	-83.3 (3)
O1—C1—C2—C7	0.4 (4)	O21—B21—C28—C32	36.4 (4)
C6—C1—C2—C7	177.8 (2)	O22—B21—C28—C32	156.3 (2)
C1—C2—C3—C4	1.0 (4)	C30—N21—C29—C28	0.5 (4)
C7—C2—C3—C4	-178.0 (2)	C32—C28—C29—N21	1.9 (4)
C2—C3—C4—O4	-178.0 (2)	B21—C28—C29—N21	-175.8 (3)
C2—C3—C4—C5	-0.3 (4)	C29—N21—C30—C31	-1.8 (4)
O4—C4—C5—C6	177.7 (2)	N21—C30—C31—C32	0.8 (4)
C3—C4—C5—C6	-0.1 (4)	C29—C28—C32—C31	-2.9 (4)
C4—C5—C6—C1	-0.1 (4)	B21-C28-C32-C31	174.8 (2)
O1—C1—C6—C5	178.2 (2)	C30—C31—C32—C28	1.6 (4)

C^{2} C^{1} C^{2} C^{5}	0.9 (4)	045 D41 041 C41	(0, 1, (2))
$C_2 = C_1 = C_0 = C_3$	0.8(4)	043 - B41 - 041 - C41	09.1 (3)
BI-02-C7-03	-169.4(2)	042 - B41 - 041 - C41	-45.8 (3)
B1-02-C7-C2	10.5 (4)	C48—B41—O41—C41	-165.2 (2)
C1-C2-C7-O3	-174.1(2)	045—B41—042—C47	-//.1 (3)
C3—C2—C7—O3	4.9 (4)	O41—B41—O42—C47	42.8 (4)
C1—C2—C7—O2	6.0 (4)	C48—B41—O42—C47	162.2 (2)
C3—C2—C7—O2	-175.0 (2)	B41—O41—C41—C42	21.8 (4)
O5—B1—C8—C9	74.1 (3)	B41—O41—C41—C46	-159.4 (3)
O1—B1—C8—C9	-163.0 (2)	O41—C41—C42—C43	-176.7 (3)
O2—B1—C8—C9	-43.1 (3)	C46—C41—C42—C43	4.6 (4)
O5—B1—C8—C12	-102.5 (3)	O41—C41—C42—C47	9.1 (4)
O1—B1—C8—C12	20.4 (4)	C46—C41—C42—C47	-169.7 (3)
O2—B1—C8—C12	140.3 (3)	C41—C42—C43—C44	-1.9 (4)
C10—N1—C9—C8	1.8 (4)	C47—C42—C43—C44	172.4 (3)
C12—C8—C9—N1	-0.8 (4)	C42—C43—C44—O44	179.3 (3)
B1—C8—C9—N1	-177.6 (3)	C42—C43—C44—C45	-1.9 (4)
C9—N1—C10—C11	-1.2 (4)	O44—C44—C45—C46	-178.2 (2)
N1—C10—C11—C12	-0.5 (4)	C43—C44—C45—C46	3.0 (4)
C10-C11-C12-C8	1.6 (4)	C44—C45—C46—C41	-0.2(4)
C9—C8—C12—C11	-0.9(4)	O41—C41—C46—C45	177.7 (2)
B1—C8—C12—C11	175.9 (3)	C42—C41—C46—C45	-3.5(4)
025 - B21 - 021 - C21	-76.3(3)	B41—O42—C47—O43	169.5 (2)
022 - B21 - 021 - C21	42.6(3)	B41 - 042 - C47 - C42	-140(4)
C_{28} B21 O_{21} C_{21}	1605(2)	$C_{41} - C_{42} - C_{47} - O_{43}$	163 3 (3)
025 - B21 - 022 - C27	83 4 (3)	C_{43} C_{42} C_{47} C_{43}	-111(4)
023 B21 022 027 021 B21 022 C27	-344(3)	C_{41} C_{42} C_{47} C_{47} C_{42}	-131(4)
C_{28} B_{21} C_{22} C_{27}	-153.7(2)	C_{41} C_{42} C_{47} O_{42}	1725(2)
$B_{21} = 0.21 = 0.22 = 0.27$	-26.6(4)	045 B41 C48 C52	1/2.5(2)
$B_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{22}$	20.0(4)	$O_{43} = D_{41} = C_{48} = C_{52}$	-26.0(4)
$D_{21} = 0_{21} = 0_{21} = 0_{21} = 0_{22} = 0_{23}$	134.9(3)	$O_{41} = D_{41} = C_{48} = C_{52}$	20.9(4)
021 - 021 - 022 - 023	179.0(2)	042 - B41 - C48 - C32	-147.2(3)
$C_{20} = C_{21} = C_{22} = C_{23}$	-2.5(4)	043 - B41 - C48 - C49	-/9.6(4)
021 - 021 - 022 - 027	-2.1(4)	041 - B41 - C48 - C49	155.4 (3)
$C_{26} = C_{21} = C_{22} = C_{27}$	1/6.4 (2)	042—B41—C48—C49	35.0 (4)
C21—C22—C23—C24	-0.9 (4)	C50—N41—C49—C48	-2.0 (5)
C27—C22—C23—C24	-179.8 (3)	C52—C48—C49—N41	-0.8 (4)
C22—C23—C24—O24	-177.1 (2)	B41—C48—C49—N41	177.2 (3)
C22—C23—C24—C25	3.8 (4)	C49—N41—C50—C51	3.3 (5)
O24—C24—C25—C26	177.5 (2)	N41—C50—C51—C52	-1.8 (5)
C23—C24—C25—C26	-3.3 (4)	C50—C51—C52—C48	-1.0 (5)
C24—C25—C26—C21	-0.1 (4)	C49—C48—C52—C51	2.2 (4)
O21—C21—C26—C25	-178.4 (2)	B41—C48—C52—C51	-175.6 (3)
C22—C21—C26—C25	3.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O62—H62A…O25	0.84	1.86	2.702 (4)	174
O45—H45'…O23 ⁱ	0.84	1.94	2.777 (2)	177
O4—H4′····O45 ⁱⁱ	0.84	1.77	2.579 (3)	162
O61—H61A····O43 ⁱⁱ	0.84	1.95	2.749 (3)	159

supplementary materials

O5—H5′…O3 ⁱⁱⁱ	0.84	1.93	2.773 (2)	178	
O24—H24′···O5 ^{iv}	0.84	1.8	2.638 (3)	179	
O25—H25′…O4 ^v	0.84	1.95	2.791 (3)	173	
O62—H62 <i>B</i> ···O24 ^{vi}	0.84	2.02	2.810 (4)	157	
O44—H44′…O61 ^{vii}	0.84	1.82	2.656 (3)	177	
O61—H61 <i>B</i> ···O62 ^{viii}	0.84	1.83	2.673 (3)	178	
$N1$ — $H1'$ ···· $O23^i$	0.84	1.89	2.725 (4)	176	
N21—H21′····O3 ^{ix}	0.84	1.89	2.727 (4)	170	
N41—H41′····O43 ^x	0.84	1.92	2.749 (5)	169	
C11—H11···O62 ^{iv}	0.95	2.57	3.348 (4)	140	
C23—H23····O5 ^{iv}	0.95	2.59	3.215 (4)	123	
C43—H43…O61 ^{vii}	0.95	2.57	3.201 (4)	124	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*, *z*-1; (iii) *-x*+2, *-y*+1, *-z*; (iv) *-x*+1, *-y*+1, *-z*+1; (v) *-x*+1, *-y*+1, *-z*; (vi) *-x*, *-y*+2, *-z*+1; (vii) *-x*+1, *-y*, *-z*+1; (viii) *x*, *y*-1, *z*; (ix) *x*-1, *y*, *z*; (x) *-x*+1, *-y*+1, *-z*+2.