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Abstract: Incorporation of crop straw into the soil along with inorganic fertilization is a widespread
agricultural practice and is essential in nutrient-scarce soils, such as iron-rich (ferruginous) paddy
soils. The responses of soil bacterial communities to straw incorporation under different nitrogen
inputs in iron-rich soils remain unclear. Therefore, 6000 kg ha−1 dry wheat (Triticum aestivum L. cv.
Zhengmai 12) straw was applied to a rice paddy with and without nitrogen amendment (0, 80, 300,
and 450 kg ha−1 N as urea), to investigate its effects on soil fertility and bacterial community structure.
Organic matter, total nitrogen, and water contents tended to decrease in straw-incorporated soils with
different nitrogen inputs. Proteobacteria was the dominant bacterial phylum across all treatments
(26.3–32.5% of total sequences), followed by Chloroflexi, Acidobacteria, and Nitrospirae. Up to
18.0% of all the taxa in the bacterial communities were associated with iron cycling. Straw incorpora-
tion with nitrogen amendment increased the relative abundance of iron oxidizers, Gallionellaceae,
while decreasing the relative abundance of iron reducers, Geobacteraceae. Bacterial community
composition shifted in different treatments, with total nitrogen, water, and Fe(III) contents being the
key drivers. Straw incorporation supplemented by 300 kg ha−1 N increased bacterial richness and
enhanced all the predicted bacterial functions, so that it is recommended as the optimal nitrogen
dosage in practice.

Keywords: straw application; nitrogen fertilization; bacterial community; rice paddy

1. Introduction

Straw application is a widespread agronomic practice in developed countries [1,2].
However, in China, burning and discarding still account for a large fraction of the disposed
straw under an annual straw productivity of 900 million tons [3]. Such improper agronomic
practices have not only led to nutrient losses [4] but also to environmental challenges. Open
burning of crop straw, for instance, has raised major concerns with regard to air pollution [5].
In recent years, straw application has become increasingly popular in China [6], and
numerous studies have investigated the effects of straw application on soil fertility [7–9].
Straw application could improve soil structure and water content, as well as soil nitrogen
(N) content and N use efficiency [10]. Previous studies have also reported that long-term
straw application enhances carbon (C) sequestration considerably, by 50–100%, in China’s
subtropical paddy soils [11,12]. According to Potthoff et al. [13], applying straw could
increase soil microbial C, and, in turn, soil C stocks, which are already relatively high in
Chinese croplands [14,15].

The effects of straw application on soil nutrients are rather complex. Generally,
soil organic matter (SOM) is influenced by soil type and biomass, among other factors.
Different types of straw have variable C/N ratios, which show equally varying effects on
SOM [16]. In addition, SOM content affects soil physicochemical and biological properties,
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which could control straw decomposition and nutrient cycling [17]. Due to the high C/N
ratios of cereal crop straw (up to 80% in wheat straw), the N in straw is mostly retained
by microbes during decomposition [18,19]. Studies have shown that straw application
without additional N fertilization decreases rice yield, potentially due to competition
between straw decomposition and rice growth, which impairs N uptake by plants [20].
Therefore, straw application to the field is usually supplemented by N fertilizer, and N
input rate could influence crop productivity. However, few studies have explored the
effects of straw application with different N fertilization rates on soil nutrient conditions.

Soil microorganisms balance soil C and other nutrients, and have been demonstrated
to facilitate the maintenance of soil health and crop growth [21–23]. Soil microbial com-
munities exhibit diverse responses to straw application. According to Tardy et al. [24], soil
bacteria exhibit strong responses to wheat straw incorporation, with both species richness
and evenness decreasing transiently, regardless of soil history. Changes in soil nutrient
status following straw application could be directly associated with microbial processes
and could regulate microbial community composition and function [25–27]. However, in-
consistent results have been reported with regard to the effects of crop straw application on
soil bacterial community structure. Specifically, the effects of straw application could vary
with different soil types, fertilizer types, straw types, climatic conditions, and agricultural
practices [25,28,29]. Consequently, further studies on the effects of straw application on
soil bacterial communities are required.

Iron (Fe) is a redox-sensitive metal that is critical for the cycling of soil organic C and
other elements. Soil Fe oxides strongly interact with SOM and facilitate SOM stabiliza-
tion [30]. Periodic wet and dry conditions in paddy soils lead to continual redox reactions
of Fe [31], which could be accelerated by diverse microorganisms. For example, Fe(III)
reduction is responsible for a large proportion of C mineralization in soils (up to 80%) [32],
which is correlated with the presence of Fe(III)-reducing microorganisms. Furthermore,
researchers have demonstrated that Fe(III) reducers might compete for electrons with
methanogens, leading to decreased methane (CH4) emissions in rice paddies [33,34]. In
addition, Hu et al. [35] showed that Fe(II) addition decreased CH4 emissions induced by
rice straw application in flooded paddy soils.

Soil Fe oxides adsorb a wide range of organic anions and cations [36], and the for-
mation of organo-Fe complexes could reduce the microbial degradation of labile organic
molecules, such as glucose and citrate [23]. Conversely, organic compounds regulate Fe
transformation in soil environments. Adding plant residues could stimulate microbial
reduction of native soil Fe oxides and, in turn, influence the associated microbial com-
munity structures [37]. Moreover, Fe(II) oxidation and Fe(III) reduction are coupled to N
biogeochemical processes in flooded paddy soils [38]. Paddy soils are key habitats for mi-
croorganisms involved in Feammox, a major N loss pathway, with potential major bacterial
drivers such as Geobacter, Pseudomonas, and Thiobacillus [39–41]. Reduced forms of Fe(II)
would be oxidized by microaerophilic or nitrate-reducing Fe oxidizers that are ubiquitous
in paddy soils, which accelerates the turnover of N [42]. However, it remains unclear how
soil bacterial communities respond to straw application supplemented by N fertilizer in
paddies with high Fe concentrations.

The Yangtze River Delta in China is a major rice production area. Numerous studies
have previously been carried out to explore the effects of straw application on soil fertility
and crop yield in this region [43]. However, our understanding of the response of soil
bacterial communities to straw application and the optimal N fertilization rate when
supplemented with straw is still poor [44], specifically in Fe-rich (ferruginous) paddy
soils. Therefore, the objectives of the present study were to investigate the effects of
straw incorporation on soil bacterial community structure and to determine the optimal N
application rate in combination with straw incorporation for improving soil function in an
Fe-rich rice paddy.
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2. Materials and Methods
2.1. Study Site

The field experimental site (31◦53′36.70′′ N, 119◦24′2.81′′ E) was located in Zhenjiang,
Jiangsu Province, China. This site belongs to the northern subtropical climate zone, with an
average annual temperature of 15.6 ◦C. The average annual precipitation is 1088.3 mm and
occurs mostly from June to August. Paddy soil is the main soil type at the experimental
site. Due to the influence of irrigation and seasonal precipitation, there are frequent shifts
in soil oxidation status, which leads to the high accumulation of Fe in the tillage layer. Fe
plaque is also common in rice paddies at the experimental site.

2.2. Experimental Design and Soil Sampling

A rice paddy with an area of 0.1 ha was selected for straw incorporation (Figure 1).
A randomized complete block design was adopted for the experiments. Five fertilization
treatments with different N rates were applied under wheat straw incorporation (ST0, ST1,
ST2, and ST3) or no straw incorporation (T1; Table 1). The wheat straw applied was from
the previous season. It contained 460 g kg−1 total C, 3.17 g kg−1 total N, 0.38 g kg−1 total
phosphorus (TP), 14.64 g kg−1 total potassium (TK), 1.4 g kg−1 total sodium, 1.80 g kg−1

total calcium, 1.20 g kg−1 total magnesium, 1.94 g kg−1 total sulfur (S), and 3.20 g kg−1

total chlorine. The straw was chopped into small pieces (<2 mm in length) and mixed
thoroughly with the surface soil via ploughing. Additionally, N, P, and K were applied as
basal fertilizers together with straw (Table 1). Each treatment had three triplicates, yielding
15 experimental plots (30 m2). The rice variety under cultivation was Oryza sativa subsp.
Keng cv. Nanjing 9108. Rice seedlings were transplanted on June 10th and harvested on
October 30th. The experiment was repeated each year between 2017 and 2019. The results
presented in this paper were observed in the third year (2019).

Soil samples were obtained at the rice ripening stage, right before draining the field.
A minimum of 10 soil cores (5 cm in diameter and 15 cm in depth) from each plot were
obtained randomly. The topsoil (0–2 cm) was removed to minimize the potential influence
of debris. The samples obtained from one plot were pooled, mixed uniformly, and then
divided into two portions. One portion was transported on ice to the laboratory and frozen
immediately at−80 ◦C for use in subsequent DNA extraction and sequencing analyses, and
the other portion was air-dried for the determination of soil physicochemical properties.
The above procedures were repeated for each plot and a total of 15 samples were taken.
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Table 1. Fertilization treatments applied in the experiments (unit: kg ha−1).

Treatments Wheat Straw Nitrogen in the
Form of Urea

Phosphorus in the
Form of Calcium
Superphosphate

Potassium in the
Form Potassium

Chloride

T1 0 80 80 80
ST0 6000 0 80 80
ST1 6000 80 80 80
ST2 6000 300 80 80
ST3 6000 450 * 80 80

* Local farmer practice.

2.3. Soil Physicochemical Analysis

Soil samples were air-dried and sieved with 0.85 mm and 0.15 mm sieves for use
in the determination of pH and other properties, respectively. Deionized water and soil
were mixed at a ratio of 2.5:1 (v/w) and vortexed; soil pH and electrical conductivity (EC)
were determined using a digital pH meter (Sanxin S731; Shanghai San-Xin Instruments,
Shanghai, China). Gravimetric water content (WC) was measured as the difference in WC
between the moist soil and the soil dried at 105 ◦C for 24 h. SOC, TN, and TP contents were
determined according to standard testing procedures [45]. Briefly, SOC was determined
using the potassium dichromate volumetric-external heating method; TN was determined
using the Kjeldahl method; TP was determined using the HClO4-H2SO4 extraction–Mo-Sb
anti-spectrophotometric method. Fe(II) and Fe(III) contents were determined using the
0.5 N HCl extraction and phenathroline spectrophotometric method [46]. Non-crystal Fe
oxide content was determined using the dithionite-citrate-bicarbonate (DCB) extraction
technique and phenathroline method [47].

2.4. DNA Extraction, PCR Amplification, and Illumina MiSeq Sequencing

Genomic DNA was extracted from 0.5 g freeze-dried soil samples using the MoBio
PowerSoil DNA Isolation Kit (QIAGEN Inc., Valencia, CA, USA) according to the manu-
facturer’s protocols. The quality and quantity of the DNA samples were checked using a
spectrophotometer (Nano Drop ND2000; Thermo Scientific, Wilmington, DE, USA).

To amplify the hypervariable V3–V4 regions of the 16S rRNA gene, the bacterial primer
set 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCT
AAT-3′) was used [48]. A PCR reaction contained a 25 µL mixture with 10 µL MilliQ
water, 5 µL 5 × FastPfu Buffer, 2 µL 2.5 mM dNTPs, 1.0 µL of primer 338F (5 µM), 1.0 µL
of primer 806R (5 µM), 0.5 µL FastPfu Polymerase, 10 ng template DNA, and 0.25 µL
bovine serum albumin. The amplification conditions were as follows: DNA denaturation
at 94 ◦C for 3 min, followed by 30 cycles of amplification (94 ◦C for 45 s, 50 ◦C for 45 s,
and 72 ◦C for 45 s), and final extension for 10 min at 72◦ C. PCR reactions were performed
in triplicate. The PCR products were gel-purified using an AxyPrepDNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, USA) and quantified using QuantiFluor™-ST
(Promega, Madison, WI, USA) according to the manufacturers’ instructions. Sequencing
of the purified PCR products was conducted on an Illumina MiSeq platform (Illumina,
San Diego, CA, USA) by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China)
according to standard protocols, with 250-bp paired-end reads generated.

The sequences obtained were analyzed using Mothur v1.30.2 [49]. Raw sequences
were assigned to samples according to the barcodes, and those that did not perfectly match
the primer/barcode or were <250 bp in length were removed. Chimeras were removed
using the UCHIME algorithm with default parameters implemented in Mothur. The unique
sequences were merged, chopped to achieve similar lengths, and then aligned against
the SILVA132 16S rRNA database (https://www.arb-silva.de; accessed on 2 September
2020) on the Mothur platform to obtain taxonomic information on bacterial communities.
Non-bacterial reads were further removed. Operational taxonomic units (OTUs) were
clustered based on 97% similarity [50]. The number of sequences in each sample was

https://www.arb-silva.de
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normalized to the minimum number of sequences per sample. Bacterial alpha-diversity
was estimated using the observed species (Sobs), ACE, and Shannon indexes generated
based on the OTU counts.

2.5. Data Analysis

Bioinformatics analysis of bacterial sequence data was performed using a free online
platform, Majorbio I-Sanger Cloud (http://www.i-sanger.com; accessed on 5 February
2021). One-way analysis of variance (ANOVA) followed by the Tukey–Kramer test was per-
formed to investigate differences in soil physiochemical properties, bacterial alpha-diversity
indexes, and dominant taxa abundances among treatments, with p < 0.05 considered to
indicate significant difference. Non-metric multidimensional scaling (NMDS) analysis
based on the Bray–Curtis distances was performed on bacterial community composition at
both the phylum and genus levels, with the significance of differences tested by the analysis
of similarities (ANOSIM). The influences of environmental factors on bacterial commu-
nity structure were estimated using redundancy analysis (RDA). The correlations between
abundant bacterial taxa (the top 15 phyla and 30 genera) and soil properties were calculated
based on Spearman’s correlation. Functional genes and metabolic pathways were predicted
with Phylogenetic Investigation of Communities by Re-construction of Unobserved States
(PICRUSt v1.1.0; https://github.com/picrust; accessed on 8 February 2021).

3. Results
3.1. Soil Physicochemical Properties

The soil samples were acidic, with an average pH of 5.05 (Table 2). There was no
statistically significant difference in soil pH among the treatments. However, the ST1
treatment with straw and low N had the highest EC, which was significantly higher
than that of the T1 treatment with low N alone (p < 0.05). In contrast, the highest SOM
(32.29 g kg−1), TP (0.60 g kg−1), TN (1.75 g kg−1), and WC (65.94%) contents were observed
in the T1 treatment. Compared with T1, straw incorporation without N (ST0) and with low
N (ST1) decreased SOM; surprisingly, straw incorporation with N (ST1 to ST3) decreased
TN and WC (p < 0.05).

The rice paddy was rich in Fe and rust-colored Fe oxides were commonly observed in
soil cores. The dynamics of soil Fe content were rather complex (Table 1). The bioavailable
Fe and non-crystal Fe oxide contents were not significantly influenced by the different
treatments. However, Fe(II) content was markedly low in the ST2 treatment, and Fe(III)
content was relatively low in the ST0, ST1, and ST2 treatments, whereas the lowest DCB-Fe
content was observed in the T1 treatment.

3.2. Soil Bacterial Community Diversity

The calculated alpha-diversity indexes of bacterial communities in soil samples associ-
ated with different treatments are listed in Table 3. The Sobs and ACE indexes represent
bacterial species richness, while the Shannon index represents bacterial species evenness;
higher values of these indexes suggest greater bacterial richness and lower heterogeneity,
respectively. Overall, the coverage between the samples was similar, ranging from 95.9%
to 97.2%, indicating that the sequences were representative. The ST2 treatment had the
highest Sobs and ACE index values. The highest Shannon index values were observed in
the T1 treatment, and they were significantly higher than those in ST3 treatments (p < 0.05).
Generally, straw incorporation alone or with low N decreased bacterial richness slightly;
straw incorporation with moderate N increased bacterial richness but decreased evenness,
whereas straw incorporation with high N decreased both bacterial richness and evenness.

http://www.i-sanger.com
https://github.com/picrust
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Table 2. Summary of the major soil physicochemical properties in different treatments.

Treatments pH EC SOM
(g kg−1)

TP
(g kg−1)

TN
(g kg−1)

WC
(%)

Fe(II)
(g kg−1)

Fe(III)
(g kg−1)

DCB-Fe
(g kg−1)

T1 5.05 ± 0.08 a 154.00 ± 7.00 b 32.29 ± 2.61 a 0.60 ± 0.03 a 1.75 ± 0.15 a 65.94 ± 9.31 a 3.81 ± 0.17 a 13.12 ± 1.34 a 74.38 ± 1.08 a
ST0 5.06 ± 0.02 a 164.67 ± 23.01 ab 27.13 ± 1.79 b 0.58 ± 0.26 a 1.57 ± 0.26 ab 58.16 ± 9.51 ab 3.95 ± 1.66 a 10.39 ± 1.58 a 79.24 ± 7.96 a
ST1 5.11 ± 0.22 a 188.33 ± 16.07 a 27.13 ± 0.40 b 0.57 ± 0.04 a 1.46 ± 0.07 b 47.71 ± 1.95 b 3.53 ± 1.28 a 11.84 ± 3.49 a 77.18 ± 3.08 a
ST2 5.05 ± 0.09 a 158.00 ± 14.11ab 30.21 ± 1.71 ab 0.57 ± 0.02 a 1.40 ± 0.01 b 45.95 ± 4.36 b 2.57 ± 0.17 a 10.53 ± 3.17 a 78.47 ± 11.07 a
ST3 5.00 ± 0.15 a 179.67 ± 19.09 ab 30.99 ± 2.86 ab 0.55 ± 0.00 a 1.47 ± 0.08 b 50.84 ± 6.84 b 4.86 ± 1.89 a 14.17 ± 2.34 a 77.92 ± 4.44 a

EC: electrical conductivity; SOC: soil organic matter; TP: total phosphorus; TN: total nitrogen; WC: gravimetric water content; DCB-Fe: dithionite-citrate-bicarbonate-extracted iron. Treatment abbreviations are
defined in Table 1. Different letters in the same column indicate statistically significant differences among the samples by one-way ANOVA (Tukey–Kramer, p < 0.05).

Table 3. Alpha-diversity and richness estimates of soil microbial communities based on 97% similarity OTU clusters.

Treatments Sobs ACE Shannon Coverage

T1 2841.3 ± 96.03 b 3812.9 ± 47.71 ab 6.86 ± 0.02 a 0.959
ST0 2726.0 ± 85.58 ab 3759.6 ± 188.9 a 6.85 ± 0.07 ab 0.966
ST1 2771.3 ± 101.53 ab 3712 ± 99.25 ab 6.79 ± 0.04 ab 0.968
ST2 2970.7 ± 100.55 a 3843.8 ± 99.4 a 6.81 ± 0.14 ab 0.972
ST3 2667.0 ± 74.73 b 3620.2 ± 39.83 b 6.66 ± 0.09 b 0.964

Treatment abbreviations are defined in Table 1. Different letters in the same column indicate statistically significant differences among the samples based on one-way ANOVA (Tukey–Kramer, p < 0.05).
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NMDS analysis was performed to visualize variations in bacterial community compo-
sition among the treatments (Figure S1). A shift in bacterial community composition was
observed following straw incorporation and the bacterial community in T1 samples was
clearly separated from the remaining treatment groups at both the phylum and genus levels.
An increase in N application also induced a shift in bacterial community composition under
straw incorporation, with ST3 forming an individual cluster and clearly separating from the
communities in ST0, ST1, and ST2 samples, which were not entirely separate. Furthermore,
ANOSIM test results revealed that the bacterial community compositions in T1 and ST3
were significantly different (p < 0.05) from those of the remaining treatment groups.

3.3. Taxonomic Composition of Bacterial Communities

Based on the taxonomic classification of 16S rRNA sequences, 54 bacterial phyla
were recognized across all samples. Figure 2 presents the taxonomic assignments of the
sequences at the phylum or family level. Proteobacteria was the most dominant phylum in
all samples and accounted for 28.5% of the total sequences (Figure 2A). The second most
abundant phylum was Chloroflexi (25.1%), followed by Acidobacteria (16.0%), Nitrospirae
(6.72%), Actinobacteria (3.98%), Bacteroidetes (3.41%), and Gemmatimonadetes (3.32%).
These seven dominant phyla accounted for 87.0% of the total bacterial community.

Proteobacteria had the highest relative abundance in the ST3 treatment (32.5%) of
the total sequences, and its lowest relative abundance was observed in the ST0 treat-
ment (26.3%). Within the phylum Proteobacteria, the majority (72%) of the sequences
belonged to the classes Betaproteobacteria and Detaproteobacteria. Alphaproteobacteria
and Gammaproteobacteria accounted for 17.9% and 8.48% of the Proteobacterial sequences,
respectively. The distribution patterns of Chloroflexi were opposite to those of Proteobac-
teria, with the highest relative abundance observed in the ST0 treatment (29.3%) and the
lowest in the ST3 treatment (19.8%). The relative abundances of the dominant phyla varied
somewhat among the treatments; however, significant differences were observed only in
the less dominant phyla, including Verrucomicrobia, Ignavibacteriae, Planctomycetes, AC1,
and Peregrinibacteria (p < 0.05; Figure S2A). The highest relative abundances of Verru-
comicrobia and Planctomycetes were observed in the ST1 treatment, while the relative
abundance of Ignavibacteriae was the highest in the ST3 treatment.

Bacterial families with relative abundances > 3% included Anaerolineaceae, no-
rank_c_SBR2076, norank_c_Nitrospira, norank_c_Acidobacteria, norank_c_KD4-96, Solibac-
teraceae_Subgroup_3, Gallionellaceae, and Acdiobacteriaceae_Subgroup_1 (Figure 2B). The
top two dominant families belonged to the phylum Chloroflexi. Among the dominant fam-
ilies, the relative abundance of Anaerolineaceae was the highest in the T1 treatment (7.7%).
Norank_c_Nitrospira and Gallionellaceae had their highest relative abundances in the ST3
treatment (9.02% and 5.56%, respectively). In addition, the relative abundances of unclassi-
fied norank_c_SBR2076 and norank_c_KD4-96, belonging to the phylum Chloroflexi, were
significantly lower in ST3 than in ST0 and ST1 treatments, respectively (p < 0.05).

More than 18.0% of the total sequences belonged to Fe-cycling-related bacteria. The
relative abundance of Gallionellaceae, a typical Fe(II)-oxidizing bacterial group, was sig-
nificantly higher in the ST3 treatment than in the ST0 treatment (p < 0.05). The relative
abundance of Geobacteraceae, a family containing many Fe(III)-reducing bacteria, was
significantly higher in the T1 treatment than in the ST1 treatment (p < 0.05; Figure S2B).
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Figure 2. Relative abundances of major bacterial taxa present at the phylum (A) and family (B) levels in paddy soils under
different treatments. Only phylogenetic groups represented by more than 1% of the total reads at the family level are shown.
T1, nitrogen fertilization alone (80 kg ha−1); ST0, straw incorporation alone (6000 kg ha−1); ST1, straw incorporation with
low nitrogen (80 kg ha−1); ST2, straw incorporation with moderate nitrogen (300 kg ha−1); ST3, straw incorporation with
high nitrogen (450 kg ha−1).

3.4. Influence of Environmental Factors on Bacterial Community Structure

The relationships between the distribution of the major bacterial groups in rice paddy
soils and the soil physicochemical properties in different treatments were analyzed by RDA
(Figure 3). The first two axes explained 78.13% of the total variance in the bacterial commu-
nity (RDA1 = 50.44% and RDA2 = 28.19%) at the phylum level. The bacterial community
structure differed among the treatments, with T1 and ST3 samples clearly separated from
the remaining treatment groups, suggesting that there were distinct geochemical processes
influencing bacterial community structure in the two treatments. Bacterial community
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compositions in ST0, ST1, and ST2 samples were relatively closely related. Soil TN con-
tent (r2 = 0.53, p = 0.015), water content (r2 = 0.44, p = 0.03), and Fe(III) content (r2 = 0.66,
p = 0.004) were the key environmental factors influencing the bacterial community compo-
sition. Soil bioavailable Fe(III) and SOC contents shaped bacterial community structure
in the ST3 treatment, while soil pH and DCB-Fe content were more associated with the
bacterial community composition in the ST2 treatment.
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Figure 3. Results of redundancy analysis of bacterial community structure (OTU assignment: distance
cutoff 0.03) retrieved from Illumina sequencing of the 16S rRNA genes in relation to soil properties
and depth level. SOC: soil organic carbon; EC: electrical conductivity; TN: total nitrogen; TP: total
phosphorus; WC: water content; Fe(II): ferrous iron; Fe(III): ferric iron; DCB-Fe: dithionite-citrate-
bicarbonate-extracted iron. Treatment abbreviations are defined in Figure 2 legend.

To further reveal the influence of environmental factors on soil bacterial community
structure, the relationships between individual bacterial groups and soil properties were
analyzed using Spearman correlation coefficients (Table 4). The relative abundances of
Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Gemmatimonadetes, Ignavibac-
teriae, unclassified_k_norank_d_Bacteria, and Spirochaetae were negatively correlated
with soil TN content (p < 0.05). The relative abundances of Chloroflexi, Actinobacte-
ria, Gemmatimonadetes, and Spirochaetae were negatively correlated with SOM content
(p < 0.05). In addition, the relative abundance of unclassified_k_norank_d_Bacteria was
negatively correlated with soil Fe(II) content (p < 0.05), and the relative abundance of
Spirochaetae was negatively correlated with soil DCB-Fe content (p < 0.05). The relative
abundances of Chloroflexi and Actinobacteria were negatively correlated with soil Fe(III)
content, whereas the relative abundance of Verrucomicrobia was positively correlated with
this soil property (p < 0.05).
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Table 4. Spearman correlation coefficients between the relative abundances of dominant bacterial phyla and soil physio-
chemical properties.

Phylum pH EC SOC TP TN WC Fe(II) Fe(III) DCB-Fe

Proteobacteria 0.24 0.21 0.00 −0.63 * −0.78 *** −0.58 * −0.46 −0.23 0.14
Chloroflexi 0.24 0.06 −0.54 * −0.02 −0.57 * −0.31 −0.48 −0.71 ** −0.19

Acidobacteria 0.12 0.15 −0.33 −0.04 −0.70 ** −0.49 −0.51 −0.32 −0.03
Nitrospirae −0.05 0.30 0.20 −0.33 −0.40 −0.46 −0.41 0.10 0.44

Actinobacteria 0.44 0.07 −0.61 * −0.29 −0.61 * −0.35 −0.36 −0.85 *** −0.07
Bacteroidetes −0.31 −0.36 0.51 −0.40 −0.27 0.19 −0.14 0.07 −0.12

Gemmatimonadetes 0.42 0.50 −0.62 * −0.45 −0.74 ** −0.80 *** −0.24 −0.41 0.20
Verrucomicrobia −0.53 * 0.25 0.08 0.39 0.09 −0.08 0.00 0.69 ** 0.39
Ignavibacteriae 0.14 0.13 −0.10 −0.57 * −0.80 *** −0.36 −0.33 −0.12 0.05
Parcubacteria 0.17 0.48 * −0.28 0.11 −0.31 −0.43 −0.04 0.32 0.46

Unclassified_k_norank_d_Bacteria 0.15 0.50 * −0.63 0.01 −0.63 * −0.63 * −0.66 ** −0.30 0.28
Armatimonadetes −0.04 0.28 −0.11 0.45 −0.03 −0.26 −0.03 0.43 0.33

Latescibacteria 0.32 0.58 * −0.46 0.11 −0.29 −0.58 * −0.50 −0.13 0.14
Spirochaetae 0.18 −0.34 0.04 −0.54 * −0.52 * 0.02 −0.27 −0.44 −0.55 *

Planctomycetes 0.03 0.54 * −0.54 * 0.13 −0.32 −0.41 0.10 0.27 0.21

EC: electrical conductivity; SOC: soil organic carbon; TP: total phosphorus; TN: total nitrogen; WC: gravimetric water content; Fe(II), ferrous
iron; Fe(III), ferric iron; DCB-Fe: dithionite-citrate-bicarbonate-extracted iron. Asterisks indicate significant difference (* 0.01 < p ≤ 0.05,
** 0.001 < p ≤ 0.01, *** p ≤ 0.001).

3.5. Predicted Functions of Bacterial Communities

PICRUSt analysis was performed to predict the potential functions of soil bacterial
communities in the different treatments (Figure 4). The abundances of major functional
pathways, including metabolism, cellular processes, environmental information processing,
and genetic information processing, were compared among the treatments. Notably,
the ST2 treatment had the highest abundances for all functional pathways, followed by
ST1 and ST0 treatments. The T1 treatment had the lowest abundance of all functional
pathways (Figure 4A). Further analyses on the energy metabolism pathways revealed that
the predicted pathways associated with C fixation, methane production, and oxidative
phosphorylation were relatively more abundant (Figure 4B). In addition, the ST2 treatment
had the highest abundances of pathways associated with S, N, and CH4 metabolism, C
fixation, photosynthesis, and oxidative phosphorylation. Overall, straw incorporation with
N amendment was beneficial for cell growth and metabolism, and the positive effect first
increased with increasing N input, and then dropped when a high N rate (450 kg ha−1)
was applied.
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4. Discussion
4.1. Effects of Straw Incorporation with N Amendment on Paddy Soil Fertility

Straw application has a compound effect on soil nutrient status. On one hand, it could
increase SOM [20,25] and stimulate soil microbial growth and activities [44], which, in
turn, accelerate the release of diverse nutrients. Conversely, excess C input could cause
N immobilization through microbial activities, and, in turn, competition for N between
plants and microbes [51]. However, according to our results, straw incorporation did
not increase SOM content in the rice paddy, which is inconsistent with the findings of
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many previous studies [11–15]. One of the reasons could be that the ameliorating effects
of straw incorporation occurred in the short term and microbial and plant growth took
up much more organic matter in the long term. This might even be associated with SOM
decomposition stimulated by straw input, which could explain the highest SOM content
in the T1 treatment that had no straw incorporation. Similarly, strong regional variation
in the effects of straw application on SOC stocks, and a lack of increase in SOC stocks in
regions with low SOC densities have been reported [52]. The decrease in soil TN content
with straw incorporation could be attributed to straw-derived increase in N use efficiency
and an increase in N loss under high N input [53,54].

Compared with the T1, soil WC dropped following straw incorporation, which could
be due to a change in soil structure because of straw decomposition and enhanced bacterial
activity. In a previous study, straw application accompanied with moderate N (225 kg ha−1)
achieved the maximum grain yield of winter wheat with the improvement of soil struc-
ture [55]. Here, we observed that N input eventually decreased soil TN content, and
the optimal N application rate, which resulted in the highest rice yield (Supplementary
Table S2), could be ~300 kg ha−1. Rice yield decreased in the ST3 treatment, which had the
highest input, suggesting that the optimal N application rate in the ST3 treatment should
not be exceeded.

4.2. Effects of Straw Incorporation with N Amendment on Bacterial Community Structure

Soil bacterial communities regulate the biogeochemical processes of soil elements,
while crop straw provides energy and nutrients required for the growth of soil bacteria [23].
Previous research has shown that straw application influences soil bacterial community
composition profoundly [25]. Straw application not only provides rich nutrients but also
improves soil structure, thereby increasing soil bacterial diversity [56]. In the present study,
however, straw incorporation alone or with low N (80 kg ha−1) decreased soil bacterial
richness slightly; in contrast, straw incorporation amended with moderate N (300 kg ha−1)
increased bacterial richness, which mildly decreased again when N amendment was in-
creased to a high rate (450 kg ha−1). High N could stimulate the growth of less abundant
copiotrophic bacterial groups that are K strategists, and thus decrease the relative abun-
dances of other dominant bacterial groups [57,58] despite an increase in C input [59,60].
The lowest bacterial diversity index values were observed in the ST3 treatment, which
had the highest N input. This is probably due to the facilitation of major bacterial groups
following an increase in N input.

Across all treatments, Proteobacteria was the most dominant bacterial phylum, fol-
lowed by Chloroflexi, Acidobacteria, and Nitrospirae, which is consistent with the find-
ings of previous studies in paddy soils [61,62]. Proteobacteria is composed of numerous
classes that are sensitive to copiotrophic conditions (K strategy), such as Beta- and Delta-
proteobacteria [63]. In the present study, Beta- and Delta-proteobacteria were only slightly
more abundant in the ST2 and ST3 treatment when compared with the other treatments,
indicating that only with moderate to high N supplementation could straw incorporation
increase the abundance of such classes of Proteobacteria. Many taxa of this phylum are
known to promote plant growth via improving soil functions and regulating plant immune
systems [64], and thus contribute to rice production.

Only a small proportion of the soil microbial populations could benefit from straw
incorporation as a C source either directly or indirectly as predators of primary de-
graders [65,66]. Straw breakdown requires the activities of various microbial groups [67]
and low soil pH, which would alter the nutrient status for bacterial communities. Never-
theless, soil pH exhibited minimal change following straw incorporation in the present
study. High N input decreased the relative abundances of several potential Fe(III)-reducing
groups, including norank_c_SBR2076 and norank_c_KD4-96 of the phylum Chloroflexi,
in addition to norank_c_Acidobacteria. Meanwhile, high N input increased the relative
abundance of an Fe(II)-oxidizing group, Gallionellaceae, and a potentially keystone group,
nonrank_c_Nitrospira with functions in Fe uptake and nitrite oxidation [68]. This could be
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related to the enhanced plant growth that increased the radial oxygen (O2) loss favorable
for Fe(II)-oxidizing bacteria.

4.3. Relationship between Bacterial Community Structure and Soil Environment

Microorganisms enhance soil functions and productivity through their participation
in nutrient cycling and organic matter turnover [69]. Conversely, soil environmental factors
influence the community composition of soil microorganisms. In the present study, we
observed that soil bacterial community composition in the samples without straw was
distinct from that of samples with straw incorporation. Extra nutrients introduced by straw
incorporation could have altered bacterial community composition. Bu et al. [28] also
showed that soil bacterial communities were separated into two groups between a straw-
incorporated treatment and non-straw-incorporated treatment in a rice–rice–rapeseed
rotation system. Among the treatments with straw incorporation, the bacterial community
composition in ST3 samples was distinct from that of the others, demonstrating that high
N input had strong effects on soil bacterial community composition [57,59].

In this study, the paddy soil had very high Fe contents and rust-colored Fe oxides
were common in the field. The rapid Fe cycling associated with straw decomposition in
the Fe-rich paddy soil could be driven by bacterial communities. According to our RDA
results, Fe(III) content was a key environmental factor, similar to TN content, influencing
soil bacterial community structure. A previous study also showed that Fe oxides could
influence soil bacterial community structure in arsenic-contaminated soils [70]. Therefore,
we specifically explored the bacterial groups associated with Fe cycling.

Not surprisingly, Gallionellaceae, widely recognized Fe(II)-oxidizing bacteria, were
abundant in all samples. Gallionellaceae are microaerophilic bacteria that grow chemoau-
totrophically using Fe(II) as an energy source and carbon dioxide as a C source under
low O2 conditions, which are particularly important traits at the oxic–anoxic interfaces
of Fe-rich environments [71]. According to the results of Spearman correlation analysis,
Gallionella abundance was positively correlated with the content of non-crystal Fe oxides
(Table S1). In addition, straw incorporation with N amendment increased the relative
abundance of Gallionellaceae while decreasing the relative abundance of Geobacteraceae;
these variations were probably caused by the decrease in soil WC after treatment.

Considering bacterial functions, the ST2 treatment had the highest abundances of
pathways associated with S, N, and CH4 metabolism, C fixation, photosynthesis, and
oxidative phosphorylation. Although there were no clear trends with regard to the effects
of straw incorporation on soil bacterial community structure under different N inputs,
straw incorporation with N amendment enhanced cell growth and metabolism, with
ST2 (straw incorporation + 300 kg ha−1 N) being the optimal treatment. Many studies
have explored the effects of straw application on the responses to total soil microbial
biomass and community structure, with less attention directed at soil microbial diversity
and function [58]. Therefore, future studies should focus not only on the effects of straw
application on phylogenetic diversity of bacteria but also functional diversity of bacteria,
to enhance our understanding of soil ecosystem function following straw application.

5. Conclusions

The results of the present study echo the observation that straw incorporation has
complex effects on soil nutrient status and bacterial community structure in Fe-rich paddies.
Straw incorporation, with application, decreased SOM, TN, and WC contents, without
affecting pH and Fe bioavailability. The relative abundances of dominant bacterial phyla,
including Proteobacteria, Chloroflexi, Acidobacteria, Nitrospirae, and Actinobacteria, were
all negatively correlated with soil TN, TP, Fe(II), and WC contents. The bacterial communi-
ties comprised a large proportion of Fe cycling-related bacteria and responded distinctively
to different treatments. Soil TN, WC, and Fe(III) contents were the key environmental fac-
tors driving the variation in bacterial community structure. In general, straw incorporation
with N amendment at a moderate rate (300 kg ha−1) most effectively improved rice yield,
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increased bacterial richness, and enriched the predicted functional pathways associated
with cell growth and metabolism. Therefore, 300 kg ha−1 N is identified and recommended
as the optimal N application rate for supplementing straw incorporation in rice paddies.

Supplementary Materials: The following are available online at https://www.mdpi.com/xxx/s1,
Figure S1: Non-metric multidimensional scaling analysis (NMDS) based on the relative abundance
of microbial phylum (A) and genus showing different microbial community structure, Figure S2:
The composition of bacteria community in different treatments at phylum (A), family (B) and genus
(C) levels, Table S1: Spearman correlation analysis between soil physiochemical parameters and the
relative abundance of genus, Table S2: Rice yield components in different treatments.
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