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Letter to the Editor 

Peculiar Variations of the Electrostatic Potential of Spike 

Protein N-terminal Domain Associated with the Emergence of 

Successive SARS-CoV-2 Omicron Lineages 
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Table 1 

Predicted net charge (electrostatic potential) of the Spike RBD 

and NTD (folded state) of SARS-CoV-2 VOC, compared with 

previous main VOC 1 

SARS-CoV-2 VOC Pango Lineage EP-RBD EP-NTD 

Wuhan B.1 2.15 1.30 

Alpha B.1.1.7 3.18 1.69 

Delta B.1.617.2 4.15 1.28 

Omicron BA.1.1.529 5.22 -1.10 

Omicron BA.3 5.22 0.02 

Omicron BA.2 5.18 0.80 

Omicron BA.2.12.1 5.18 0.80 

Omicron BA.4 5.19 1.39 

Omicron BA.5 5.19 1.39 

1 Calculated as described in Ref.4. 
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ear Editor 

Zeng and collaborators ( 1 ) have recently discussed the potential 

f the porcine tyrosine-protein kinase receptor UFO (AXL) to inter- 

ct with the N-terminal domain (NTD) of the spike (S) protein of 

ome SARS-CoV-2 Variants of Concern (VOC). Omicron (BA.1.1.529) 

s the last VOC that, after its first detection in South Africa in the 

ate 2021, has spread worldwide and has generated several sub- 

ariants of which those belonging to the BA.2 lineage (BA.2.12.1, 

A.4 and BA.5) are now the most prevalent in several countries 

www.who.int). Omicron subvariants markedly differ in resistance 

o antibody neutralization, that has been largely attributed to 

hanges in the mutational landscape of RBD region of the Spike (S) 

rotein ( 2 ) Little comparative attention is currently reserved to the 

utational landscape of the S protein NTD although this domain 

lso carries a distinctive set of mutations which markedly distin- 

uish BA.1 (and BA.3) from the subvariants of the BA.2 lineage 

BA.2.12.1,and BA4/5). In addition, BA.4 and BA.5 carry a HV69-70 

eletion that is absent in the BA.2 and BA.2.12.1 subvariants. 

We have recently shown that the mutational landscape of both 

BD and NTD largely determines their net surface charge, i.e. an in- 

irect estimate of the dominant charge of the surface electrostatic 

otential (EP) ( 3 , 4 ) . Changes in these potentials can modify the

inetics/strength of receptors recognition, or other suggested NTD 

unctions, hence influencing the biological properties of SARS-CoV- 

. in particular its transmissibility and infectivity(4-7). In all the 

re-Omicron VOC, the EP of both RBD and NTD is dominantly pos- 

tive, a finding that has been interpreted to favour their binding 

o negatively charged surfaces of the ACE2 (RBD) or the less char- 

cterized receptor(s) of NTD (4-7: see also below). Interestingly, 

he first emerged Omicron VOC (BA.1.1.529), while maintaining the 

sual positive net charge of the RBD region, showed a negative 

et charge of the NTD region, differently from all other previous 

OC(4). 

We have therefore considered to be of interest reporting here 

he net-charge values of all Omicron subvariants. Surprisingly, 

hese EP-NTD values differed in the different subvariants. As shown 

n Table 1 , only the first appeared Omicron strain had a dominantly 

egative EP. All others had a neutral (BA.3) or slightly positive 

BA.2 and BA.2.12.1) or frankly positive (BA.4/5) value. Interestingly, 

he EP value of these last two subvariants falls in the range of all

re-Omicron VOC, being equal to that of the Delta variant. In con- 

rast, no appreciable changes were observed in the high positive 

alue of the RBD-EP of all Omicron subvariants ( Table 1 ) demon- 
ttps://doi.org/10.1016/j.jinf.2022.07.018 

163-4453/© 2022 The British Infection Association. Published by Elsevier Ltd. All rights r
trating that variations in the electrostatic potentials of the NTD 

egions occur independently on those of the RBD region. 

We notice that the negativity of the BA.1 Omicron variant is 

robably contributed to or just determined by its unique EPE in- 

ertion at the position 214 of NTD sequence, meaning the double 

cquisition of the negatively charged (at physiologic pH) glutamic 

cid. Thus, the trend toward positivity of all other Omicron sub- 

ariants could be mostly due to the loss of the EPE insertion. In- 

ilico mutagenesis of the Glu residues of the EPE insertions with 

la moves the net charge toward neutrality. The same effect can be 

een by replacing Asp142 with Ala. Interestingly, Asp142 is shared 

y all the BA subvariants and by Delta. Also in this case, replace- 

ent with Ala increases the positivity of the domain net charge. 

We previously ( 4 ) suggested that the negative EP value of 

A.1 NTD might have hindered the NTD recognition by known or 

ostulated,NTD- receptors, including gangliosides and, particularly, 

he AXL receptor which is mostly expressed in lung cells ( 5-7 ). 

n fact, the net charge of the AXL domain that is putatively in- 

olved in the interaction with NTD (as reported in the PDB struc- 

ure 2C5D) is negative at around -5.5 according to our calculations. 

he electrostatic potential of AXL has been displayed and the most 

egative portion of its surface appears to coincide with the pre- 

icted interface with NTD ( 1 ). If so, the EP-NTD reversion to pos- 

tivity of the BA.2 subvariants, in particular BA.4/5 could actually 

mply the rescue of NTD receptor recognition function that was 

ost or decreased in the progenitor Omicron BA.1n this line, it is 

f some interest that these EP-NTD variations appear to parallel 

he increased resistance of the BA.2 lineage subvariants to neutral- 

zation by antibodies as well as their increase in the experimen- 

al pathogenicity reported by Kimura and collaborators, as com- 

ared to BA1 lineage ( 8 ). In particular, the gradient of fusogenicity, 

 marker of SARS-CoV-2 pathogenicity, of these subvariants (BA.1 

oBA.2 to BA-4/5 in increasing order) coarsely parallel the gradi- 

nt 0f EP-NTD trend to positivity from BA.1 to BA4/5. . In addition, 
eserved. 
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vasion of innate immunity appears to be markedly higher in BA.5 

han in BA.1 and BA.2 ( 9 , 10 ). 

We are aware of the rather speculative nature of our data in- 

erpretation above. Nonetheless, the here reported, peculiar varia- 

ions of the electrostatic potential of the S-protein NTD region of 

he Omicron lineages may be virologically relevant, thus worthy 

eing carefully investigated. 
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