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Abstract The evolution of multidrug resistance (MDR) is a pressing public health concern. Yet

many aspects, such as the role played by population structure, remain poorly understood. Here, we

argue that studying MDR evolution by focusing upon the dynamical equations for linkage

disequilibrium (LD) can greatly simplify the calculations, generate more insight, and provide a

unified framework for understanding the role of population structure. We demonstrate how a

general epidemiological model of MDR evolution can be recast in terms of the LD equations. These

equations reveal how the different forces generating and propagating LD operate in a dynamical

setting at both the population and metapopulation levels. We then apply these insights to show

how the LD perspective: (i) explains equilibrium patterns of MDR, (ii) provides a simple

interpretative framework for transient evolutionary dynamics, and (iii) can be used to assess the

consequences of different drug prescription strategies for MDR evolution.

Introduction
Antibiotic resistance is one of the biggest current public health problems, with antibiotic resistant

infections responsible for tens of thousands of deaths annually (O’Neill, 2015). Of particular concern

is the evolution of multidrug resistant (MDR) pathogens, that is, pathogens resistant to multiple clas-

ses of antibiotics. Despite its importance, understanding the evolution of MDR remains an ongoing

challenge, as it is typically not captured by our understanding of the evolution of single drug resis-

tance (for which there is a large body of theory; e.g., Blanquart, 2019; Bonhoeffer et al., 1997;

Lipsitch et al., 2000; Bergstrom et al., 2004; Austin and Anderson, 1999). For instance, suppose

we have two drugs, A and B, and that a fraction fAB of infections caused by the pathogen of interest

are resistant to both drugs. To understand MDR evolution, we need to understand what determines

the frequency fAB. If fA and fB are the frequency of infections resistant to drugs A and B, and D

denotes any non-random association between resistance to drugs A and B, then

fAB ¼ fAfBþD: (1)

If D¼ 0, then the evolution of resistance to each drug is independent, and so multiple drugs do

not qualitatively alter the evolutionary dynamics of single drug resistance. However, whenever D 6¼ 0,

understanding the fitness costs and benefits of resistance to each drug in isolation is insufficient to

understand the evolution of MDR, because doing so will not tell us what factors govern the propaga-

tion of D, which in turn will affect fA and fB. Thus the challenge of understanding MDR evolution can

be recast as understanding the dynamics of D. The quantity D is referred to as linkage disequilibrium

(LD), and it has been extensively studied in population genetics (e.g. Lewontin, 1964; Felsen-

stein, 1965; Ohta, 1982a; Barton, 1995; Rice, 2004; Slatkin, 2008), particularly as it relates to

population structure (Ohta, 1982b; Slatkin, 1975; Li and Nei, 1974; Nei and Li, 1973;

Lenormand and Otto, 2000; Martin et al., 2006). However, there has been little attempt to apply

these insights to MDR evolution; often the dynamics of doubly resistant infections are neglected to
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simplify the analysis of single drug resistance (e.g. Bergstrom et al., 2004; Bonhoeffer et al., 1997;

Beardmore et al., 2017).

Here, we consider a simple epidemiological model of a primarily asymptomatically carried patho-

gen (e.g. Staphylococcus spp. or Enterococcus spp.) in a structured host population. We show how

this model relates to general dynamical equations for LD (Day and Gandon, 2012), in turn revealing

the role of population structure in MDR evolution. We then use these equations to show how analyz-

ing problems from the LD perspective: (i) reveals the evolutionary logic underlying patterns of MDR

at equilibrium, which we use to build on a recent paper on MDR evolution (Lehtinen et al., 2019);

(ii) provides a framework for understanding transient evolutionary dynamics; and (iii) provides insight

on the consequences different drug prescription strategies have on MDR, which we apply to a hospi-

tal-community setting.

Results
In what follows we will introduce and analyze a model of MDR evolution. We will highlight the most

important aspects here while providing more extensive details in the Materials and methods

’Model derivation’. All notation used is summarized in Table 1.

Consider an asymptomatically carried pathogen in a metapopulation consisting of N host popula-

tions in which two drugs d are prescribed, specifically, drug d ¼ A and drug d ¼ B. Focus upon popu-

lation x. Let Sx and Ixij denote the density of susceptible hosts and ij-infections, respectively, at time t,

where i indicates if the infection is resistant (i ¼ A) or not (i ¼ a) to drug A and j indicates if the infec-

tion is resistant (j ¼ B) or not (j ¼ b) to drug B. Susceptible hosts contract ij-infections at a per-capita

rate bx
ijI

x
ij, where bx

ij is a rate constant, while ij-infections are naturally cleared at a per-capita rate ax
ij.

Hosts are treated with drugs A, B, or both in combination at per-capita rates t x
A, t x

B, and t x
AB,

respectively. Treatment is instantaneous and resistance is complete, that is, if the host that receives

treatment is infected by a strain sensitive to the drug, the infection is cleared instantaneously,

whereas if the host that receives treatment is infected by a strain resistant to the drug, treatment

has no effect. Hosts move from population x to y at a per-capita rate mx!y. Transmission between

infected hosts leads to superinfection with probability s in which either strain is equally likely to

instantaneously outcompete the other (Nowak and May, 1994; Alizon, 2013). We therefore do not

Table 1. Notation used in main text.

In all cases, a quantity indexed with a superscript x is the population x quantity, whereas the absence of a superscript x implies the

quantity is for the metapopulation.

Symbol Description

Ixij Density of ij-infections in population x, where i ¼ A (resp. i ¼ a) if infection is resistant (resp. sensitive) to drug A and j ¼ B (resp. j ¼ b) if
infection is resistant (resp. sensitive) to drug B.

Ix Density of total infections in population x.

f xd ,
�fd Frequency of infections resistant to drug d in population x and the metapopulation, respectively.

Dx, �D, DM Linkage disequilibrium (LD) in population x, average LD across populations and metapopulation LD, respectively.

mx!y Per-capita rate at which hosts migrate from population x to y.

rx, �r Per-capita growth rate of sensitive infections in population x (or ‘baseline’ per-capita growth rate) and average across populations,
respectively.

sxd , �sd Additive selection coefficient for resistance to drug d in population x and average selection across populations, respectively.

sxE , �sE Epistasis in fitness across drug resistance loci in population x and average across populations, respectively.

f�x
ij, f�

x
ij Net change in ij-infections in population x due to mutation or recombination, respectively.

�x
i , ��i Per-capita rate at which mutations generate allele i in population x and average across populations, respectively.

�xi , ��i Per-capita rate at which recombination leads to gain of allele i in population x and average across populations, respectively.

sx, �s Average selection for drug resistance in population x and average across populations, respectively.

covðX; YÞ Covariance between the variables X and Y , that is, covðX; YÞ ¼ E½XY � � E½X�E½Y �, where E½X� denotes the expectation of quantity X.

coskewðX; Y ;ZÞ Coskewness between the quantities X, Y , Z, that is, coskewðX;Y ; ZÞ ¼ E½ðX � E½X�ÞðY � E½Y �ÞðZ � E½Z�Þ�.
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allow for prolonged coinfection (Materials and methods ’Model derivation’). Finally, individual infec-

tions acquire allele i through either mutation or recombination (during superinfection) at per-capita

rates �x
i and �xi , respectively (note that �xi depends upon infection densities, see Materials and meth-

ods Equation (13)).

From these epidemiological assumptions, the change in ij-infections in population x can be writ-

ten as the sum of four processes

dIxij

dt
¼ ðrxþ 1As

x
Aþ 1Bs

x
Bþ 1A1Bs

x
E

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
per�capita growth

ÞIxijþ f�x
ij

z}|{
mutation

þ f�xij

z}|{
recombination

þ
XN

y¼1

ðmy!xI
y
ij�mx!yIxijÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
migration

; (2)

where 1d is equal to 1 if the ij-infection is resistant to drug d and 0 otherwise (e.g., if ij¼ AB, then

the per-capita growth is rx þ sxA þ sxBþ sxE) and f�x
ij and f�xij denote the net change in ij-infections due

to mutation and recombination (Figure 1; Materials and methods Equations (11) and (13)). To facili-

ate comparison with previous results, we have broken the per-capita growth term into four compo-

nents: the ‘baseline’ per-capita growth rate, rx, the (additive) selection coefficients for resistance to

drugs A and B, sxA and sxB, and any epistatic interactions, sxE. These latter terms have the standard

interpretation. If sxA>0 (resp. sxB>0), then resistance to drug A (resp. B) is selected for. If sxE>0, there is

positive epistasis, and the per-capita growth rate of doubly-resistant infections is greater than would

be expected by consideration of the per-capita growth rate of singly-resistant infections. Thus

although Equation (2) is derived from a specific model, the partitioning is very general and applies

to many epidemiological scenarios. We stress that any of the terms sxd, s
x
E, f�

x
ij, and f�xij may them-

selves depend upon population densities (see Figure 1 for a concrete example). Note that this

Figure 1. Schematic of the dynamics of system (2). The metapopulation consists of N connected populations. Each population has four possible types

of infections, linked by one-step mutation or recombination (blue and red arrows), whose per-capita rates are independent of genetic background. The

‘baseline’ per-capita growth rate of sensitive infections is rx, the additive selection coefficients for drug A and B resistance are sxA and sxB, respectively,

while sxE denotes any epistatic interactions. In the inset, we compute these quantities for the specific model introduced in the main text, using the

notation that Dzxd and DzxE are the contribution of trait z to the additive selection coefficient (for resistance to drug d) and to epistasis, respectively, in

population x (e.g., Dbx
A ¼ bx

Ab � bx
ab and Dbx

E ¼ bx
AB � bx

ab � Dbx
A � Dbx

B).
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partitioning is not arbitrary, particularly as it applies to the selection coefficients and epistasis. The

additive selection coefficients and epistasis are defined in terms of their effect upon fitness. In con-

tinuous time models, fitness is per-capita growth. Thus, the selection coefficient for allele k measures

the additive contribution of allele k to fitness, while epistasis measures the excess of the fitness of

strain AB over its value if fitness were additive across the two loci (e.g. Felsenstein, 1965; Kar-

lin, 1975; Rice, 2004; Kouyos et al., 2009) (see also Box 1). Because epistasis is defined in terms of

fitness, how costs of resistance are modeled will typically have implications for whether epistasis

occurs or not; for example, multiplicative costs will generate epistasis (Box 1; Materials and methods

’Equilibrium analysis of metapopulation consisting of independent populations’). We will return to

this point in the examples.

While system (2) contains all the information necessary to analyze MDR evolution, as currently

written it is particularly opaque for providing insight. Therefore, we would like to transform it to a

form which brings to the forefront the different factors that promote or impede MDR evolution; the

way to do this is by focusing upon the dynamical equations for linkage disequilibrium (LD) (Day and

Gandon, 2012; Slatkin, 2008). However, the inclusion of multiple populations means that doing so

is not as simple as Equation (1) would suggest since there are different scales at which LD and MDR

can be measured. As the scale which is of most interest will depend upon the specifics of the

Box 1. Costs of resistance, epistasis, and multidrug

resistance.

The spread of multidrug resistance (MDR) is driven by selection acting on each drug resis-

tance locus, but also on the linkage disequilibrium (LD), which can be produced by epistasis

in fitness. Epistasis measures the interaction between resistance alleles (mutations) at differ-

ent loci and is defined in terms of the per-capita growth rates of different genotypes as:

sxE � rxAB þ rxab � rxAb � rxaB.

Selection at each locus, e.g. sxA ¼ rxAb � rxab, depends on the effects of the mutations on the

phenotypic traits of the pathogen. However, non-additive interactions among these muta-

tions can create epistasis (see inset in Figure 1). To better see how these non-additive

effects can emerge, consider the costs of drug resistance on pathogen transmission. Let cxbd

denote the parameter controlling the cost of resistance to drug d in population x. Then

using the notation of Figure 1.

Transmission rates Epistasis

bx
Ab bx

aB bx
AB Dbx

E

Additive bx
ab � cxbA

bx
ab � cxbB

bx
ab � cxbA

� cxbB
0

Multiplicative bx
abð1� cxbA

Þ bx
abð1� cxbB

Þ bx
abð1� cxbA

Þð1� cxbB
Þ bx

abc
x
bA
cxbB

Hence, only multiplicative costs generate non-additive interactions between loci on trans-

mission, Dbx
E, which leads to epistasis (inset of Figure 1); and, in turn epistasis produces LD

which affects MDR evolution.

Of course, the magnitude of drug resistance costs and the interaction between these costs

at multiple loci need not be additive nor multiplicative. Subject to appropriate constraints

on the choice of costs (e.g. 0 � bx
ij � bx

ab), our general framework can account for any pat-

tern of epistasis (see Figure 1). The important point is that since epistasis is a key contribu-

tor to multilocus evolution, understanding when it occurs and what is producing it (in this

case, assumptions about the cost of resistance) can provide valuable insight into the evolu-

tionary dynamics of MDR.
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problem, in what follows we will consider MDR evolution at both the population- and metapopula-

tion-level.

Population-level multidrug resistance
To understand MDR evolution in a given population, say x, we need to understand the dynamics of

the frequency of infections resistant to drug A and B, f xA and f xB , and the dynamics of population LD,

Dx. First, consider the dynamics of f xA (mutatis mutandis f xB ). Using Equation (2), it is straightforward

to compute

df xA
dt

¼ sxAf
x
Að1� f xAÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

direct selection

þ sxBD
x

|ffl{zffl}

indirect selection

þsxEf
x
Að1� f xAÞ

f xAB
f xA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

epistasis

þ

ð�x
Aþ �xAÞð1� f xAÞ� ð�x

aþ �xaÞf
x
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mutation and recombination

�
XN

y¼1

my!x I
y

Ix
ðf xA � f

y
AÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

migration

:

(3)

where Ix is the total density of infections in population x and f xAB ¼Dx þ f xA f
x
B is the frequency of dou-

bly-resistant infections. A related formulation to Equation (3) can be found in Day and Gandon,

2012 (see also Rice, 2004).

Equation (3) is partitioned into recognizable quantities. First, if resistance to drug A is selectively

advantageous, sxA>0, then drug A resistance will increase due to direct selection whose strength is

dictated by the genetic variance at the locus, f xAð1� f xAÞ (Fisher, 1930). Second, if doubly-resistant

infections are over-represented in the population, Dx>0, and resistance to drug B is selected for,

sxB>0, then drug A resistance will increase due to indirect selection upon resistance to drug B. Third,

if epistasis is positive, sxE>0, and there is genetic variance at the locus, drug A resistance will increase

due to the disproportionate growth of doubly-resistant infections. Fourth, mutation and recombina-

tion will increase drug A resistance when there is a mutation or recombination bias toward gain of

drug A resistance, �x
A>�

x
a or �xA>�

x
a, and the frequency of infections sensitive to drug A exceeds the

frequency of infections resistant to drug A, 1� f xA>f
x
A . Finally, migration acts to reduce differences

between populations.

It follows that drug B treatment alters the predicted dynamics of resistance to drug A via two

main effects: (i) the influence of epistasis and (ii) indirect selection on resistance to drug B mediated

through the presence of LD (Dx 6¼ 0). Thus, consider the dynamics of Dx,

dDx

dt
¼ ðsxA� sx þ sxB� sxÞDx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

selection

� ð�x þ �xÞDx

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

mutation and recombination

þ sxEf
x
ABf

x
ab

|fflfflfflffl{zfflfflfflffl}

epistasis

�
XN

y¼1

my!x I
y

Ix
Dx �Dy �ðf xA � f

y
AÞðf

x
B � f

y
BÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

migration

;
(4)

where sx ¼ f xAs
x
Aþ f xBs

x
B þ f xABs

x
E is the average selection for resistance, f xab ¼ 1� f xA � f xB þ f xAB is the fre-

quency of doubly-sensitive infections, and �x and �x are the total per-capita rates of mutation and

recombination, respectively (e.g. �x ¼ �x
aþ�x

Aþ�x
b þ�x

B; Materials and methods ’Model derivation’).

Equation (4) is partitioned into four key processes. First, excess selection for resistance to drug A

(resp. B), sxA � sx, can cause pre-existing LD (Dx 6¼ 0) to increase or decrease. For example, if sxA>s
x

and Dx>0 then LD will increase. This is because drug A resistant infections are fitter than the average

resistant infection and so will increase in frequency. If Dx>0, it is more likely this increase will occur in

doubly-resistant infections, thereby increasing Dx. Second, mutation and recombination removes any

LD present at a rate proportional to the LD (Rice, 2004; Slatkin, 2008). Third, epistasis generates

same-sign LD, that is, positive epistasis, sxE>0, leads to MDR over-representation,

Dx>0 (Felsenstein, 1965; Lewontin and Kojima, 1960; Lewontin, 1964). Positive epistasis could

occur if double-resistance costs are less than expected (Trindade et al., 2009; MacLean et al.,

2010; Hall and MacLean, 2011) or drugs are prescribed in combination (Bretscher et al., 2004;

Day and Gandon, 2012).

Migration is the final term of Equation (4) and reveals how the metapopulation structure affects

population LD. Like epistasis, migration does not require preexisting LD to operate on LD (Li and

Nei, 1974; Slatkin, 1975; Feldman and Christiansen, 1974; Ohta, 1982a; Ohta, 1982b). In
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particular, LD in population x will be generated whenever the frequencies of resistance to drugs A

and B differ between population x and any other connected population, say y. If both types of resis-

tance are more common in one population than the other ðf xA � f
y
AÞðf

x
B � f

y
BÞ>0, then migration will

generate positive LD in both populations, Dx>0 and Dy>0. If instead drug A resistance is more preva-

lent in one population, while drug B resistance is more prevalent in the other, migration will gener-

ate negative LD in both populations.

Notice the presence of the multiplier Iy=Ix in the final term of Equation (4). If the populations

have roughly the same density of infections, then this term is unimportant. However, when one pop-

ulation, say y, has much fewer total infections than population x, Iy � Ix, the term Ix=Iy will be very

large, whereas Iy=Ix will be very small. Consequently, the ability of migration to propagate LD will be

greater in population y than x, and so all else being equal we would predict the population with a

lower density of infections will have a greater magnitude of LD than the population with a higher

density of infections.

The next insight shows the importance of also taking into account Equation (3). In particular, if

we only inspected the migration term of Equation (4) we might conclude that as the per-capita

migration rate, my!x, increases, so too will the ability of migration to propagate LD. However, the

magnitude of population LD is actually maximized at intermediate migration rates (Figure 2). The

reason is because the quantity my!x has two effects. On the one hand, it directly multiplies the

0 0.5 1

migration rate

-0.25

0

0.25

lin
k
a

g
e

 d
is

e
q

u
ili

b
ri
u
m

cov(
A

,
B

) > 0

cov(
A

,
B

) < 0

Figure 2. The effect of migration upon LD at equilibrium depends upon the scale at which LD is measured. Here,

we show equilibrium LD in a metapopulation consisting of four populations. Two scenarios are shown. In the first

scenario (solid lines), drug A and drug B are both prescribed in the same two populations while the other two

populations receive no drugs, thus covðt A; t BÞ>0; this yields covðfA; fBÞ>0 and so positive population, average, and

metapopulation LD, that is, Dx; �D;DM>0. In the second scenario (dashed lines), drug A is prescribed in two

populations and drug B is prescribed in the other two populations, thus covðt A; t BÞ<0; this yields covðfA; fBÞ<0 and

negative population, average, and metapopulation LD, i.e., Dx; �D;DM<0. Because we assume identical treatment

rates and costs of resistance for either drug, in the second scenario all the populations have the same LD, whereas

in the first scenario, since the drugs are prescribed unequally across populations, the LD observed in each of the

two pairs of populations diverge. Specifically, populations experiencing greater selection due to increased drug

prescription also have greater LD; this follows from the first term in Equation (4).
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migration term in Equation (4) thereby magnifying migration’s potential role in LD build-up, while

on the other hand, it also balances infection frequencies between populations (Equation (3)), which

in turn will reduce the magnitude of ðf xA � f
y
AÞðf

x
B � f

y
BÞ in Equation (4). These conflicting forces mean

the magnitude of population LD tends to be maximized when migration is neither too infrequent

nor too frequent (Figure 2).

Metapopulation-level multidrug resistance
Now what happens to LD and MDR evolution at the metapopulation-level? Here we will use �X to

denote the metapopulation average of quantity Xx, e.g., �fA is the average drug A resistance in the

metapopulation (see Materials and methods ’Metapopulation LD and MDR’ for further details).

Using this notation, then analogously to the population case, metapopulation LD is defined as

DM � �fAB � �fA�fB. A more informative, but mathematically equivalent, description of metapopulation

LD, however, is to define it in terms of the population variables as

DM � �Dþ covðfA; fBÞ; (5)

that is, DM is the sum of the average population LD, �D, and the spatial covariance between the fre-

quencies of resistance to drugs A and B. Equation (5) shows that even if there is no population LD,

that is, Dx ¼ 0 and so �D¼ 0, there may still be metapopulation LD; likewise, there may be population

LD, Dx 6¼ 0, but no metapopulation LD, DM ¼ 0 (Nei and Li, 1973; Ohta, 1982a; Feldman and Chris-

tiansen, 1974).

With this in mind, the change in frequency of infections resistant to drug A (mutatis mutandis drug

B) can be written

d�fA

dt
¼�sA�fAð1��fAÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
direct selection

þ �sBDM

zfflffl}|fflffl{
indirect selection

þ�sE�fAð1��fAÞ
�fAB
�fA

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
epistasis

þð��Aþ ��AÞð1��fAÞ� ð��aþ ��aÞ�fA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mutation and recombination

þ covðr; fAÞ
|fflfflfflfflffl{zfflfflfflfflffl}

heterogeneity in 0baseline0 growth

þ �fBcov sB;
fAB

fB

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

heterogeneity in indirect selection

:

(6)

The first four terms in Equation (6) are the metapopulation-level analogues of the first four terms

in Equation (3) and so share the same interpretation. The last two terms, however, arise due to spa-

tial heterogeneity in ‘baseline’ growth and selection and so are the consequence of population struc-

ture. As these terms are zero in the absence of spatial heterogeneities, they will be our focus here.

First, spatial heterogeneity arises through differences in the ‘baseline’ per-capita growth (i.e.

rx 6¼ ry) coupled with differences in the frequencies of drug A resistant infections (i.e. f xA 6¼ f
y
A ). This is

the spatial covariance between ‘baseline’ per-capita growth and the frequency of drug A resistant

infections, covðr; fAÞ. In particular, more productive populations (larger rx) will have a disproportion-

ate effect on the change in drug A resistance. For example, if more productive populations also have

a greater frequency of drug A resistance, then heterogeneity increases the population frequency of

drug A resistance. Heterogeneity in baseline growth could arise through a variety of mechanisms,

such as availability of susceptible hosts, treatment rates differences, or pathogen traits (e.g. trans-

missibility and duration of carriage).

Second, spatial heterogeneity arises through differences in indirect selection for resistance to

drug B (i.e. sxB 6¼ s
y
B) coupled with differences in the probability that drug B resistant infections are

also doubly-resistant (i.e. f xAB=f
x
B 6¼ f

y
AB=f

y
B ). This is the spatial covariance between selection on resis-

tance to drug B and the conditional probability that a drug B resistant infection is doubly-resistant,

covðsB; fAB=fBÞ. In particular, populations experiencing greater selection for resistance to one drug

will have a disproportionate effect on the change in frequency of infections resistant to the other

drug, whenever populations differ in frequency of doubly-resistant infections. As an example, if pop-

ulations experiencing stronger selection for drug B resistance also have a greater probability of drug

B-resistant infections being doubly-resistant, heterogeneity in indirect selection increases the fre-

quency of drug A resistance in the metapopulation.

Next, the dynamics of metapopulation LD can be written as
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dDM

dt
¼ ð�sA��sþ�sB��sÞDM

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
selection

� ð��þ ��ÞDM

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
mutation and recombination

þ�sE�fab�fAB

zfflfflfflffl}|fflfflfflffl{
epistasis

þcovðr;DÞþ coskewðr; fA; fBÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

heterogeneity in 0baseline0 growth

þ
X

d2fA;Bg

ð1��fdÞ�fdcov sd;
fAB

fd

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

heterogeneity in resistance selection

;
(7)

where coskewðr; fA; fBÞ is the spatial coskewness between r, fA, and fB and we have assumed popula-

tion differences in mutation and recombination are negligible (see Materials and methods ’Metapo-

pulation LD and MDR’). The first three terms in Equation (7) are the metapopulation level analogues

of the first three terms of Equation (4) and so share the same interpretation. The last two terms,

however, arise due to spatial heterogeneity in ‘baseline’ growth and selection and so will be our

focus here.

First, spatial heterogeneity arises through spatial differences in the ‘baseline’ per-capita growth

(i.e. rx 6¼ ry) coupled with spatial heterogeneities in LD (i.e. Dx 6¼ Dy) or resistance frequencies (the

coskewness term). The logic of the first term is clear: when population LD differs, more productive

populations will disproportionately contribute to metapopulation LD. For the second term, when

populations covary in frequency of resistance to drug A and B, more productive populations will dis-

proportionately contribute to the covariance, covðfA; fBÞ and so disproportionately contribute to

metapopulation LD (through the second term in Equation (5)).

Second, spatial heterogeneity arises through differences in selection for resistance (sxd 6¼ s
y
d) cou-

pled with differences in the proportion of drug d resistant infections that are doubly-resistant

(f xAB=f
x
d 6¼ f

y
AB=f

y
d ). The logic here is that populations experiencing stronger selection for resistance are

more likely to see an increase in resistant infections. If this increase occurs disproportionately in dou-

bly-resistant infections, then from Equation (1) metapopulation LD will increase, whereas if this

increase occurs disproportionately in singly-resistant infections, metapopulation LD will decrease.

The magnitude of this effect is scaled by �fdð1� �fdÞ since selection cannot operate without genetic

variation. In the absence of population LD, then f xAB=f
x
A ¼ f xB and f xAB=f

x
B ¼ f xA , and so if populations

experiencing stronger selection for resistance to one drug also have a greater frequency of infec-

tions resistant to the other drug, metapopulation LD will increase. This could occur if, for example,

some populations experience greater treatment rates.

As a final note, observe that in contrast to Equation (4), in Equation (7) the per-capita migration

rates my!x are nowhere to be found. The reason for this is intuitive: as migration does not affect the

total density of infecteds, nor the resistance status of an infection, it will not change the quantities
�fAB, �fA, or �fB, and so cannot change metapopulation LD. As a consequence, migration only affects

metapopulation LD indirectly by reducing differences in infection frequency between populations,

thereby dampening the magnitude (and hence the effect) of covðr;DÞ, covðr; fdÞ, and covðs‘; fAB=fdÞ in

Equation (7). It follows that, all else being equal, the magnitude of DM is a decreasing function of

the per-capita migration rate, and so is maximized when migration is infrequent (Figure 2).

Modeling the dynamics of LD: why bother?
To this point, we have focused upon developing the LD perspective to provide a conceptual under-

standing of MDR evolution in structured populations. However, framing the LD perspective in terms

of general quantities has meant this conceptual understanding is somewhat abstract. What we now

wish to demonstrate, through the consideration of three scenarios, is how the LD perspective can be

used to tackle practical problems. In the first scenario, we show how the LD perspective provides

additional insight into a recent paper on the effect of spatial structure on equilibrium patterns of

MDR. In the second scenario, we show how the LD perspective allows for an understanding of tran-

sient dynamics, and we apply this understanding to patterns of MDR observed in Streptococcus

pneumoniae. In the third scenario, we show how the LD perspective generates practical insight into

designing drug prescription strategies across populations, with a focus upon a hospital-community

setting.
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LD perspective explains equilibrium patterns of MDR
Understanding the patterns of MDR in structured populations was first tackled in an important paper

by Lehtinen et al., 2019. The paper by Lehtinen et al., 2019 (see also Jacopin et al., 2020) focused

upon MDR evolution in a metapopulation consisting of independent host populations (so migration

is restricted, mx!y » 0). For example, each population could represent a different Streptococcus

pneumoniae serotype maintained by serotype-specific host immunity (Henriques-Normark and Tuo-

manen, 2013; Cobey and Lipsitch, 2012; Lehtinen et al., 2017). Lehtinen et al., 2019 found that

at equilibrium, population differences could lead to MDR over-representation (DM>0), and that pop-

ulations with a longer duration of pathogen carriage were more likely to exhibit MDR, a result they

attributed to an increased likelihood of antibiotic exposure per carriage episode. Here, we show

how employing the LD perspective: (i) reveals the evolutionary logic behind what populations differ-

ences can maintain metapopulation LD at equilibrium and (ii) using these insights allows us to build

upon the results of Lehtinen et al., 2019 to understand how epidemiological factors other than

duration of carriage can play an important role. For simplicity, we will assume that costs are additive

(see Box 1), and so there is no epistasis (i.e. sxE ¼ 0), but as this differs from Lehtinen et al., 2019

who use multiplicative costs, we discuss this assumption in more depth in Materials and methods

’Equilibrium analysis of metapopulation consisting of independent populations’.

To maintain metapopulation LD at equilibrium, there needs to be at minimum some mechanism

maintaining metapopulation resistance diversity, otherwise DM ¼ 0. There are variety of ways in

which this could occur (Lipsitch et al., 2009; Colijn et al., 2010; Davies et al., 2019;

Lehtinen et al., 2017; Jacopin et al., 2020; Krieger et al., 2020), but Lehtinen et al., 2017,

Lehtinen et al., 2019 assume it is due to some variation among populations in the conditions favor-

ing resistance evolution. This mechanism maintains diversity at the scale of the metapopulation but

leads to the fixation or the extinction of drug resistance locally. Thus Dx ¼ 0, and it follows from

Equation (5) that DM ¼ covðfA; fBÞ. Therefore, in order for metapopulation LD to exist, fA and fB must

covary across populations. Specifically, whenever f xA and f xB (or their dynamical equations, Equation 3),

are uncorrelated, the metapopulation will be in linkage equilibrium. From Equation (3) we see that if

the additive selection coefficients, sxA and sxB, are uncorrelated, then so too are the dynamics of f xA
and f xB , and so covðfA; fBÞ ¼ 0. Hence only when population differences generate correlations between

the selection coefficients will they generate LD.

Using this insight, why are populations with a longer duration of carriage associated with MDR

(Lehtinen et al., 2019)? And should we expect associations between MDR and any other population

attributes? Our primary focus is whether (and how) the selection coefficients are correlated. Letting

Dzxk be the contribution of trait z to the additive selection coefficient for resistance to drug d in popu-

lation x (e.g. Dbx
A ¼ bx

Ab � bx
ab), then it is straightforward to compute (see Materials and methods

’Equilibrium analysis of metapopulation consisting of independent populations’),

sxA ¼ Dbx
AS

x �Dax
Aþ t

x
A;

sxB ¼ Dbx
BS

x �Dax
Bþ t

x
B:

(8)

where we have used slightly different notation from Lehtinen et al., 2019. Now, consider a scenario

in which both the treatment rates and the parameters controlling the (additive) costs of resistance

are uncorrelated (i.e. Dbx
d ¼ Dbd, Da

x
d ¼ Dad and t x

d ¼ t d); this is one of the scenarios presented in Fig-

ure 4 of Lehtinen et al., 2019, with the key difference that they considered ‘multiplicative’ rather

than ‘additive’ costs. From Equation (8), the only remaining source of correlation is susceptible den-

sity, Sx, which plays a role whenever there are explicit transmission costs, Dbd<0. Although Equa-

tion (8) always holds, in keeping with Lehtinen et al., 2019 if we focus upon the equilibrium case, Sx

will be determined by pathogen traits such as transmission and duration of carriage, such that ‘fitter’

populations (i.e. those in which pathogens are more transmissible or have longer duration of car-

riage) will more substantially deplete susceptibles. By reducing Sx, ‘fitter’ populations lower the

transmission costs for resistance to either drug, and so double-resistance is more likely to be selec-

tively advantageous, even when treatment rates are uncorrelated. In turn, this over-representation of

doubly-resistant infections will generate metapopulation LD.

Thus, when costs are ‘additive’ (Box 1), although variation in duration of carriage can lead to

MDR evolution and LD through its effect upon susceptible density (Figure 3a), it is neither necessary

(the same pattern can be produced by variation in transmissibility; Figure 3b) nor sufficient (variation
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in duration of carriage has no effect without explicit transmission costs, Figure 3c). More broadly, if

there are more than two drugs, then provided that there are explicit transmission costs for resistance

to each drug, susceptible density will generate a correlation between all the selection coefficients,

which in turn will yield the pattern of ‘nestedness’ observed by Lehtinen et al., 2019. What is critical

for this effect to be prominent, however, is (i) the existence of population differences in susceptible

density, and (ii) the costs of resistance (i.e. Dbd), are large enough so as to ensure a strong correla-

tion amongst selection coefficients.

LD perspective explains transient patterns of MDR
The predictions of Lehtinen et al., 2019 were used to explain the patterns of MDR observed in sur-

veillance data. One of these data sets was a surveillance study that documented both the serotype

as well as antibiotic resistance to a number of different drugs in S. pneumoniae infections sampled in

Maela, Northern Thailand (Turner et al., 2012; Lehtinen et al., 2019). Although the prediction of

positive (metapopulation) LD was met for most drug combinations (Lehtinen et al., 2019), inspec-

tion of the data set reveals significant serotype LD (Figure 4). This is notable because, as we have

detailed above, at equilibrium the simplest version of the model used in the previous section will

result in each serotype being in linkage equilibrium, Dx ¼ 0. How can we reconcile these conflicting

observations? Although there are various possible explanations (e.g. an additional mechanism capa-

ble of maintaining diversity within-serotype), here we focus upon relaxing the assumption that the

metapopulation is at equilibrium. That is, we are interested in whether long-term transient dynamics

unfolding over months and years could plausibly suggest an alternative explanation for the observed

serotype LD.

To do so, consider a metapopulation consisting of independent serotypes, differing in their trans-

missibility and duration of carriage (as in the model of Lehtinen et al., 2017; Lehtinen et al., 2019).

Assume that there is no epistasis and that the additive selection coefficients take the form of Equa-

tion (8), where the parameters Dbx
d, Da

x
d and t x

d do not depend upon serotype x (Materials and

methods ’Transient dynamics and MDR in streptococcus pneumoniae’). Suppose that initially the

Figure 3. Duration of carriage is one of many potential explanations for MDR over-representation at equilibrium. When costs are additive and there is

no epistasis, variation in duration of carriage across independent populations can lead to linkage disequilibrium (subplot a), but it is neither necessary

(b), nor sufficient (c). We simulate 1000 populations (blue bars), each consisting of 20 independent populations in which treatment rates for each

population are randomly chosen to be either t max ¼ 0:075 or t min ¼ 0:025 with equal probability while simultaneously satisfying covðt A; t BÞ ¼ 0. The

solid blue line is the mean LD across the simulations for each scenario. In subplot a, duration of carriage varies across populations and there are

transmission resistance costs; in subplot b, transmission varies and there are transmission resistance costs; while in subplot c, duration of carriage varies

and there are no transmission costs. These simulations diverge slightly from those of Lehtinen et al., 2019 in that their model always includes epistasis

(see Materials and methods ’Equilibrium analysis of metapopulation consisting of independent populations’), whereas here we only consider non-

epistatic scenarios.
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metapopulation is treated exclusively with drug A at sufficiently high rates such that resistance to

drug A goes to fixation in each serotype, that is, �fA ! 1 and �fB ! 0, and so DM ¼ 0. Now suppose at

time t ¼ 1000 months that drug B is ‘discovered’ and subsequently prescribed at a high rate in the

metapopulation, while owing to its reduced efficacy, prescription of drug A is reduced. Although the

treatment rates do not vary by serotype, serotype differences in transmissibility and duration of car-

riage mean that the changes to treatment rates will differentially affect serotype density, which in

turn will differentially affect the serotype-specific availability of susceptible hosts, Sx. Since the sero-

type-specific selection coefficients, sxA and sxB, and baseline per-capita growth, rx, directly depend

upon Sx, the variation in Sx introduces heterogeneity in Equation (7), which in turn generates meta-

population LD. Because the selection coefficients are positively correlated (due to the shared depen-

dence upon Sx), the metapopulation LD generated will be positive, that is, DM>0 (Figure 5a,d).

From Equation (7), once metapopulation LD is generated, it will be amplified by directional selec-

tion (first term of Equation 7) which is initially positive since resistance to drug B is favored; this

leads to a rapid build up of DM (Figure 5a,d). However, this initial increase in DM is transient; for this

particular choice of parameter values, at equilibrium DM ! 0. Crucially, however, the changes to DM

can unfold over a very long time (here the time units are months), such that surveillance data would

detect little change in the metapopulation dynamics and so suggest a population roughly in

equilibrium.

Although this scenario can lead to considerable (transient) metapopulation LD, there is still noth-

ing generating serotype LD. Our analysis of Equation (4) revealed two possible (deterministic) mech-

anisms capable of generating population (serotype) LD. First, migration between populations can

lead to metapopulation LD spilling over into population LD. In this example, ‘migration’ between

Figure 4. Linkage disequilibrium for different drug pairs in Streptococcus pneumoniae. Data is from the Maela

surveillance data set of Lehtinen et al., 2019; Turner et al., 2012. The light red circles are the observed serotype

LD, Dx, the dark red circles are the average LD across serotypes, �D, while the blue circles are the metapopulation

LD, DM. We have restricted the data to serotypes involving 100 or more samples (serotypes 14, 6A/C, 6B, 15B/C,

19F, 23F). The drugs considered are: A = chloramphenicol, B = clindamycin, C = erythromycin, D = penicillin, E =

sulphatrimethoprim, and F = tetracycline.
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serotypes would correspond to serotype ‘switching’ (Croucher et al., 2015), whereby infections

exchange serotypes through recombination. However, this is an unlikely explanation as the rate of

serotype switching would have to be unrealistically large for serotype LD to be substantially altered.

The second term in Equation (4) capable of generating serotype LD is epistasis, which will generate

same sign serotype LD (Felsenstein, 1965; Lewontin, 1964; Lewontin and Kojima, 1960). Indeed,

in the model considered, negative epistasis, sxE<0, generates transient negative serotype LD

(Figure 5b,e), while positive epistasis generates transient positive serotype LD (Figure 5c,f; Materi-

als and methods ’Transient dynamics and MDR in streptococcus pneumoniae’). Notably, although

negative epistasis produces negative serotype LD (and so �D<0), at the scale of the metapopulation

this effect is swamped by the positive covariance in frequency of resistance and so metapopulation

LD is positive, DM>0. (Figure 5e).

Thus, transient dynamics coupled with epistasis could provide a potential explanation for the sig-

nificant within-serotype LD observed in S. pneumoniae (Figure 4). More generally, the potential

complexity of competing selective pressures associated with multilocus dynamics can lead to

Figure 5. Transient dynamics coupled with epistasis can explain patterns of serotype LD in Streptococcus pneumoniae. In all simulations, serotypes

differ based upon duration of carriage and transmissibility. At t ¼ 0, the pathogen is sensitive to both drugs; however, as hosts are initially treated with

drug A at a rate of t A ¼ 0:12 per month, resistance to drug A emerges and fixes in all serotypes. At t ¼ 1000 (months), drug B is introduced, and drug A

prescription reduced, ðt A; t BÞ ¼ ð0:07; 0:1Þ (note that the drugs are never prescribed in combination, t AB ¼ 0). In the first column, there is no epistasis,

thus although metapopulation LD builds up, serotype LD does not. In the second column, there is negative epistasis, which generates negative

serotype LD. In the third column, there is positive epistasis which produces positive serotype LD. The thin lines denote the within-serotype dynamics,

while the thick lines denote the metapopulation dynamics. In all cases, at equilibrium both the serotypes and the metapopulation will be in linkage

equilibrium, however, transient LD can occur on sufficiently long timescales so as to appear permanent (see Materials and methods ’Transient dynamics

and MDR in streptococcus pneumoniae’ for more details).
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prolonged, but transient, polymorphisms and LD, and so surveillance data showing limited temporal

change in resistance frequency should be treated cautiously and not assumed to be due to a stable

equilibrium.

LD perspective helps identify drug prescription strategies limiting the
evolution of MDR
Understanding the evolutionary consequences of different antibiotic prescription strategies across

populations can have practical relevance for public health. The populations of interest could corre-

spond to physically distinct groups such as a hospital and its broader community, or different geo-

graphical regions (e.g. countries). From a public health perspective, when considering different

prescription strategies, a variety of factors must be considered, but in general the goal is to success-

fully treat as many people as possible, thereby reducing the total burden (Bonhoeffer et al., 1997;

Abel zur Wiesch et al., 2014). In this circumstance, the LD in the metapopulation and/or popula-

tions can provide important information about the likelihood of treatment success. In particular, for

a given population frequency of drug A and drug B resistance, negative LD (MDR under-representa-

tion) increases the likelihood that if treatment with one drug fails (due to resistance), treatment with

the other drug will succeed. On the other hand, positive LD (MDR over-representation) increases the

likelihood of treatment failure, since a greater proportion of resistant infections are doubly-resistant

and so cannot be successfully treated with either drug. Equations (4) and (7) show that to generate

negative LD, drugs should be deployed in a population specific fashion, that is, drug A should be

restricted to some populations and drug B restricted to the remaining populations (see also

Lehtinen et al., 2019; Day and Gandon, 2012; Jacopin et al., 2020). Doing so will create a nega-

tive covariance in selection, such that resistance to drug A (resp. drug B) will be favored in some

populations and disfavored in the others. This negative covariance in selection will give rise to nega-

tive LD and MDR under-representation (Figure 2).

As an application of this principle, consider two populations connected by migration, correspond-

ing to a ‘community’ and a much smaller ‘hospital’. Drug prescription occurs at a fixed (total) rate in

each population, while the prescription rate is much higher in the hospital (see Materials and meth-

ods ’Contrasting drug prescription strategies in a hospital-community setting’). Consider three anti-

biotic prescription strategies: (i) drugs can be randomly prescribed to individuals (mixing); (ii) drugs

can be prescribed exclusively in combination; or (iii) prescription of drug A and B can be asynchro-

nously rotated between the hospital and community, that is, if the hospital uses drug A then the

community uses drug B, and vice versa (cycling). As both drugs are prescribed at higher rates in the

hospital than the community, both mixing and combination generate a positive covariance in selec-

tion across populations, producing positive LD and MDR over-representation (see Equation (4); Fig-

ure 6). Thus, over the short- and long-term, mixing and combination produce similar results: doubly-

resistant infections are favored, while singly-resistant infections are disfavored (Figure 6). Now con-

sider cycling. When drugs are rotated rapidly between populations, infections in either population

are likely to be exposed to both drugs. Because prescription rates are higher in the hospital, this

effectively creates a positive covariance in selection (i.e. cycling behaves like mixing) and so when

resistance emerges, infections tend to be doubly-resistant (MDR over-representation). When drugs

are rotated less frequently, infections are more likely to be exposed to a single drug, creating a neg-

ative covariance in selection across populations. In this circumstance, although single resistance can

emerge at lower treatment rates then when rotations are more frequent, the negative LD produced

by the negative covariance in selection inhibits the emergence of double-resistance (MDR under-

representation; Figure 6).

These results emphasize an important trade-off: delaying the evolution of MDR (e.g. by decreas-

ing time between rotations) promotes the evolution of single drug resistance, whereas delaying the

evolution of single drug resistance promotes the evolution of MDR. This is logical: when we maintain

a constant treatment rate per individual, decreasing selection for the ‘generalist’ strategy (MDR) nec-

essarily increases selection for the ‘specialist’ strategy (single drug resistance) (Wilson and Yoshi-

mura, 1994). Thus, cycling can either be the best, or worst, option for single drug resistance

(Beardmore et al., 2017), but critically, this has concomitant effects for MDR (see also Figure 6).

Indeed, mixing, combination and cycling have been exhaustively compared in the context of single

drug resistance (e.g. Bonhoeffer et al., 1997; Lipsitch et al., 2000; Bergstrom et al., 2004;
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Beardmore and Pena-Miller, 2010; Beardmore et al., 2017; Abel zur Wiesch et al., 2014;

Tepekule et al., 2017); yet these studies largely ignored the consequences for MDR evolution. Our

analysis suggests controlling for single drug resistance will have important consequences for MDR,

and so it should not be considered in isolation. More generally, whether it is optimal to either delay

single drug resistance or prevent MDR will depend upon what metric is used to evaluate what consti-

tutes a ‘success’ or ‘failure’.

Discussion
The evolution of multidrug-resistant pathogens is a pressing health concern and is a topic which is

increasingly gaining attention from evolutionary biologists and mathematical modellers alike. How-

ever, the typical process in studying the problem of MDR is to introduce a model of the form of (2),

and then either proceed to a numerical analysis of these equations or simplify the model further by

neglecting the dynamics of double resistant infections (Bergstrom et al., 2004; Bonhoeffer et al.,

1997; Beardmore et al., 2017). This is because models of MDR evolution rapidly become intracta-

ble, a problem which is particularly acute when incorporating aspects of population structure. Here,

we have argued that a more insightful and simplifying approach is the ‘linkage disequilibrium per-

spective’: after specifying the model of interest, as in (2), it is desirable to transform the model into

the form of Equations (3), (4), (6), and (7), which brings to the forefront the role played by linkage

disequilibrium for MDR evolution in structured populations. The LD perspective is particularly useful

for analyzing and understanding transient evolutionary dynamics (Figure 5), which cannot be under-

stood by, for example, invasion analysis.

Our analysis emphasizes that metapopulation structure alone can generate and maintain LD (and

so MDR), even in the absence of epistasis (Nei and Li, 1973; Ohta, 1982a; Li and Nei, 1974; Slat-

kin, 1975). Since in natural populations metapopulation structure is often hidden (e.g. Rosen et al.,

2015), patterns of MDR should not be assumed to be due to epistasis, even if no structure is readily

apparent. Moreover, caution must be taken when measuring LD (and MDR) at a particular scale, as
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Figure 6. Different antibiotic prescription strategies generate different patterns of LD at equilibrium. Here, we focus upon a population divided into a

community and a hospital. Individuals enter the hospital at a fixed rate and spend a fifth of the time in the hospital that it takes to naturally clear a

sensitive infection. The hospital/community size split corresponds to 20 beds per 1000 people, while individuals in the hospital receive antibiotics at 15x

the rate they do in the community. We integrate system (2) until equilibrium is reached; the final state of the system is what is shown. For cycling, we

compute the average state over the last two rotations (i.e., over the last period, T ; in this case T ¼ 100). In panel a, we show the metapopulation LD, DM

for the three treatment scenarios (combination, mixing, cycling). Combination and mixing generate identical LD in this example. In panel b we show the

frequency of infections in the metapopulation resistant to drug d, �fd (for our choice of parameters, �fA ¼ �fB; Materials and methods ’Contrasting drug

prescription strategies in a hospital-community setting’), and doubly-resistant, �fAB, for each scenario. Note that for mixing and combination treatments

(solid curves), �fA ¼ �fB ¼ �fAB, whereas cycling (dashed curves) leads to singly-resistant infections at low treatment rates (see Materials and methods

’Contrasting drug prescription strategies in a hospital-community setting’).
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doing so can lead to erroneous conclusions: even if the metapopulation is in linkage equilibrium,

DM ¼ 0, the populations need not be, Dx 6¼ 0, and vice versa (Equation (5)), while in more extreme

cases, population and metapopulation LD can be of opposite sign (Figure 5b,e). These are not

merely esoteric points; the presence or absence of LD (and MDR), and its source (epistasis or meta-

population structure) is critically important. For example, when MDR is due to metapopulation struc-

ture rather than epistasis, prescribing drugs across different populations so as to create a negative

covariance in selection can reduce the prevalence of MDR (Figure 6; Day and Gandon, 2012;

Jacopin et al., 2020; Lehtinen et al., 2019), while distinguishing between population and metapo-

pulation LD can provide additional insight toward evaluating hypotheses (Figures 4 and 5).

Our analysis assumed that the evolutionary dynamics were deterministic, thus neglecting the influ-

ence of stochasticity. However, it is widely appreciated in population genetics that stochasticity can

play an important role in multilocus dynamics. For example, LD can be generated through genetic

drift (Hill and Robertson, 1966; Barton, 1995; Lenormand and Otto, 2000; Otto and Barton,

2001; Keightley and Otto, 2006; Martin et al., 2006), which in turn can interfere with the strength

of selection (Hill and Robertson, 1966; Neher and Shraiman, 2011; Slatkin, 2008). Similarly, the

(random) genetic background a rare mutation finds itself upon is critically important for its success

(Kouyos et al., 2006; Gillespie, 2000; Neher, 2013), and in finite populations this alone can gener-

ate LD. However, little has been done to relate these results to evolutionary epidemiology, or to

understand how epidemiological feedbacks can influence their predictions. The little work to date

has relied upon complex simulations (e.g. Althaus and Bonhoeffer, 2005; Kouyos et al., 2009),

which necessarily sacrifice general insight for specificity. Thus, the role of stochasticity in the evolu-

tion of MDR remains an area in which further investigation is warranted.

Understanding the evolution of MDR is a research topic of pressing concern. Here, we have

argued that using the linkage disequilibrium perspective leaves us better equipped to determine

what factors are responsible for generating MDR, and their generality. Moreover, taking such an

approach leads to a more straightforward comparison with existing models and results.

Materials and methods
Here, we provide more comprehensive details on the analysis presented in the main text. We start

by deriving the general epidemiological model for the dynamics of the different strains which are

characterised by their multilocus genotype (Materials and methods ’Model derivation’). We then

convert this model into an equivalent system which tracks the dynamics of allele frequencies at each

locus, and the LD at the population level (Materials and methods ’Population LD and MDR’), before

considering the set of equations for the dynamics of allele frequencies at each locus and the LD at

the metapopulation level (Materials and methods ’Metapopulation LD and MDR’).

We conclude by providing a detailed mathematical analysis of the three examples presented in

the main text: (1) using the LD perspective to explain equilibrium patterns of MDR (Materials and

methods ’Equilibrium analysis of metapopulation consisting of independent populations’); (2) using

the LD perspective to explain transient patterns of MDR (Materials and methods ’Transient dynamics

and MDR in streptococcus pneumoniae’); and (3) applying the LD perspective to identify drug pre-

scription strategies limiting MDR evolution (Materials and methods ’Contrasting drug prescription

strategies in a hospital-community setting’).

Model derivation
Our focus is on an asymptomatically carried bacteria species in a metapopulation consisting of N

populations. Focus upon an arbitrarily chosen population x. Let Sx and Ixij denote the density of sus-

ceptible hosts and ij-infections, respectively, at time t, where i indicates if the infection is resistant

(i ¼ A) or not (i ¼ a) to drug A and j indicates if the infection is resistant (j ¼ B) or not (j ¼ b) to drug

B. Susceptible hosts contract ij-infections at a per-capita rate bx
ijI

x
ij, where bx

ij is a rate constant, while

ij-infections are naturally cleared at a per-capita rate ax
ij. Hosts in population x are treated with anti-

biotics A, B, or both in combination, at per-capita rates t x
A, t

x
B, and t x

AB, respectively. Hosts move

from population x to population y at a per-capita rate mx!y.

The resistance profile of an infection changes through two processes. First, there may be de novo

mutation, and so let �x
i be the per-capita rate at which an infection in population x acquires allele i
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through mutation. Second, a ij-infection may be super-infected by a k‘-strain (Day and Gandon,

2012); in this circumstance recombination may occur. Specifically, k‘-strains are transmitted to ij-

infections at rate bx
k‘I

x
k‘I

x
ij, whereupon with probability s super-infection occurs. In the event of super-

infection, with probability 1� �, recombination does not occur, in which case with equal probability

the ij-infection either remains unchanged or becomes a k‘-infection. With probability �, recombina-

tion does occur, in which case with equal probability the ij-infection becomes either an i‘- or kj-infec-

tion. Because our focus is upon the role of population structure, we do not allow for co-infection or

within-host competitive differences based upon resistance profiles (e.g. Davies et al., 2019) but

these are straightforward extensions. Moreover, at this stage, we do not make any further specifica-

tion of the dynamics of uninfected hosts, be they susceptible or recovered, as doing so is not essen-

tial for a qualitative understanding of MDR evolution.

Rather than immediately writing down the set of differential equations corresponding to these

epidemiological assumptions, we instead group the terms based upon the four biological processes

that are occurring. In particular, the change in IXij can be written as the sum of:

1. The net change due to mutation, denoted f�x
ij. As an example, focus upon the change in Ab-

infections in population x due to mutation, f�x
Ab. These infections can increase through muta-

tion in one of two ways: (i) ab-infections acquiring allele A at rate �x
AI

x
ab or (ii) AB-infections

acquiring allele b at rate �x
bI

x
AB. On the other hand, IxAb infections are lost due to mutation when-

ever they (i) acquire allele a at a per-capita rate �x
a, or (ii) acquire allele B at a per-capita rate

�x
B. Combining this information gives the change in Ab-infections in population x as

f�x
Ab ¼ �x

AI
x
abþ�x

bI
x
AB�ð�x

a þ�x
BÞI

x
Ab; (9)

which is mathematically equivalent to

f�x
Ab ¼ �x

AðI
x
abþ IxAbÞþ�x

bðI
x
Abþ IxABÞ��xIxAb; (10)

where �x � �x
a þ �x

A þ �x
b þ �x

B is the per-capita mutation rate in population x. The only difference
between the two formulations is interpretation: Equation (9) shows only mutations which lead
to a change in state, whereas Equation (10) shows all possible mutations, even those which
do not. This is why the per-capita loss term, �x, in (10) can be considered the total per-capita
mutation rate in population x. More generally, we can write f�x

ij as

f�x
ij � �x

i ðI
x
aj þ IxAjÞþ�x

j ðI
x
ib þ IxiBÞ��xIxij: (11)

2. The net change due to recombination, denoted f�xij. Specifically, let �
x
i be the per-capita rate

at which infections gain allele i through recombination. For example, consider �xA. In particular,
ij-infections are challenged by strains carrying allele A at rate ðbx

AbI
x
Ab þ bx

ABI
x
ABÞI

x
ij. With probabil-

ity s, a superinfection event occurs. Given an superinfection event, with probability � recombi-
nation happens, in which case with probability 1=2 the recombinant strain Aj will replace the ij-
infection. Thus

�xA ¼ �
s

2
ðbx

AbI
x
Abþbx

ABI
x
ABÞ; (12)

and ij-infections acquire allele A in population x at rate �xAI
x
ij. Therefore, the change in ij-infections

in population x due to recombination is

f�xij � �xi ðI
x
aj þ IxAjÞþ �xj ðI

x
ibþ IxiBÞ� �xIxij (13)

where �x is the per-capita rate of recombination in population x, that is,

�x � �s
X

k‘

bx
k‘I

x
k‘ ¼ �xa þ �xA þ �xb þ �xB:

3. The net change due to host migration between populations,
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�
XN

y¼1

mx!yIxijþ
XN

y¼1

my!xI
y
ij: (14)

4. The net change due to per-capita growth,

rxij � bx
ijS

x �ax
ij � 1aðiÞt

x
A� 1bðjÞt

x
B�ð1� 1AðiÞ1BðjÞÞt

x
AB�ð1� �Þ

s

2

X

k‘

ðbx
k‘�bx

ijÞI
x
k‘;

where 1iðjÞ is an indicator variable and is equal to 1 if i ¼ j and 0 otherwise.

With these four processes in hand, the dynamics of infection densities are given by the system of

4N differential equations.

dIxij

dt
¼f�x

ijþf�xij�
XN

y¼1

ðmx!yIxij �my!xI
y
ijÞþ rxijI

x
ij; x¼ 1;2; :::;N; i2 fa;Ag; j2 fb;Bg: (15)

Population LD and MDR
In what follows, we provide more details for the calculations of population LD and MDR. First, we

define the following frequencies of infections in population x as

f xA ¼

P

j I
x
Aj

Ix
; f xB ¼

P

i I
x
iB

Ix
; and f xij ¼

Ixij

Ix
; (16)

where Ix ¼
P

ij I
x
ij is the total density of infections in population x. Using these definitions, the stan-

dard measure of linkage disequilibrium in population x is

Dx ¼ f xAB� f xA f
x
B ; (17)

which is mathematically equivalent to

Dx ¼ f xABf
x
ab� f xAbf

x
aB: (18)

The three dynamical equations of interest for studying MDR in population x are

df xA
dt

¼ sxAf
x
Að1� f xAÞþ sxBD

x þ sxE f
x
Að1� f xAÞ

f xAB
f xA

þð�x
Aþ �xAÞð1� f xAÞ� ð�x

a þ �xaÞf
x
A �

XN

y¼1

my!x I
y

Ix
ðf xA � f

y
AÞ;

df xB
dt

¼ sxBf
x
Bð1� f xBÞþ sxAD

x þ sxE f
x
Bð1� f xBÞ

f xAB
f xB

þð�x
Bþ �xBÞð1� f xBÞ� ð�x

b þ �xbÞf
x
B �

XN

y¼1

my!x I
y

Ix
ðf xB � f

y
BÞ;

dDx

dt
¼ ðsxA� sx þ sxB� sxÞDx �ð�xþ �xÞDx þ sxEf

x
ABf

x
ab�

XN

y¼1

my!x I
y

Ix
Dx �Dy �ðf xA � f

y
AÞðf

x
B � f

y
BÞ

� �
:

(19)

System (19) contains a number of quantities that we now define in more detail. First, the (additive)

selection coefficient for resistance to drugs A and B in population x are defined as

sxA ¼ rxAb � rxab and sxB ¼ rxaB� rxab; (20)

respectively, while epistasis in population x is sxE ¼ rxABþ rxab� rxAb � rxaB. It follows that we can write

each of the per-capita growth rates, rxij, as

rxij ¼ rx þ 1AðiÞs
x
A þ 1BðjÞs

x
Bþ 1AðiÞ1BðjÞs

x
E: (21)

This is why rxab ¼ rx can be thought of as ‘baseline’ per-capita growth. We define the average

selection for resistance in population x as

sx ¼ sxAf
x
A þ sxBf

x
B þ sxEf

x
AB: (22)

Note that the average per-capita growth rate in population x is therefore rx þ sx, that is, average

per-capita growth rate is the sum of the ‘baseline’ per-capita growth rate and the average selection

for resistance.
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Metapopulation LD and MDR
Next, consider metapopulation (or total) LD and MDR. First, let px ¼ Ix=

PN
j¼1

I j be the fraction of

total infections in population x. Then the metapopulation quantities equivalent to Equations (16) are

�fi ¼
XN

x¼1

pxf xi and �fij ¼
XN

x¼1

pxf xij : (23)

The standard measure of linkage disequilibrium at the level of the metapopulation is

DM ¼ �fAB��fA�fB: (24)

which in terms of the population level variables is

DM �
XN

x¼1

pxDx þ
XN

x¼1

pxf xA f
x
B �ð

XN

x¼1

pxf xAÞð
XN

x¼1

pxf xBÞ ¼ �Dþ covðfA; fBÞ (25)

where �D is the average population LD and covðfA; fBÞ is the spatial covariance between frequency of

resistance to drug A and frequency of resistance to drug B.

Using these variables, the three dynamical equations for studying metapopulation MDR are

d�fA

dt
¼�sA�fAð1��fAÞþ�sBDM þ�sE�fAð1��fAÞ

�fAB
�fA

þð��Aþ ��AÞð1��fAÞ� ð��a þ ��aÞ�fA þ covðr; fAÞþ�fBcov sB;
fAB

fB

� �

;

d�fB

dt
¼�sB�fBð1��fBÞþ�sADM þ�sE�fBð1��fBÞ

�fAB
�fB

þð��Bþ �BÞð1��fBÞ� ð��b þ ��bÞ�fB þ covðr; fBÞþ�fAcov sA;
fAB

fA

� �

;

dDM

dt
¼ ð�sA ��sþ�sB��sÞDM �ð��þ ��ÞDM þ�sE�fab�fABþ covðr;DÞþ coskewðr; fA; fBÞ

þ
X

d2fA;Bg

ð1��fdÞ�fdcov sd;
fAB

fd

� �

þð1��fAÞLAa��fALaA þð1��fBÞLBb ��fBLbB:

(26)

Note that in the equation dDM=dt, there are terms involving Lij which we chose to neglect in

Equation (7) given in the main text. These terms are

LAa ¼ cov �A þ �A;
faB

1� fA

� �

and LaA ¼ cov �aþ �a;
fAB

fA

� �

; (27)

while

LBb ¼ cov �B þ �B;
faB

1� fB

� �

and LbB ¼ cov �bþ �b;
fAB

fB

� �

: (28)

Thus the expression

ð1��fAÞLAa��fALaA þð1��fBÞLBb ��fBLbB (29)

in the equation dDM=dt is the effect upon DM of spatial heterogeneity in mutation and recombination

rates (�x
i 6¼ �y

i and/or �xi 6¼ �yi ) coupled with differences in the proportion of infections with allele i

(e.g. i¼ A or i¼ a) that are resistant to the other drug (j¼ B). In particular, populations in which infec-

tions are more likely to acquire resistance through mutation/recombination disproportionately affect

metapopulation LD through an increase in doubly-resistant infections. However, these terms are

likely to be quite small because they require that substantial differences in mutation/recombination

rates exist between populations. Since these terms are unlikely to be a significant contributor to the

dynamics of DM, we ignore them in the main text.

There remains a number of other quantities in system (Equation 26) that we now define in more

detail. First, the probability that an infection resistant to drug d is found in population x is
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px
f xd
�fd
: (30)

For example, if we apply our variable definitions, it is straightforward to show that

px
f xA
�fA
¼

IxAb þ IxAB
PN

y¼1
ðIyAb þ I

y
ABÞ

: (31)

Next, to compute the metapopulation-level selection coefficients, and mutation/recombination

rates, we need to compute the weighted average of the population quantities, where the weights

are the probability that an infection of a particular type is in population x (calculated above). Apply-

ing this logic, the metapopulation-level selection coefficients and epistasis are

�si ¼
XN

x¼1

px
f xi
�fi
sxi and �sE ¼

XN

x¼1

px
f xAB
�fAB

sxE: (32)

The average selection for resistance in the metapopulation is

�s¼�sA�fAþ�sB�fBþ�sE�fAB: (33)

The per-capita mutation and recombination rates follow similarly. Recall that �‘ and �‘ are the

per-capita rates at which infections gain allele ‘. Thus, for example,

��A ¼
XN

x¼1

px
1� f xA

1��fA
�x
A and ��a ¼

XN

x¼1

px
f xA
�fA
�x
a: (34)

Similar calculations can be made to arrive at ��B, ��b, and the various ��‘. The total per-capita muta-

tion and recombination rates are

��¼ ��a þ ��Aþ ��bþ ��B and ��¼ ��a þ ��A þ ��bþ ��B: (35)

Covariance and coskewness
Finally, we also use a number of covariance terms and a coskewness terms. Let E½c� denote the

expectation of the quantity c. Then applying the definition of covariance, we have

covðfA; fBÞ ¼E½fAfB��E½fA�E½fB�

¼
XN

x¼1

pxf xA f
x
B �ð

XN

x¼1

pxf xAÞð
XN

x¼1

pxf xBÞ

Following the same procedure, we can calculate covðr; fAÞ and covðr;DMÞ. When the covariance

involves quantities that also specifically depend upon particular allele(s), the only difference is that

when computing the expectation the probability used is the probability that an allele ‘ is in popula-

tion x. For example,

cov sA;
fAB

fA

� �

¼E sA
fAB

fA

� �

�E½sA�E
fAB

fA

� �

¼
XN

x¼1

px
f xA
�fA
sxA
f xAB
f xA

�
XN

x¼1

px
f xA
�fA
sxA

 !
XN

x¼1

px
f xA
�fA

f xAB
f xA

 !

¼
XN

x¼1

px
sxAf

x
AB

�fA
�

XN

x¼1

px
f xA
�fA
sxA

 !
XN

x¼1

px
f xAB
�fA

 !

¼
XN

x¼1

px
f xAB
�fA

ðsxA��sAÞ:

The covariance terms involving the recombination and mutation rates follow similarly, with the

appropriate exchanges of variables. Finally, we have the coskewness term, which can be calculated

as
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coskewðr; fA; fBÞ ¼E ðr�E½r�ÞðpA�E½fA�ÞðfB�E½fB�Þ½ �
¼ covðr; fAfBÞ��fBcovðr; fAÞ��fAcovðr; fBÞ:

Specific examples
Equilibrium analysis of metapopulation consisting of independent
populations
This is a version of one of the models presented in Lehtinen et al., 2019. The metapopulation con-

sists of N populations. The populations are independent (i.e, there is no migration between popula-

tions), and each population is assumed to be of a fixed size of unity, so Sx ¼ 1�
P

ij I
x
ij. Resistance is

gained and lost through unbiased mutation occurring at rate m and there is no recombination.

Therefore

dIxij

dt
¼ bx

ijS
x �ax

ij � 1aðiÞt
x
A� 1bðjÞt

x
B �ð1� 1AðiÞ1BðjÞÞt

x
AB

� �

Ixij þ�ð
X

‘

ðIx‘j þ Ixi‘Þ� 4IxijÞ: (36)

Let Dzxd and DzxE denote the contribution of parameter z to the additive selection coefficient (for

drug d-resistance) and epistasis, respectively, in population x. Specifically,

Dbx
A ¼ bx

Ab �bx
ab; Dbx

B ¼ bx
aB �bx

ab; Dbx
E ¼ bx

ABþbx
ab�bx

Ab �bx
aB

Dax
A ¼ ax

Ab �ax
ab; Dax

B ¼ ax
aB �ax

ab; Dax
E ¼ ax

ABþax
ab �ax

Ab �ax
aB:

(37)

Then if we let rxij denote the per-capita growth term of an ij-infection in subpopulation x (the first

term in brackets in Equation (36)), we can partition this as

rxij ¼ rx þ 1AðiÞs
x
Aþ 1BðjÞs

x
Bþ 1AðiÞ1BðjÞs

x
E (38)

where

rx ¼ bx
abS

x �ax
ab� t

x
A� t

x
B� t

x
AB

sxA ¼ Dbx
AS

x �Dax
Aþ t

x
A

sxB ¼ Dbx
BS

x �Dax
Bþ t

x
B

sxE ¼ Dbx
ES

x �Dax
E þ t

x
AB

(39)

This notation and formulation differs from that of Lehtinen et al., 2017; Lehtinen et al., 2019 in

that they assumed costs were multiplicative, that is,

bx
ab ¼ bx; bx

Ab ¼ bxcxbA
; bx

aB ¼ bxcxbB
; bx

AB ¼ bxcxbA
cxbB

(40)

and

ax
ab ¼ ax; ax

Ab ¼
ax

cxaA

; ax
aB ¼

ax

cxaB

; ax
AB ¼

ax

cxaA
cxaB

(41)

where 0� cxb‘
� 1 and 0� cxa‘

� 1 (note the slightly different notation used for multiplicative costs in

1). There are two consequences of multiplicative costs . First, multiplicative costs produce epistasis.

For the model of Lehtinen et al., 2017; Lehtinen et al., 2019:

sxE ¼ bxð1� cxbA
Þð1� cxbB

ÞSx �ax
ð1� cxaA

Þð1� cxaB
Þ

cxaA
cxaB

þ t
x
AB: (42)

Thus, in this model, there exists epistasis whenever there is a cost of resistance or drugs are pre-

scribed in combination, t AB. More specifically, transmission costs and combination treatment will

produce positive epistasis, while duration of carriage costs will produce negative epistasis. Inclusion

of epistasis (through multiplicative costs) is not necessarily a problem, and for epidemiological rea-

sons multiplicative costs may be preferable. Indeed, because epistasis plays a central role in multilo-

cus dynamics, it is valuable to recognize if/when epistasis is occurring. However, our analysis in the

main text focused upon how population variation in susceptible densities can create correlations in

the selection coefficients, favoring MDR, and so we excluded the possibility of epistasis.
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The second consequence of multiplicative costs is that they have implications for the cost of resis-

tance within a population. For the above model, and assuming cxaA
¼ caA

, cxbA
¼ cbA

, the selection

coefficient for resistance to drug A can be written

sxA ¼ t
x
A�ax 1� caA

caA

�bx 1� cbA

cbA

Sx: (43)

From Equation (43), we see that the costs of resistance depend upon the population’s epidemio-

logical parameters (by assumption). Specifically, ignoring concomitant effects upon Sx, populations

that are more transmissible (larger bx) with a shorter duration of carriage (larger ax) pay higher costs

of resistance due to how the cost parameters interact with the epidemiological parameters. For

example, if there were no costs to transmission (cbA
¼ 1), then Equation (43) predicts that popula-

tions with longer duration of carriage (smaller ax) are more likely to become resistant, because they

pay disproportionately lower costs. Indeed, if the populations represent serotype, than this is an

example of epistasis between serotype and resistance, which favors LD between duration of carriage

and resistance.

To put this in a biological context, if (for example) the populations correspond to the different

capsular serotypes of S. pneumoniae, it is possible that the differences between capsules interact

with the mechanism of resistance so as to make resistance more costly for more transmissible capsu-

lar serotypes or those capsular serotypes associated with longer duration of carriage (multiplicative

costs), but it is also possible that no interaction occurs between the capsule differences and the

mechanism of resistance (additive costs) or that resistance is less costly for more transmissible sero-

types or for capsular serotypes associated with a shorter duration of carriage.

Irrespective of whether the costs are multiplicative or additive, we would attach the constraints

that 0 � bx
ij � bx

ab and 0 � ax
ab � ax

ij, that is, carriage of one or more resistance alleles will never

increase transmissibility or decrease duration of carriage, respectively; otherwise there are no costs.

As an example, if we were interested in attaching additive resistance costs to transmission, if we let

cxbd
and cxbAB

be the (additive) transmission cost of resistance to drug d and epistatic transmission

cost, respectively, in population x, so that

bx
ij ¼ bx

ab� 1AðiÞc
x
bA
� 1BðiÞc

x
bB
� 1ABðijÞc

x
bAB

; (44)

then we could attach the constraints

bx
ij ¼minð0; bx

ab� 1AðiÞc
x
bA
� 1BðiÞc

x
bB
� 1ABðijÞc

x
bAB

Þ; (45)

or simply assume that

cxbA
þ cxbB

þ jcxbAB
j � bx

ab: (46)

There are many possible ways of implementing the constraints. One point to note is that even

with additive costs, the choice of constraints can also potentially create epistasis; this could occur in

the case of Equation (45).

In Figure 3, we consider three scenarios; whenever possible we choose parameter values to

agree with those of Figure 4 in Lehtinen et al., 2019. In each scenario, we assume there are 20 inde-

pendent populations, that the per-capita mutation rate is � ¼ 10
�10, and there is no epistasis, sxE ¼ 0.

In subplot 3a, we set bx
ab ¼ 2, while duration of carriage varies among populations from ax

ab ¼ 0:25 to

ax
ab ¼ 1:75. In subplot 3b we set ax

ab ¼ 0:5, while transmission varies among populations from bx
ab ¼ 1

to bx
ab ¼ 3. In both subplots 3a and 3b, Dax

A ¼ Dax
B ¼ 0, while Dbx

A ¼ Dbx
B ¼ �0:1. Finally in subplot 3

c, Dbx
A ¼ Dbx

B ¼ 0, while duration of carriage varies among populations from ax
ab ¼ 0:25 to ax

ab ¼ 1:75,

with Dax
A ¼ Dax

B ¼ 0:05.

Transient dynamics and MDR in Streptococcus pneumoniae
Here we use a variant of the model originally proposed by Lehtinen et al., 2017, Lehtinen et al.,

2019 in which the populations represent different serotypes. Resistance is gained and lost through

unbiased mutation at a per-capita rate m and there is no recombination of resistance loci.
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Applying these assumptions and using the notation presented with our model from the main

text, this yields

dIxij

dt
¼ bx

ijnðI;xÞS�ax
ij � 1aðiÞt A� 1bðjÞt B�ð1� 1AðiÞ1BðjÞÞt AB

� �

Ixij þ�
X

‘

ðIx‘jþ Ixi‘Þ� 4Ixij

 !

(47)

where

nðI;xÞ ¼ 1�

P

ij I
x
ij

PN
k¼1

P

ij I
k
ij

�
1

N

" # !!

(48)

is a balancing function intended to mimic the stabilizing effect adaptive host immunity has upon

serotype diversity (! controls the strength of this effect; see Lehtinen et al., 2017; Lehtinen et al.,

2019). The treatment rates in Equation (47) are assumed to be independent of serotype. Note that

although we could mechanistically model the susceptible hosts available to each subpopulation, Sx,

it is more straightforward and computationally simpler to use the phenomenological model given

above in which Sx ¼ nðI;xÞS. The function nðI;xÞ ensures that Sx has the two properties we are inter-

ested in: (i) there can be variation across populations of available susceptibles, and (ii) this variation

is linked to population attributes (e.g. transmissibility and duration of carriage). The primary conclu-

sions of our analysis would hold if a mechanistic model for Sx were used instead.

If we let rxij denote the per-capita growth term of an ij-infection belonging to serotype x (the first

term in brackets in Equation (47)), we can partition this as

rxij ¼ rx þ 1AðiÞs
x
Aþ 1BðjÞs

x
Bþ 1AðiÞ1BðjÞs

x
E (49)

where if we use the notation introduced in Equation (37),

rx ¼ bx
abnðI;xÞS�ax

ab� t A� t B� t AB

sxA ¼ Dbx
AnðI;xÞS�Dax

Aþ t A

sxB ¼ Dbx
BnðI;xÞS�Dax

Bþ t B

sxE ¼ Dbx
EnðI;xÞS�Dax

E þ t AB

(50)

For simplicity, we keep total population size constant, and so set S¼ 1�
PN

x¼1

P

ij I
x
ij.

The simulations in Figure 5 assume the metapopulation is initially treated at per-capita rates

ðt A; t B; t ABÞ ¼ ð0:12; 0; 0Þ, until t ¼ 1000 when these rates switch to ðt A; t B; t ABÞ ¼ ð0:07; 0:1; 0Þ.

Other parameters values used are N ¼ 12, ! ¼ 3, Dbx
A ¼ Dbx

B ¼ �0:2, Dax
A ¼ Dax

B ¼ 0:05 and � ¼ 10
�8.

Finally, because Streptococcus serotypes differ based upon duration of carriage and transmissibility,

and there is evidence of a positive correlation between the two (Weinberger et al., 2009;

Zafar et al., 2017), ax
ab was chosen to assume evenly spaced parameter values from ax

ab ¼ 0:2 to

ax
ab ¼ 0:7, while bx

ab was chosen to assume evenly spaced parameter values from bx
ab ¼ 3:25 to

bx
ab ¼ 3. Cost epistasis, when it is present, is assumed to solely effect transmissibility (i.e. Dax

E ¼ 0).

When there is positive epistasis, Dbx
E ¼ 0:065, whereas for negative epistasis, Dbx

E ¼ �0:015.

Contrasting drug prescription strategies in a hospital-community setting
When we model the hospital and community, we use Equation (2) and assume the susceptible host

density is controlled by

dSx

dt
¼ �x� dSx �mx!ySx þmy!xSy�

X

ij

bx
ijI

x
ijS

x

þ
X

ij

ðax
ij� dÞIxijþ

X

ij

1aðiÞt
x
Aþ 1bðjÞt

x
Bþð1� 1AðiÞ1BðjÞÞt

x
AB

� �
Ixij

(51)

where �x is the influx of new hosts and d is the background mortality rate.

In the hospital/community model, we assume population C is the ‘community’ and population H

is the ‘hospital’. Therefore, we let �H ¼ 0, and mC!H ¼ m=
P

ij I
C
ij be the rate at which individuals are

admitted to the hospital, which is independent of population size. Individuals exit the hospital at a
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constant rate mH!C, so they spend on average 1=mH!C time units in hospital (assuming background

mortality is low). The specification of the migration rates in this way allows us to ensure the ‘commu-

nity’ is always much larger than the ‘hospital’. In Figure 6, we assumed that the total prescription

rate per population, t C or t H , was the same for each strategy, and that drugs are prescribed at 15�

the rate in the hospital versus the community, that is, t H ¼ 15t C. For ‘mixing’, this means

ðt x
A; t

x
B; t

x
ABÞ ¼ ðt x=2; t x=2; 0Þ, whereas for ‘combination’, this means ðt x

A; t
x
B; t

x
ABÞ ¼ ð0; 0; t xÞ.

Finally, for ‘cycling’ drug A and B were rotated from hospital to community every 50 time units so

that either ðt x
A; t

x
B; t

x
ABÞ ¼ ðt x; 0; 0Þ or ðt x

A; t
x
B; t

x
ABÞ ¼ ð0; t x; 0Þ depending on the rotation. Therefore

in Figure 6 the period is of length T ¼ 100. In Figure 6, we numerically integrate the system until

t ¼ 10
4; the final state at t ¼ 10

4 is then what is plotted for the combination and mixing scenarios,

whereas for cycling we plot the average state across the last two rotations (i.e. the average state

over the final period, from t ¼ 9; 900 to t ¼ 10
4). Figure 7 shows how changing the length of time

between drug rotations affects the evolution of single- and multi-drug resistance. Specifically, when

drug rotations are frequent (with period of T ¼ 1), cycling behaves like mixing and so positive LD is

produced (Figure 7a). As drug rotations become less frequent (period of T ¼ 24 and T ¼ 160),

cycling generates a negative covariance in selection, which in turn produces negative LD (Figure 7a).

Thus, when drug rotations are more frequent, single-drug resistance is delayed and emerges at

higher treatment rates, but the evolution of MDR occurs at lower treatment rates (Figure 7b). When

drug rotations are infrequent, single-drug resistance emerges at lower treatment rates, but MDR

evolution is delayed, emerging at higher treatment rates (Figure 7b). Parameters used in Figure 6

and Figure 7 were bx
ab ¼ 2, Dbx

A ¼ Dbx
B ¼ �0:4, ax

ab ¼ 0:1, Dax
A ¼ Dax

B ¼ 0:02, d ¼ 0:01, �C ¼ 0:2,

�H ¼ 0, mH!C ¼ 0:5, m ¼ 0:2, � ¼ 10
�7, s ¼ 0.
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Figure 7. Time between drug rotations affects the evolution of both single- and multi-drug resistance. When drugs are rotated every 0.5 time units

(period of T ¼ 1; magenta curves), cycling behaves like mixing and positive LD is generated. As we increase the time between rotations (period of

T ¼ 24 and T ¼ 160), a negative covariance in selection is generated, producing negative LD (dashed and solid blue curves). In panel a we show the

metapopulation LD, DM, while in panel b, we show the frequency of resistance in the metapopulation. When drugs are rotated frequently, single drug

resistance emerges at higher treatment rates but MDR emerges at lower treatment rates, as compared to when drugs are rotated infrequently. Thus,

there is a trade-off (indicated by the arrows in panel b) associated with time between drug rotations: we can delay single drug resistance but promote

MDR (frequent drug rotations), or delay MDR but promote single drug resistance (infrequent drug rotations). In all cases, we integrated the system until

t ¼ 10
4, then averaged the system state over the final two rotations (i.e. over a single period). The remaining parameter values are provided in Materials

and methods ’Contrasting drug prescription strategies in a hospital-community setting’.
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