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The prediction of secondary RNA folds from primary sequences continues to be an important area of research given the
significance of RNA molecules in biological processes such as gene regulation. To facilitate this effort, graph models of secondary
structure have been developed to quantify and thereby characterize the topological properties of the secondary folds. In this
work we utilize a multigraph representation of a secondary RNA structure to examine the ability of the existing graph-theoretic
descriptors to classify all possible topologies as either RNA-like or not RNA-like. We use more than one hundred descriptors and
several different machine learning approaches, including nearest neighbor algorithms, one-class classifiers, and several clustering
techniques. We predict that many more topologies will be identified as those representing RNA secondary structures than currently
predicted in the RAG (RNA-As-Graphs) database. The results also suggest which descriptors and which algorithms are more
informative in classifying and exploring secondary RNA structures.

1. Introduction

The need for a more complete understanding of the struc-
tural characteristics of RNA is evidenced by the increasing
awareness of the significance of RNA molecules in biological
processes such as their role in gene regulatory networks
which guide the overall expressions of genes. Consequently,
the number of studies investigating the structure and
function of RNA molecules continues to rise and the
characterization of the structural properties of RNA remains
a tremendous challenge in computational biology. RNA
molecules are seemingly more sensitive to their environment
and have greater degrees of backbone torsional freedom than
proteins, resulting in even greater structural diversity [1].
Although the tertiary structure is of significant importance,
it is much more difficult to predict than the tertiary structure
of proteins. Advances in molecular modeling have resulted in
accurate predictions of small RNAs. However, the structure
prediction for large RNAs with complex topologies is beyond
the reach of the current ab initio methods [2].

A coarse-grained model to refine tertiary RNA structure
prediction was developed by Ding et al. [2] to produce useful

candidate structures by integrating biochemical footprinting
data with molecular dynamics. Although the focus is on
tertiary folds, their method uses information about RNA
base pairings from known secondary structures as a starting
point. This, coupled with the understanding that the RNA
folding mechanisms producing tertiary structure are believed
to be hierarchical in nature, implies that much can be
achieved by discovering all possible secondary structural
RNA topologies.

Given the primary sequence of an RNA molecule, there
are a number of algorithms and tools available to predict
the most likely set of resulting secondary structures. The
most widely used algorithms such as Zucker’s Mfold [3]
and Vienna RNAfold [4] typically base their predictions on
the minimum free energy paradigm. While these algorithms
have been highly beneficial, it is not always the case that the
predicted structure with minimum free energy is the correct
one and consequently some suggest that the actual RNA
secondary structure may not have a minimum global free
energy, only local ones [5]. Other means of characterizing
the topology of secondary RNA structures are still an active
avenue of pursuit.
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Figure 1: Topological invariants for RNA multigraphs of order 4.
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Figure 2: Variations on the Balaban index.

The graph representations used in this work can be found
in the database RAG: RNA-As-Graphs [6]. Secondary RNA
structure is modeled by two graph-theoretic representations
in the database resource RAG (see [6] for additional details
on the differences between the two). In one of these
representations, regions of the secondary structure that
consist of unpaired bases such as junctions, hairpins, and
bulges are represented by vertices. The connecting stems
are represented quite naturally as connecting edges. The
resulting graph is a connected, acyclic graph, that is, a
tree. One advantage of this representation is the fact that
trees have been highly studied in the graph theory thereby
providing a wealth of information about the model. For
instance it is known by the generating function developed
by Harary and Prins [7] exactly how many distinct trees
can be constructed for a given number of vertices. This
allows the entire space, that is, all possible configurations,
to be considered. Unfortunately, secondary RNA structures
containing a pseudoknot cannot be represented as described
above by the tree model. If, however, the model is reversed
and stem regions are represented as vertices and connecting
strings of unpaired bases as the edges, all secondary RNA
structures can be now be modeled, including those that
contain a pseudoknot. This representation is called the dual
graph in the RAG database. The resulting dual graph however
is no longer a simple graph; instead this method produces
a multigraph. Unlike a simple graph, a multigraph can have
more than one edge connecting a pair of vertices. And, unlike
simple graphs, multigraphs have not been as highly studied
in the theoretical setting. In previous work [8], the authors
of this paper, together with Koessler et al., capitalize from
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Figure 3: Line graph invariants.

the knowledge afforded by the graph theory and exploit the
tree representation of the secondary RNA structure to build a
predictive model that identifies whether a given tree structure
is RNA-like or not RNA-like. In this work, we now consider
the dual graph representation.

In particular, all possible dual graph representations of
orders 2, 3, and 4 are given in the RAG database and
the corresponding structures are classified as either (a)
representing a known structure or (b) not representing a
known structure. Those not representing a known structure
are further classified as either likely to represent a structure in
the future, that is, having the characteristics of RNA structure
making it likely that such a structure will be identified at
some point, or not RNA-like in structure. For the dual
graphs of order 5, the database contains 18 structures that
have been identified and states that there are 108 possible
dual graphs of order 5. This number was determined by
a graph growing algorithm. Eighteen of these 108 graphs
are verified as representing existing RNA structures and the
remaining 90 structures are classified as either RNA-like or
not RNA-like in the most recent update for the database
by Izzo et al. [9]. This update describes two methods by
which the unverified structures are classified. The Laplacian
eigenvalues for each structure were transformed using a
linear regression to obtain two values for each structure and
then these values were applied in two clustering algorithms,
namely, a partitioning method called PAM and a k-nearest
neighbor algorithm [9]. They state that 63 are RNA-like and
36 are not and that 45 are RNA-like and 45 are not RNA-like
by the two methods, respectively. Since only 18 structures
are provided in the database, our objectives were to (1)
combinatorially analyze the structures of the 90 dual graphs
of order 5 not in the RAGs database and (2) predict which
of those 90 dual graphs of order 5 are RNA-like in structure
via graph-theoretic information from chemical graph theory
and mathematical graph theory.

Our findings differ significantly from those of Izzo et
al. [9]. We find by using a combinatorial algorithm to
construct all possible graphs with the given constraints
that there are 118 instead of 108 possible dual graphs of
order 5. Furthermore, we show that indeed almost all of
the structures in the database with 5 vertices are RNA-
like instead of approximately half as indicated in [9]. We
feel that this is not too surprising. In the earlier version
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Figure 4: Clustering of the 50 graphs most distant from the 18 verified as RNA-like (in red).

Figure 5: Two graphs from Nf .

(2004) of the database, for instance, 8 of the 30 possible
tree graphs were classified as not RNA-like, but in the
updated version (2011), only 3 graphs are listed as not
RNA-like. We expect that the remaining 3 topologies will
be verified as RNA topologies as more RNA molecules are
found. For example, genome-wide mapping of conserved
RNA secondary structures reveals evidence for thousands of
functional noncoding RNAs [10]. In the following sections,
we discuss the dual graph representation and the graph-
theoretic measures that we use. We then discuss the analysis
and training together with the results.

1.1. The Dual Graph Representation of Secondary RNA
Structure. Gan et al. [6] have used both tree graphs and
the corresponding dual graphs which results in a multigraph
representation of RNA secondary structures. Here, however,
we will restrict our study to the multigraph representations
of RNA secondary structures. As mentioned previously, the
dual graphs can represent all types of RNA secondary struc-
tures, including the complex pseudoknot structures. When
representing an RNA structure with a dual graphs, a vertex is
used to represent stems (two or more complementary base
pairs), and circular edges are used to represent the RNA

motifs (hairpin loops, bulges, internal loops, and junctions).
Dual graphs may contain multiple edges and loops; however,
neither of these structures is required. Since a double-
stranded RNA stem is connected to at most 2 strands on each
side, every vertex v must have at most degree four. In fact, all
vertices are of degree 4 except either (a) one of degree 2 or (b)
two of degree 3. It follows that dual graphs of order n are of
size 2n−1 [6]. Given these constraints, we use a constructive
graph algorithm to enumerate the number of dual graphs of
order five. These 118 graphs may be found in Figure 6.

1.2. Previous Results for the Dual Graph Model. The dual
graph representation with 4 or fewer vertices was used in a
previous work to train an artificial neural network (ANN)
to recognize a dual graph as having the structural properties
of secondary RNA [11]. In particular, we quantified the
structures using graph invariants from graph theory and
molecular descriptors from chemical graph theory and then
used a multilayer perceptron artificial neural network to
verify the findings in the RAG database regarding the
classification of the dual graphs of order four. A set of ten
structures that have been verified as RNA-like were chosen
randomly from the set of 11 RNA-like graphs of order four.
These ten graphs, in addition to the ten classified as not RNA-
like, comprised the training set for the ANN. All graphs that
were classified to be RNA-like in the database were predicted
to be RNA-like by the neural network. However, one of the
graphs whose structure represents a known topology was
predicted with much lower probability than the other graphs
in the set. Since this earlier work, the RAG database has been
updated and a dual graph considered to be not RNA-like
has since been changed to RNA verified [9]. This particular
structure is similar to the structure that the neural network
predicted to be RNA-like, but with lower probability. Given
the updated information in the RAG database, we can now
remove the incorrectly predicted structure from the training
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Figure 6: Continued.
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Figure 6: Continued.
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Figure 6: Continued.
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Figure 6: The 118 multigraphs of order 5.

set and expect our results to confirm the new information.
Thus, even with incorrect information in the training set,
the graph-based measures were sufficient to characterize the
topology of the RNA-like dual graphs of order 4.

We extend these findings to the dual graphs of order five.
For this work we do not use the predicted classifications of
the RAG database. We use only the verified structures in the
database of which there are 18 of order 5 as well as 17 of order
4. We refer to these verified structures as RNA graphs. We
consider the remaining 13 graphs of order 4 and 100 graphs
of order 5 as unclassified structures.

2. Graph-Theoretic Measures for
the Dual Graphs

As stated previously, the dual graph representation method
of the RAG database results in a multigraph. We began

by writing a program in the computer language Python
which generates the 30 multigraphs of order 4 and the
118 multigraphs of order 5. This program realized edgeless
graphs as networkx [12] multigraph structures and then
generated edges in accordance with the secondary RNA
structural constraints. Several algorithms to calculate topo-
logical indices and graph invariants were also written in
Python based on the networkx graph object.

In order to draw upon the wealth of graph-theoretic
measures to quantify the topologies of the RNA model, we
note that the majority of such measures is defined for simple
graphs, and simple graphs do not have multiple edges nor
do they have loops. Given that the dual graph representation
has both, we therefore determined the line graph of each of
the dual graphs and we use the line graph representation
to determine the graphical measures of the topologies such
as the clique number (both edge and vertex), independence
number, and diameter and domination numbers. The line
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graph of a graph G is defined as the graph whose vertex
set is the edge set of G and two vertices are adjacent in
the line graph if the corresponding edges in G are incident.
Thus the vertices in the line graph correspond to the
regions in the RNA molecule with unpaired bases. Using
the line graph of the dual graph allows quantification of
the structural properties of the RNA molecule with graph-
theoretic descriptors, even those containing pseudoknots.
An algorithm for generating the line graph of a multigraph
was also written in Python, and this algorithm was used to
generate the 30 + 118 line graphs of the multigraphs of orders
4 and 5. The multigraphs and line graphs were verified by the
authors via a comparison to the RAG database and by manual
inspection and reconstruction.

To calculate the graph-based measures, we used the
GraphTheory package in Maple, the networkx package in
Python, and the network analysis plugin in Cytoscape 2.8.2
[13]. Many invariants—such as diameter, radius, and clique
numbers—were calculated either in all 3 or in 2 of the
3. This allowed us to verify the results of each software
tool or to identify any variations in the graph invariant
and/or topological index techniques. Most but not all of
the measures we used can be found in at least one of the
three tools mentioned above. In order to calculate a number
of the measures, especially the topological indices, we need
to determine the distance matrix of the graph. In a simple
graph, the distance from a vertex u to itself is zero. However,
with the presence of a loop, we considered three possibilities.
One is the standard distance matrix with zeros down the
diagonal. In the second case, we place either a zero or a one,
depending on whether the vertex has a loop. In the third
case, we not only modify the diagonal but also if the shortest
path traversal includes a vertex with a loop, we include the
loop in the edge count of edges encountered. Thus we are
requiring any traversal to include a loop when encountered.
We also modified the Balaban index, motivated by recent
results using random walks on graphs. To find the distance
between two vertices u and v in a dual graph, observe that if
u is a vertex with a loop and if there are two edges between u
and v, then the following options arise:

(i) one of the edges from u to v is traversed;

(ii) the other edge from u to v is traversed;

(iii) the loop is traversed followed by a traversal of one of
the edges.

There are four possibilities, so each traversal is assigned
an equal weight of 1/4. The shortest route is the traversal of
one edge which can happen in two ways. Thus the distance
from u to v is 1/2.

We subsequently calculated approximately 100 invariants
and indices of the multigraphs and line graphs using the 3
graph theoretic software tools mentioned above, some with
slight modifications to account for the presence of loops and
multiple edges. The invariants were normalized with respect
to the values of the graphs that are verified as representing a
known RNA secondary structure.

3. Assessing the Graph-Theoretic Measures as
Descriptors of RNA Topology

The total invariants were divided into 3 categories—
topological indices, graph-theoretic invariants, and measures
on line graphs. In order to compare the efficacy of an invari-
ant or index in discriminating between the RNA graphs and
the remaining graphs, the invariants were normalized with
respect to the RNA graphs of orders 4 and 5, respectively.
In particular, for each invariant or index, we calculated the
mean and standard deviation of the RNA graphs of order
4, after which we used this mean and standard deviation to
normalize all the values for graphs of order 4 of the given
invariant or index according to the formula

Inormalized =
Iobserved −MeanRNA graphs

StDevRNA graphs
. (1)

Figure 1 shows the 10% percentile to 90% percentile of
each normalized index/invariant in the topological indices
collection as a rectangle. The mean is zero and the standard
deviation is one for the given index across the RNA graphs
of order 4. The values of the unverified graphs of order 4 are
shown as points, so that a point inside the given rectangle
is between the 10% and 90% percentiles for that index.
The dotted lines correspond to the numbers of standard
deviations from the mean. In general, if the values of the
unverified graphs are close to the values of the verified graphs
(i.e., if the dots are all on or inside the rectangle for a given
invariant), then this invariant will not be useful as a factor
in a machine learning classifier. For example, invariants 12–
18 are poor predictors of RNA-like versus not RNA-like
simply because there is not enough variation among the
values for all the multigraphs of order 4. A support vector
machine, a neural network, and logistic regression trained
on the multigraphs of order 4 using invariants 12–18 were no
better classifiers than was the uniformly random assignment
to different classes, as evidence by the Receiver Operating
Characteristic analysis in which the area under the curve for
each method was approximately 0.5.

In contrast, invariants 2 through 7 in Figure 2 are
variations on the Balaban index for the graphs considered
as simple graphs, and invariants 24–32 are variations on
the Balaban index for the graphs considered as multigraphs.
Like invariants 11–19, there is insufficient discrimination in
each of the remaining topological indices, which includes
eigenvalues of the Laplacian, the clustering coefficient, vari-
ations on the Weiner index, variations on the Randic index,
variations on the Platt index, various measures of centrality,
associativity, and connectivity, topological coefficients, and
stress. Unfortunately, even though the Balaban indices and
their variations have better discriminatory ability, they alone
do not characterize between those graphs verified as RNA
and those that are unclassified.

First, we find that variations on the clique number yield
another factor with the ability to discriminate between the
RNA graphs and the unclassified graphs. Observe invariants
4, 5, and 6 in Figure 2. Second, invariants and indices based
on the line graphs retain more of the information contained
in a multigraph than does a simple graph interpretation of a
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multigraph, while additionally allowing standard algorithms
to calculate the invariants. For example, in Figure 3, invari-
ants 7 through 12 are the chromatic index, the chromatic
number, the circular chromatic index, the circular chromatic
number, and the edge chromatic number, respectively, of line
graphs of order 4.

Invariants 16 through 18 are variations on the clustering
coefficient, and invariant 33 is the network centrality of the
line graphs. Invariant 21 is the diameter, invariant 27 is the
independence number, and invariant 28 is the maximum
degree of the line graphs. It is interesting to note that the
Balaban index of the line graphs, invariant 4, is not a good
discriminator.

4. Results

There are 18 multigraphs of order 5 that have been verified so
far. The consensus across several techniques—including clus-
tering, machine learning, and nearest neighbor analysis—
and across several different combinations of invariants and
indices indicate that most, if not all, of the unverified graphs
are RNA-like.

For example, a simple machine learning scheme is that
of choosing one unverified graph to be in class 0 while
the 18 verified are in class 1. The neural network is then
trained and the remaining unclassified RNA graphs are
tested. Overwhelmingly, most if not all were classified as
being in the same class as the 18 verified—that is, assuming
only one non-RNA-like graph confirmed that all the graphs
are RNA-like independent of which unverified graph was
chosen to be RNA-like.

Regression, neural network, and support vector machine
analysis similarly confirm the observation above. Nearly all
the graphs of order 5 are predicted to be RNA-like in each
run, and the ones that are predicted to be not RNA-like
change from one run to the next.

Subsequently, we applied several different classifier/
clustering techniques to graphs of order 5. Many different
subsets of invariants and indices were used, but the invariant
set suggested by the analysis above—as well as the one that
produced the best results—was the following:

(i) Four to eight variations of the Balaban index for
multigraphs;

(ii) Clique numbers;

(iii) Chromatic numbers of the line graphs;

(iv) Edge chromatic number of a line graphs;

(v) Clique numbers of the line graphs;

(vi) Diameters of the line graphs;

(vii) Independence numbers of the line graphs;

(viii) Maximum degrees of the line graphs.

Likewise, many different partitions of the total data were
used, including the restriction to order 5 graphs known to be
RNA-like. Results were consistent across these variations.

In particular, clustering tended to group all unverified
graphs of order 5 with the 18 verified to be RNA-like

(see Figure 4). To further investigate, we ranked the 100
unverified graphs using nearest neighbor analysis, and then
we clustered in two groups—the 50 closest to and the 50
furthest from the 18 verified structures. The 50 closest to
the 18 verified formed a single cluster with the 18 (using
biclustering and hierarchical clustering in the statistical
language R). The 50 furthest from those verified likewise
clustered with the 18, but in a somewhat interesting manner.
Having determined a 5-cluster scheme to be the best, we
found that one cluster contained only one of the 18 verified
graphs of order 5, and this graph (105 in our numbering)
was both a large distance from the other 17 and had no more
than an r = 0.49645 correlation with any of the other verified
graphs.

Moreover, this was a rather large cluster containing 14
graphs of order 5, and, likely, if there were any graphs of order
5 that are eventually deemed to not be RNA-like, they would
come from this cluster. However, the results seem to further
support an interpretation of all the graphs of order 5 being
RNA-like.

4.1. Data Domain Description. This interpretation motivated
us to consider the problem to be a data domain description
problem, also known as a one-class classification problem.
In particular, rather than predict whether or not a graph
is RNA-like, we instead explore the degree to which the 18
verified graphs typify the entire class of RNA-like graphs.

To do so, we use a “cognitive learning” approach in
association with an artificial neural network [14]. While
this is typically performed with a support vector machine
[15, 16], our goal is to examine how the unverified RNA
multigraphs of order 5 are distributed about the 18 verified
multigraphs. In particular, the graded response of the neural
network can be used to implement a genetic algorithm for
successively refining the learning set of a neural network.

Suppose that we are given a training set P that contains
examples from only one class of data along with a test set S of
unclassified data that may or may not contain examples from
another class. The method begins with a prior assumption:
patterns that are many standard deviations away from any
pattern in the training set form at least one other class
of patterns. This assumption is used to generate an initial
“negative example set”, N , of large σ patterns, after which the
algorithm proceeds as follows.

(1) Train the neural network with P ∪N .

(2) Classify the set S with the neural network. The
classifications are numbers in [0, 1].

(3) Use the Receiver Operating Characteristic (ROC) or
similar method to find the optimal threshold for
distinguishing between patterns in N and patterns in
P.

(4) Choose some number n of the highest scored patterns
in S to be moved into P, being careful to stay above
the threshold in step 3.

(5) Choose some number m of the lowest scored patterns
in S to be moved into N , being careful to stay below
the threshold in step 3.
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(6) Move the q patterns in N and the r patterns in P not
correctly classified into the set S.

(7) Eliminate the large sigma patterns (after the first
iteration).

The algorithm proceeds either until S is empty, or
through some set number of iterations. In practice, changes
to N , P, and S are based on upper and lower thresholds based
on the results of step 3.

Although the process is closely supervised in practice, the
goal is to mimic the cognitive learning process of regrouping
via reinforcement. Ideally, if there is more than one class in
the initial P∪ S set of patterns, then a two-class classifier will
emerge in the process. If there is only one class in P∪ S, then
the algorithm will proceed until all (or in practice, most) of
the patterns initially in S are in P and all the patterns in N are
large sigma patterns. Moreover, the rate at which a pattern
moves into P can be used as a measure of how close those
patterns are to those in P itself.

The algorithm was tested on several standardized data
sets from various sources and repositories. When there
are two or more distinct classes, which is to say that S
contains one or more classes distinct from P initially, then
the algorithm stabilizes to a distinct non-P class containing
N in each iteration. When there is only one class overall, then
the set N is eventually empty. Within a domain description
problem, the final set of patterns in N ,by which we denote
Nf , is significant in that it differs the most in some sense from
the initial P class.

The latter was the case with the classification of the RNA-
like multigraphs of order 5. In each of 10 trials, the set N
became empty after a relatively few number of iterations.
However, the final set Nf differed only slightly between trials
and is accurately represented by 9 graphs. The graphs in
Nf likewise were quite similar, in that each of the graphs
contained a triangle with at least one vertex of degree 4.

Moreover, as N began to lose graphs in the algorithm
above, the graphs that tended to remain the longest were
those graphs containing triangles with at least one vertex
having degree 3 or 4, as illustrated in Figure 5. Finally, the
set Nf had no discernible relationship to the clustering or
nearest neighbor results discussed earlier, further suggesting
that all the multigraphs of order 5 are RNA-like.

5. Conclusion

The most reasonable conclusion of this extensive analysis
is that all the graphs of order 5 are likely to be verified
as RNA structures. Indeed, across several variations of
nearest neighbor analysis, machine learning, and clustering
techniques using a variety of subsets of different graph
invariants and topological indices, we consistently found that
more than 90% of the unclassified graphs were closer to one
of the 18 already verified as an RNA structure than the 18
were to each other.

This result is not surprising. Initial classification of the
graph structures in the database RAG classified more than
half of the dual graphs of order 4 as not RNA-like in
structure. However, as more secondary RNA structures were

identified, an update to the RAG database now predicts only
a third to be not RNA-like in structure [9]. We predict that as
the number of new motifs continues to increase, eventually
almost all structures will be classified as RNA-like or verified
as an RNA topology. Does this mean that the graph model
in the database is too coarse to be of value and therefore
should not be pursued as a model to characterize secondary
RNA structure? No, not at all. It does suggest however that
the model needs to contain more information in order to be
discriminating. One way this can be achieved is by assigning
weights to the vertices and edges based on the number of
nucleotides, bases, and bonds in the respective stems and
regions with unpaired bases. Karklin et al. [17] developed
a labeled dual graph representation and defined a similarity
measure using marginalized kernels. Using this measure they
train support vector machine classifiers to identify known
families of RNAs from random RNAs with similar statistics.
They achieved better than seventy percent accuracy using
these biologically relevant vertex and edge labels. Efforts
to synthesize RNA molecules for various purposes such
as novel drug applications as well as efforts to develop
efficient genome-wide screens for RNA molecules from
existing families may be aided by the graph representation
in the RAG database when coupled with vertex and edge
weighting schemes. Indeed, the authors have successfully
used vertex weighted graphs to characterize the residue
structure of amino acids in order to build a predictive
model of binding affinity levels resulting from single point
mutations [18]. Future work naturally points to using vertex
weighted graphs for the characterization of a secondary RNA
structure. Information revealed by the labeled dual graph
representation which shows that a secondary RNA structure
is not consistent with those known to be found in nature
can be considered a valuable resource for biotechnological
applications, automated discovery of uncharacterized RNA
molecules, and computationally efficient algorithms that
can be used in conjunction with other methods for RNA
structure identification.
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