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Abstract

The female reproductive system can face serious disorders and show reproductive abnormalities under the influence
of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting differ-
ent components of this system, may make female fertility a serious challenge. Animal studies have demonstrated
that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capac-
ity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species,
induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number

of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb
the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs
can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have
determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the develop-
ment of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplas-
tics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health

of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims
to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss
the results of animal experiments and human research focusing on cellular and molecular pathways.
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Introduction

Reproductive health, as one of the most important indi-
cators of quality of life, is strongly related to the con-
dition of the human reproductive system and can be
changed under the influence of many factors [1, 2]. Infer-
tility, which refers to the failure to develop a pregnancy
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after 12 months of regular unprotected sex, currently
affects the lives of 50 to 80 million women [3]. Accord-
ing to WHO reports, female factors contribute to about
37% of infertility problems, while male factors account
for about 29%, and combined female and male factors
account for about 18% of the causes. The remaining 16%
are genetic factors or unexplained or idiopathic infertil-
ity [4, 5]. The female reproductive system, in addition to
controlling the development of secondary sexual charac-
teristics, is also the location of gametogenesis and secre-
tion of sex hormones and embryo development [6]. Any
impairment in the function and even the structure of this
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system can lead to reproductive disorders such as prema-
ture puberty, abnormal cycle, premature ovarian insuffi-
ciency/menopause, endometriosis, fibroids, and adverse
pregnancy outcomes and eventually cause this system to
fail in females [7, 8]. Some of the damages inflicted on the
female reproductive system may result from biological
pollutants, which can stem from various sources such as
medications, agricultural chemicals, chemicals found in
cosmetic and hygiene products, and food items [9].

Currently, due to their versatility, durability, and cost-
effectiveness, plastic materials are considered the most
widely used substance globally. However, these sub-
stances are permanent pollutants in every ecological part
of the world [10]. Bottles, bags, disposable materials, and
untreated wastewater are among the most common and
main sources of plastics [11, 12]. The term microplastics
(MPs) was used in 2004 to describe microscopic plas-
tic particles in the marine environment [13] and finally,
microplastics were defined as particles 100 nm to 5 mm,
and nanoplastics (NPs) were defined as particles less than
100 nm. These small particles are classified into two cat-
egories, MPs and NPs, which are collectively known as
micro (nano) plastics (MNPs) [10, 14]. These particles
with different sizes, colors, and shapes are found in fresh-
water, soil, air, and some food products [15-17]. Plas-
tics and small particles resulting from them damage the
ecosystem and all life on earth, especially human health,
and continuous exposure to these substances, including
MNPs, can be the main source of diseases and disruption
of human fertility [18].

In recent years, the negative effects of MNPs on fertility
have been widely investigated in animal models. Evidence
shows that MNPs cause reproductive toxicity by disrupt-
ing the structure and function of the uterus, ovaries, and
endocrine glands as well as the hypothalamus-pituitary
axis [19, 20]. Exposure to these polluting particles causes
fibrosis in these organs through the accumulation of
reactive oxygen species (ROS) and the activation of the
relevant signaling pathways [21, 22]. Induction of oxida-
tive stress, inflammation, apoptosis, and malignancy in
the reproductive organs of females can affect the process
of ovulation and generally put their fertility and health
at risk [23]. By inducing apoptosis in granulosa cells and
also reducing the number of ovarian follicles, these sub-
stances change the levels of androgens in this organ and
then disrupt the reproductive endocrine system [24].

In human studies, the negative effects of MNPs on
women’s fertility have received much attention in recent
years. The available evidence points to a significant rela-
tionship between continuous exposure to MNPs and
the reduction of women’s fertility [25, 26]. These sub-
stances, by accumulating in human reproductive organs
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and exerting toxic effects, can compromise their func-
tion [27]. It has been shown that these pollutant particles
can damage cell components through intracellular path-
ways and disrupt the cell cycle [28]. MNPs, in addition
to maternal damage, during pregnancy and lactation by
passing through the placenta and penetrating various
organs of the fetus, including the heart, liver, lungs, and
spleen [29], and affecting their reproductive and nervous
systems, cause transgenerational toxicity and disturb the
embryonic development [30, 31]. The invasion of these
particles into the human trophoblast and the change of
gene expression in its cells can lead to common disor-
ders in the immune system of the mother and the fetus
[32]. Following the suppression of the mother’s immune
system due to exposure to these substances, the risk of
miscarriage increases, and the mother’s health is also
endangered [33]. The toxic effects of MNPs, as well as the
vulnerability of the female reproductive system to these
exogenous substances, have raised concerns about female
fertility and focused much attention on the identification
of these environmental hazards [34]. This review aims to
describe the harmful impacts of micro/nano plastics on
various aspects of female reproductive system and dis-
cuss the animal and human research focusing on cellular
and molecular mechanisms.

Effects of microplastics and nanoplastics

on reproductive health: evidences from animal
studies

Microplastics and nanoplastics, as toxic substances, can
accumulate in reproductive organs and disrupt the repro-
ductive capacity of various animal species [35]. So far,
numerous studies have been conducted on various ani-
mals and animal models regarding the effects of micro-
plastics on the female reproductive system, summarized
in Table 1. In male rats, MNPs could enter the lumen
of the seminiferous tubule by disrupting the integrity of
the blood-testis barrier (BTB) and reducing the num-
ber of seminiferous epithelial cells and Sertoli cells [19,
36, 37]. Acute exposure to polystyrene nanoplastics (PS-
NPs) in mouse Sertoli cells causes the destruction of BTB
through the destruction of tight junction proteins and
the reduction of antioxidant capacity [38, 39]. BTB dam-
age may lead to further disruption of the internal struc-
ture of the spermatogenic tube including lumen atrophy
and hyperplasia [19, 40], which can lead to testicular his-
tological changes, abnormal spermatogenesis, and serum
hormone secretion interference in mice [20]. The effect
of MNPs on testosterone secretion is dose-dependent
[41] and various studies show that exposure to NPs can
significantly reduce luteinizing hormone (LH), follicle-
stimulating hormone (FSH), and testosterone levels [19,
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20, 41]. In addition, MNPs can enter testicular cells,
including Leydig cells, Sertoli cells, and spermatogonia,
and cause the production of large amounts of ROS. Stud-
ies have shown that NPs increase the production of ROS
by disrupting the function of the mitochondrial mem-
brane, which causes more damage to the mitochondria
[36, 42—44]. Exposure to MNPs through the gastrointes-
tinal (GI) tract causes apoptosis in mouse sperm cells at
all stages, and on the other hand, it can also lead to an
inflammatory response in that area by stimulating the
migration of T helper 17 cells in the testis [41, 45-47].
Long-term exposure to NPs, by inhibiting the autophagy
system, can cause serious damage to the cell and also lead
to the formation of abnormal acrosome [40, 48]. Finally,
it can be mentioned that for male, the damage caused
by microplastics includes the creation of the abnormal
structure of the testicles and sperm, reduction of sperm
life, and endocrine disorders caused by oxidative stress,
inflammation, apoptosis of testicular cells, autophagy,
abnormal cytoskeleton, and abnormal axis of hypothala-
mus-pituitary-testis [49].

In females, exposure of the GI tract to MNPs can
reduce the ovarian mass-to-body mass ratio, the num-
ber and volume of growing follicles, and antral folli-
cles. It can also lead to a reduction in the thickness of
the granular layer of secondary follicles or a decrease
in granulosa cell count. Also, exposure to MNPs can
increase ovarian fibrosis, primary cysts, and atretic
follicles and affect female ovarian reserve and fertility
[21, 24]. By damaging the structure of the uterus and
endometrium, as well as narrowing the uterine glands,
these substances can cause embryo implantation to fail
[22, 55, 57]. Also, exposure to MPs can be an indirect
reason for abortion by disrupting the balance in mater-
nal immunity during pregnancy [33]. MNPs GI tract
exposure, also by decreasing the level of estradiol and
progesterone and increasing the level of LH and FSH in
the serum, causes disorders in female endocrine glands
[24, 52]. The effects of exposure to MNPs are dose-
dependent and can increase oxidative stress by reduc-
ing the level of antioxidant enzymes and increasing the
level of lipid peroxide [21, 51, 52]. Also, MNPs increase
inflammation by increasing the level of inflammatory
cytokines and decreasing the level of anti-inflamma-
tory cytokines, thereby disrupting the structure of the
ovary and uterus and endocrine function [46, 47, 76].
So, exposure to MNPs is associated with a decrease
in the number and diameter of small uterine arter-
ies and a reduction in endometrial thickness, leading
to implantation failure. These small particles can also
induce oxidative stress, inflammation, increased apop-
tosis, and even malignancy in the female reproductive
system (Fig. 1). The transfer of NPs from the mother’s
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body to the fetus can accumulate in their various tis-
sues, including the brain, liver, lungs, kidneys, and
heart, causing disturbances in metabolism, reproduc-
tive function, immune function, neural development,
and cognitive function [77, 78]. Also, maternal expo-
sure to MNPs can cause transgenerational toxicity and
premature death in children [49, 79].

Impacts of microplastics and nanoplastics

on the female reproductive system: a focus

on animal models

Studies conducted on animals have shown that MNPs, as
hazardous particles, can affect the female reproductive
system in various ways. The impacts of these substances
have been thoroughly examined, particularly in animal
models. By changing its structure, MNPs disrupt the nor-
mal function of reproductive system components, includ-
ing the uterus and ovaries. The structural changes of the
uterus can have extensive effects on female reproductive
health by disrupting the implantation of the embryo [80].
This change in the structure and function of the ovaries
may have unintended consequences, including a decrease
in egg production or the creation of non-viable eggs, as
well as disruption of the ovulation process [49]. MNPs
can reduce the size and number of oocytes by activat-
ing or suppressing different signaling pathways, and also
decrease the number of follicles in the ovaries, thereby
affecting ovulation in the female reproductive cycle [25].
Since follicles and granulosa cells are crucial for hormone
production and oocyte development, their loss leads to
hormonal imbalance [81]. Exposure to MNPs increases
LH, FSH, and testosterone levels while decreasing estra-
diol and progesterone, potentially leading to female infer-
tility [24]. Additionally, exposure to MNPs by increasing
the level of ROS and inducing oxidative stress increases
the level of collagen and fibronectin in the uterine tissue,
contributing to the progression of tissue fibrosis in this
organ [49]. The accumulation of ROS in both ovaries and
the uterus leads to increased expression of proteins asso-
ciated with fibrosis and tissue damage [22]. Exposure to
MNPs increases the level of inflammatory cytokines and
decreases the level of anti-inflammatory cytokines, indi-
cating the adverse effects of these substances on ovarian
and uterine tissues [82]. Lower doses of MNPs tempo-
rarily enhance the expression of antioxidant enzymes
by activating signaling pathways such as Nrf2/ARE.
However, higher doses or prolonged exposure to MNPs
inhibit these pathways, intensify oxidative stress, and
promote ovarian fibrosis [83]. Also, exposure to high lev-
els of MNPs may trigger inflammation and disrupt the
immune system [84]. These substances also affect fertil-
ity by inducing gene mutation in gametes [85]. In mice,
long-term exposure to MNPs causes a decrease in the
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Fig. 1 The effects of micro/nano plastics against the female reproductive system. Accumulation of MNPs in the tissue of the uterus and ovaries
leads to oxidative stress, inflammation, and apoptosis in the cells of these tissues, and by weakening the function of these organs, it disrupts their
efficiency. In uterine tissue, the reduction of implantation rate can be one of the serious consequences of exposure to MNPs. These plastic particles

may also cause ovarian tissue epithelial cells to become cancerous

quality of oocytes and an increase in cell apoptosis in
the endometrium. In general, MNPs can accumulate in
reproductive organs and, by inducing oxidative stress,
apoptosis, reducing the number of follicles, and affecting
the hormonal profile, have significant impacts on repro-
ductive health [32, 49]. In the following, we will thor-
oughly assess and detail the harmful effects of MNPs on
the female reproductive system in animal models.

Function and structure of ovaries and uterus

One of the main causes of infertility in females is dys-
function of the uterus and ovaries [46]. Exposure to
polystyrene microplastics (PS-MPs) can disrupt female
reproductive performance and fertility by causing dam-
age to uterine and ovarian structures [24, 49]. Several
studies have shown that MNPs GI tract exposure reduces
the number and volume of growing follicles in the ovaries
[21, 24, 52, 55] and causes a decrease in the thickness of
the granular layer in secondary follicles and also reduces
the number of granulosa cells and corpus luteum. On the
other hand, these substances can increase ovarian fibrosis
and primary cysts [21, 46, 51]. Also, exposure to MNPs
reduces the number of antral follicles and increases the
number of atretic follicles in the ovaries, which can ulti-
mately affect female ovarian reserve and fertility [57,
86]. In a study, zebrafish that were treated with PS-MPs
for 1 to 3 weeks showed the absence of oocyte-follicular
cell layer linkage and oocyte vacuolation [63]. It has also
been reported that gavage of rats with a certain dose of
5 pm PS-MPs leads to disturbance of the cytoskeleton
by reducing the expression of dishevelled associated

activator of morphogenesis 1 (DAAM-1) and a-tubulin
in ovarian cells [51]. On the other hand, exposure of mice
to different doses of PS-MPs with a size of 40-48 pum
showed dilation of the abdominal aorta and fallopian
tubes [56].

According to reports, MNPs GI tract exposure, by
reducing the number and diameter of small uterine
arteries and reducing the thickness of the endome-
trium, causes damage to the structure of the uterus and
endometrium and in turn, disrupts the implantation of
the fetus [52, 79]. Also, MNPs can lead to uterine fibro-
sis, narrowing of the uterine glands, and the density of
its extracellular matrix [22, 49]. In one study, the histo-
pathological examination of the uterus of mice exposed
to a combination of PS-MPs and Pb showed a decrease
in uterine glands and glandular lumen thickness and an
increase in the number of atretic follicles and interstitium
density. In addition, the thickness of the endometrium
in these mice was significantly reduced with the loss of
glands and lamina propria structures [52]. It has been
shown that in Oryzias melastigma, a combination of PS-
MPs and phenanthrene can inhibit ovarian maturation
and increase the risk of follicular atresia [87].

The weight of the reproductive organs is an indica-
tion of the growth, health, and function of the repro-
ductive system [88]. Exposure to PS-MPs significantly
reduces the growth coefficient of the body and organs
of the uterus and ovary, as well as the uterus and ovary
coefficient in female mice [24, 52]. On the other hand,
oxidative stress caused by exposure to MPs can cause
histological abnormalities in ovaries such as vacuolation
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in ooplasm, granulosa cells and interstitial cells, corona
radiata disorder, and micronuclei formation in the egg
nucleus [25]. Also, PS-MPs weaken the function of ova-
ries by reducing the level of FSH and can cause infertility
in females [24]. Exposure of female mice to Bisphenol A,
which is used in the manufacture of various plastics, also
causes ovarian cysts and stromal polyps [89].

The ovulation process

The number of eggs produced is the main indicator to
evaluate the functioning of the ovaries [90]. Environmen-
tal pollutants can have adverse effects on germ cells and
the overall process of reproduction during maturation or
egg formation [91]. Studies have shown that exposure to
MPs affects the quality of eggs by increasing the produc-
tion of ROS, disrupting oocyte maturation, and induc-
ing apoptosis, and subsequently, reducing the blastocyst
rate, fertilization, and fertility [57, 58]. MPs can reduce
oocyte production through Wnt/p-Catenin and NLRP3/
Caspase-1 signaling pathways, and in addition to reduc-
ing the number and size of oocytes, it also reduces their
survival rate [62, 92]. Several findings have shown that
PS-NPs can significantly increase apoptosis and necro-
sis in oocytes after several generations and by destroying
the spindle structures or actin assembly, they can dis-
rupt the meiotic maturation of oocytes [21, 46, 58, 59].
Also, exposure to PS-MPs decreases the first polar body
extrusion rate, glutathione (GSH) level, mitochondrial
membrane potential, and endoplasmic reticulum calcium
([Ca*"]ER) in oocytes [57].

It has been found that exposure to PS-MPs leads to
atrophy of the corpus luteum and eventually to a decrease
in its number. Also, these substances play a role in reduc-
ing the growth and total number of ovarian follicles and
can cause the production of empty follicles [24, 39, 66].
In confirmation of these findings, Haddadi et al. reported
that PS-MPs can lead to altered folliculogenesis in rats
[51]. In a study on zebrafish, it was found that exposure
to a combination of PS-MPs and 17a-Methyltestosterone
(MT) leads to vacuolization and a decrease in mature
oocytes, as well as loss of communication between eggs
and follicular cell layers, and this damage, becomes more
severe over time. In addition, this decrease in the num-
ber of mature oocytes may occur due to the decrease
in LH and FSH levels [63]. Estradiol, acting as a steroid
hormone, inhibits apoptosis in granulosa cells and luteal
cells, leading to follicular maturation and ovulation.
However, its levels decrease under the influence of MPs
[24, 93]. Furthermore, following external ovarian stimu-
lation, female mice exhibited a reduced likelihood of ovu-
lated oocytes, with a higher proportion of cumulus-free
oocytes retrieved from the oviducts [94].
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Female sex hormones and endocrine disorders

The development, maturity, and function of the female
reproductive system are influenced by the endocrine sys-
tem, which regulates the appropriate hormone levels for
the proper functioning of reproductive processes [95]. As
the main functional units of ovaries, follicles, and granu-
losa cells produce sex hormones and other growth factors
required for oocyte development. Therefore, the loss of
these cells causes a disturbance in the level of sexual and
reproductive hormones [24, 96]. Estradiol (E2), as a ster-
oid hormone, inhibits apoptosis in granulosa and luteal
cells and regulates follicular maturation and ovulation
[93, 97]. Granulosa cell apoptosis can lead to endocrine
disorders. These cells play a crucial role as the primary
producers of E2. When E2 levels decrease due to gran-
ulosa cell apoptosis, it triggers a chain reaction. This
includes an increase in LH and FSH levels, mediated
by negative feedback from the hypothalamic-pituitary-
ovarian (HPO) axis. Consequently, this disruption in the
endocrine system occurs [24, 51, 97, 98].

By accumulating in the reproductive organs and
through the induction of oxidative stress and apopto-
sis, MPs disrupt the function of the endocrine glands as
well as the reproductive system [11, 99, 100]. PS-MPs
can enter hormone-producing cells in the ovaries and
reduce the number of follicles [101]. These substances
also affect the steroid synthesis pathway through the
Hypothalamic-pituitary-gonadal (HPG) axis and then
affect the reproductive endocrine system [102, 103].
During several studies, it was found that after MNPs GI
tract exposure, serum LH, FSH, and testosterone levels
increased in female rats, but serum E2 and progesterone
levels decreased significantly, which could weaken ovar-
ian function, and eventually lead to female infertility [24,
51, 52, 55]. Also, exposure to MNPs reduces the level of
sex steroid hormones such as 17(-estradiol, hatching
rate, and gamete formation in Oryzias melastigma, and
by disrupting the HPG axis, it affects the development of
ovaries and the female reproductive system [66].

MNPs may contain environmental endocrine-disrupt-
ing chemicals (EDCs), which are a group of compounds
with hormone-like biological effects and can disrupt
the endocrine balance by affecting the secretion and
metabolism of sex hormones [104, 105]. Exposure of
female zebrafish to PS-MPs and 17a-Methyltestosterone
(MT) as an EDC for 7 days increased the expression of
cypl9ala mRNA in the ovaries, which in turn plays a role
in the conversion of testosterone to estrogen. MT may
disturb the hormonal balance in the body by increas-
ing the level of testosterone and upregulating cypl9ala
mRNA and causing an increase in serum E2 level [63,
106]. On the other hand, Rong et al. reported that expo-
sure to a certain dose of PS-MPs, MT, and PS-MPs+MT
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for 14 days caused a significant decrease in the levels
of LH, FSH, and E2 in female zebrafish ovaries [63]. A
decrease in the level of LH and FSH, as key factors in
regulating the level of expression of steroid hormones,
reduces the number of mature ovules and delays the
growth of gonads [63, 107, 108]. Also, a study on oys-
ters has shown endocrine disruption in exposure to PS-
MPs [62]. Long-term exposure to PS-MPs and MT often
exacerbates hormonal imbalance by inhibiting the genes
responsible for steroid hormone production and block-
ing their synthesis [63]. Also, exposure to PS-MPs along
with Pb causes more severe damage to the follicles and
causes a further decrease in the level of progesterone and
E2 [52].

Triggering oxidative stress

The main toxicity caused by exposure to MNPs is
increased ROS accumulation and induction of oxida-
tive stress [109]. Oxidative stress can be described as
an imbalance between the production of reactive oxy-
gen species and the body’s ability to deal with it [110],
which can affect egg quality and fertility. Exposure to
MPs causes oxidative stress in the female reproductive
system by increasing the level of ROS [58]. Oxidative
stress caused by contact with MPs appears in a dose-
dependent manner [49]. Investigations revealed that
exposure of the GI tract to MNPs resulted in increased
levels of reactive oxygen species in the ovarian tissue of
rats. Concurrently, there was a decrease in the levels of
antioxidant enzymes such as catalase (CAT), glutathione
peroxidase (GSH-Px), superoxide dismutase (SOD), and
total antioxidant capacity (TAC), while the levels of lipid
peroxide and malondialdehyde (MDA) also increased
[22]. While lower doses of MPs GI tract exposure (e.g.
0.1 mg/day) lead to an increase in the level of antioxidant
enzymes such as SOD, and CAT, this increase is probably
due to the activation of the Nrf2/ARE signaling pathway.
In fact, as a result of oxidative stress, Nrf2 is separated
from keapl in the cytoplasm and after phosphorylation
and transfer to the nucleus, it connects to the ARE part
of the promoter of CAT and SOD genes and increases
the expression of these enzymes [51, 111]. These find-
ings are supported by reports indicating that the level of
Nrf2 and its downstream proteins increases after expo-
sure of ovarian granulosa cells to MPs for one day. How-
ever, with an increase in MPs dosage or exposure time,
the Nrf2 signal is inhibited, and the levels of antioxidant
enzymes decrease, intensifying oxidative stress [51, 55].
The accumulation of ROS in the ovary, by increasing the
expression of the main proteins involved in the Wnt/p-
catenin signaling pathway, causes more activity of this
pathway and more [B-catenin transfer to the nucleus of
ovarian fibroblasts, and in the same way, the expression
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of transforming growth factor-p (TGE-p), a-smooth mus-
cle actin («-SMA), increase fibronectin and other protein
factors related to fibrosis and eventually cause ovarian
fibrosis [21].

Toll-like receptor (TLR4)/NOX2 signaling pathway
can increase ROS production and then oxidative stress
in different stress conditions. It has been reported that
in the uterine tissue of female rodents exposed to MPs,
the activation of Notch and TLR4 pathways and the pro-
duction of ROS, followed by the increase of collagen and
uterine proteins, cause uterine fibrosis [22]. PS-MPs by
increasing the expression of high mobility group box 1
protein (HMGB1) and acetyl- HMGB1, which act as
TLR4 ligands, cause the activation of this receptor, fol-
lowed by the activation of NOX2, and finally by trigger-
ing the TLR4/NOX2 signaling pathway increases ROS
and aggravates oxidative stress [22, 112]. The increase in
ROS caused by exposure to MPs in the uterus increases
the expression of a disintegrin and metalloproteinase
kinase (ADAM kinase), y-secretase, and Notch protein
ligands (Delta and Jagged) and activates the Notch sign-
aling pathway, which this pathway can directly increase
the level of fibronectin and collagen and indirectly
through cross-talk with TGF-p/Suppressor of Mothers
against Decapentaplegic 3 (Smad3) signaling pathway
may be involved in uterine fibrosis [22]. Indeed, follow-
ing the activation of Notch signaling, the notch intra-
cellular domain (NICD) increases the transcription of
genes involved in fibrosis by transferring to the nucleus
and interacting with DNA binding protein CSL. In addi-
tion, NICD can increase the activity of the TGF-3/Smad3
signaling pathway through direct interaction with phos-
phorylated Smad2/3, and thus increase the expression
of proteins involved in fibrosis such as collagen, a-SMA,
matrix metalloproteinases-2/9 (MMP2/9) and Hes family
[22, 113] (Fig. 2). Inhibitors of TLR4/ NADPH oxidase 2
(NOX2) and y-secretase signaling can effectively prevent
increased ROS, Notch activation, collagen expression,
and uterine fibrosis [22, 114, 115]. Experimental results
have shown that PS-MPs can induce pyroptosis and
apoptosis in ovarian granulosa cells through the NLRP3/
Caspase-1 signaling pathway, which can be related to
oxidative stress and the loss of its antioxidant capacity,
and increase the risk of female infertility [46]. It has been
found that co-exposed to PS-MPs and Pb, through the
protein Kinase RNA-Like ER Kinase (PERK)/Eukaryotic
initiation factor-2a (elF2a) signaling pathway, causes oxi-
dative stress and ovarian toxicity and reduces the number
of follicles and oocyte quality in mouse ovaries [52].

Inflammation and reproductive aging
Exposure to high amounts of MPs may cause dam-
age to the nervous system, followed by inflammation
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Fig. 2 Molecular pathways involved in the increase of fibrosis in the ovary and uterus by exposure to micro/nano plastics. The occurrence

of fibrosis in the ovary and uterus can be caused by the accumulation of MNPs in these tissues. By increasing the expression of HMGB1, MNPs

cause the activation of NOX2 after activating the TLR4 receptor, which ultimately increases the expression of Notch ligands by increasing the level
of ROS and ultimately leads to the activation of the Notch signaling pathway. Through cross-talk with the TGF-(3 signaling pathway and the effective
transfer of p-SMAD2/3 to the nucleus, this pathway activates the expression of collagen, a-SMA, MMP2/9, and Hes family, increasing the collagen
fibers in the ECM. Also, the activation of the Wnt/B-catenin signaling pathway as a result of exposure to MNPs, with the effective transfer

of B-catenin to the nucleus, increases the expression of TGF-f3, followed by the increase of collagen in the ECM of the cell which eventually causes

fibrosis in the uterus and ovaries

and disruption of the immune system [84]. Studies have
shown that MPs can induce oxidative stress, inflam-
matory responses, and finally gene mutation in gam-
etes and reduce fertility in animals [85, 116]. Oxidative
stress with ion influx and cell lysis leads to the release
of IL-18, IL-1B, and other inflammatory cytokines [82,
117]. Increased levels of inflammatory cytokines such
as IL-1p, IL-6, IL-8, IL-18, tumor necrosis factor-alpha
(TNF-a), and interferon-gamma (IFN-y) in serum, ovary,
and uterine tissues [21, 57] and also the decrease in the
level of anti-inflammatory cytokines such as IL-4, IL-10,
and IL-13, are the main signs of inflammation caused by
exposure to MPs [22]. TLR4, as a toll-like receptor, can
stimulate the activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) with the
help of tumor necrosis factor receptor-associated factor
6 (TRAF6) and ultimately cause the release of inflam-
matory factors. MPs, such as polyethylene microplastics
(PE-MPs), can increase the amount of ROS in ovaries
and stimulate TLR4 receptors, causing the TLR4/TRAF6
signaling pathway and TRAF6 ubiquitination and then

activate inhibitor of kB kinase (IKK) and finally cause the
activity of NF-«B transcription factors [22, 118]. NF-«kB,
by regulating the transcription of precursor mRNAs,
causes the production of inflammatory cytokines such
as IL-1B, IL-6, and TNF-a, and also through the NLRP3
inflammasome pathway, by activating caspase-1, it leads
to the transformation of pro-IL1p and pro-IL-18 into
mature IL-1B and IL-18, respectively, and thus cause
pro-inflammatory responses [46, 47, 76, 119]. Liu et al.
showed that exposure of mice to PS-MPs for 35 days can
lead to inflammation and reduced oocyte quality [57].
Also, MPs can cause severe apoptosis of epithelial cells
and inflammatory responses in the endometrium [120].
In general, MPs can cause inflammation in the uterus and
ovaries through the induction of oxidative stress and sub-
sequently affect female fertility [49].

Although inflammation is considered a defense
response, this process can also be harmful to body cells
and tissues [49]. Inflammatory cytokines and reactive
oxygen species can disrupt estrous cycles and steroido-
genesis and, in addition, prevent meiotic and cytoplasmic
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maturation of the oocyte [121]. Also, inflammation can
lead to ovarian aging and ultimately reproductive aging
in females [122]. Reproductive aging in women is defined
by a gradual decline in the number of follicles and the
quality of oocytes, which can lead to the loss of fertility
and ovarian function. Inflammatory processes have been
suggested as potential contributors to this decline [123,
124]. An animal study showed that the decrease in fol-
licle numbers over the reproductive lifespan was associ-
ated with an increase in the percentage of CD** T cells, B
cells, and macrophages within the ovary. Serum concen-
trations and intra-ovarian mRNA levels of several pro-
inflammatory cytokines, including IL-1a/p, TNF-a, IL-6,
and inflammasome genes ASC and NLRP3, also signifi-
cantly increased with age [122]. Furthermore, oxidative
stress, as one of the consequences of micro/nanoplastics,
has been reported to act as an initiator of oocyte aging
and reproductive pathology [125].

Cellular damage and apoptosis

MPs can cause apoptosis, DNA damage, and autophagic
cell death by inducing oxidative stress and inhibiting
metabolic pathways [126]. Long-term exposure to PS-
MPs can induce apoptosis and pyroptosis in ovarian
granulosa cells through the NLRP3/Caspase-1 signaling
pathway, which is caused by oxidative damage. In fact,
with the increase of oxidative stress, NLRP3 inflamma-
some is activated after the phosphorylation of NF-xB
and causes the activation of caspase-1 through the fac-
tors involved in this pathway. Finally, caspase-1 leads to
pyroptosis and apoptosis of ovarian granulosa cells by
converting pro-IL-1p and pro-IL-18 to IL-1p and IL-18
[46]. It has been shown that exposure of Caenorhabditis
elegans to PS-MPs can have deleterious effects on the
reproductive system through induction of apoptosis and
DNA damage. The researchers found that exposure of
these nematodes to PS-MPs for 28 days could change the
expression of genes related to apoptosis, such as ced-3,
ced-4, and ced-9, and lead to the induction of apopto-
sis in them [60]. In a study, it was found that exposure
of rats to PS-MP particles with a size of 0.5 micrometers
and concentrations of up to 1.5 mg/kg per day led to vari-
ous serious complications, including the induction of cell
apoptosis, cell death in the ovary, and reduction of ovar-
ian reserve capacity, excessive proliferation of ovarian
fibroblasts, as well as the accumulation of extracellular
matrix [46, 101]. It has also been found that the rate of
early apoptosis in the oocytes of mice exposed to MP is
significantly increased compared to normal oocytes [58].
Hou et al. reported that in rats exposed to 0.5 um PS-
MPs at a dose of 0-1.5 mg/kg/day, apoptosis and death
of ovarian cells and hyperproliferation of ovarian fibro-
blasts were observed [46, 101]. Also, PS-MP particles
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can be deposited in the granulosa cells of the ovaries of
female mice and induce pyrolysis and apoptosis in these
cells [46]. Exposure to MPs can disrupt oocyte matura-
tion and affect the quality of oocytes by excessive pro-
duction of ROS followed by increased apoptosis [58].
Oxidative stress can lead to ER stress [127]. ER stress
occurs as a result of increased protein synthesis, changes
in calcium homeostasis, and ultimately the accumulation
of unfolded or misfolded proteins in the ER lumen [128,
129]. Long-term ER stress can cause reproductive system
disorders through apoptosis [130]. Exposure to PS-MPs
along with Pb causes an increase in unfolded and mis-
folded proteins and finally increases the level of binding
immunoglobulin protein (BIP) in the ovaries. To prevent
ER stress and maintain ER homeostasis, ER transmem-
brane proteins including PERK, activating transcription
factor 6 (ATF6), and inositol-requiring enzyme type 1
(IRE1) are separated from the Bip chaperone, and by
activating the relevant signaling pathways, they increase
protein folding and remove misfolded proteins [52, 131].
On the other hand, unfolded protein response (UPR)
induces apoptosis through the PERK/CHOP signaling
pathway. Active PERK causes the activation of ATF4
and increases the expression level of CHOP through the
phosphorylation of elF2a. Exposure to PS-MPs together
with Pb increased the expression of PERK, ATF4, elF2q,
and CHOP and therefore induced ER stress through the
PERK/elF2a/CHOP pathway [132—135].

Tu et al. (2023) showed that in Drosophila, continuous
exposure of developing oocytes to 10~100 mg L' PS-NPs
in five generations caused apoptosis and necrosis as well
as reduced oocyte production. Polystyrene nanoplastics
have caused significant changes in the transcription of
genes related to reproduction, metabolism, lifespan, and
apoptosis in Drosophila and thus affect their reproduc-
tive capacity [59]. Bufty is a B cell lymphoma-2 (Bcl-2)/
Ced-9-like and pro-survival protein in Drosophila [136].
Overexpression of Buffy increases apoptosis caused by y
radiation and exposure to PS-NPs causes apoptosis and
necrosis of ovaries by regulating the expression level of
bufty [59]. In a study on zebrafish, it was found that PS-
NPs with 70 nm diameter cause behavioral changes, and
the accumulation of these nanoparticles in gonads leads
to apoptosis of germ cells and disruption of the repro-
ductive system [137].

MNPs and cancers of the female reproductive
system in animal models and human studies
Exposure to MNPs can accelerate the progression of car-
cinogenesis in certain types of cancer [138—140]. To sup-
port tumor growth and development, tumor cells produce
significant cellular and molecular changes in their host
tissue, and this change in the tumor microenvironment
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plays an important role in cancer development [141,
142]. Studies have shown that PS-NPs can accelerate the
growth of epithelial ovarian cancer (EOC) tumors in ani-
mal models. In vivo experiments on mice showed that
exposure to PS-NPs through drinking water increased
tumor weight and volume and accelerated tumor growth.
These NPs can change the tumor’s microenvironment
by influencing the expression of genes and disrupting
the cell’s metabolic pathways, leading them to become
cancerous. Also, it was shown that PS-NPs can strongly
affect pathways related to immune responses and throm-
bomodulin regulators. These molecular changes can play
an important role in accelerating the growth of ovarian
cancer [54]. In addition, PS-MPs have been shown to
increase apoptosis and oxidative stress, which are known
to be key factors in cancer growth and spread, in ovarian
tissues, hence, it can be considered as a background for
ovarian cancer. The Keapl/Nrf2/HO-1 pathway, known
as a key regulator of cellular antioxidant responses and
playing a crucial role in protecting cells against oxidative
stress, can be disrupted by MPs, especially PS-MPs. This
disruption leads to an increase in ROS, causing extensive
damage to DNA and other vital cellular molecules, ulti-
mately triggering carcinogenic processes. However, long-
term exposure to PS-MPs can promote the formation
and progression of ovarian cancer through the induction
of oxidative stress and apoptosis [143, 144].

Recent studies have shown that MNPs exist in human
tissues including cervical tumors. Specifically, one study
reported that MPs from polystyrene, polyvinyl chlo-
ride, and polyethylene were detected in 17% of cervical
tumor samples [145]. The presence of MPs can change
the tumor’s immune microenvironment and affect thera-
peutic responses. Therefore, these findings can create
new challenges in cancer treatment [146]. On the other
hand, these nanoplastics can cause inflammation, oxi-
dative stress, and cell dysfunction. These disorders may
lead to genetic changes and faulty signaling that ulti-
mately increase the risk of developing cancer, including
cervical cancer. In addition, NPs can transport toxic sub-
stances into cells, which can seriously endanger human
health [147]. Over time, as these NPs accumulate in the
body, the risk of developing cancer also increases [148].
Although MNPs at low concentrations may have negli-
gible negative effects on cells, at higher concentrations,
they can cause cytotoxicity and induce them to become
cancerous [149]. Also, long-term exposure to NPs may
lead to chronic inflammation and changes in cells that
are associated with an increased risk of cancer [150]. NPs
may inadvertently penetrate cells and, by accumulating
in tissues, exert toxic or stimulatory effects that can con-
tribute to cancer growth [151, 152]. Polyethylene glycol is
also a plastic compound that may exist as environmental
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MNPs. Its widespread use in nanotechnology and medi-
cal treatments raises concerns about the long-term sta-
bility of these materials in the body and their potential
links to health issues, including cancers [153, 154].

The influence of microplastics and nanoplastics

on the placenta and fetal development

Animal models

In this section, the effects of microplastics and nanoplas-
tics on the female reproductive system and fetal growth
in animal models are described. This content includes the
effects of these particles on the placenta, fetus, and the
health of future generations. MPs can be absorbed and
accumulated in the placenta in a size-dependent man-
ner, and by affecting embryonic development, it can lead
to failure in reproduction [58]. The exposure of moth-
ers to PS-NPs can cause the transfer of these substances
to the tissues of the placenta and fetus and disrupt the
growth and development of the fetus [29, 155]. Wan et al.
(2024) used 50 nm PS-NPs to determine the effect of
MNPs on trophoblast cells. They reported that PS-NPs
induced abortion in pregnant mice and also suppressed
rho-associated, coiled-coil-containing protein kinase
1 (ROCK1)-mediated migration and invasion in these
cells. ROCK1 can reduce miscarriage by preventing the
formation of migrasome, which is formed as an organelle
after the migration of cells. It was found that exposure to
PS-NPs caused suppression of SOX2-mediated ROCK1
transcription by activating autophagy and increasing
autophagy degradation of SOX2 and eventually, affect the
mother and fetus’s health by increasing the risk of abor-
tion [156].

Recently, researchers found that maternal exposure to
PE-MPs, despite causing increased blood flow in the fetal
umbilical artery and consequently disrupting the normal
function of the placenta, does not alter fetal growth. This
may be due to the lower toxicity of PE-MPs compared
to other MNPs such as PS-NPs and their impact on pla-
cental and fetal growth in late pregnancy. The increased
blood flow in the umbilical artery could be due to the
higher extraction of oxygen from the mother’s blood to
sustain fetal growth, which is an adaptive response to
compensate for the toxic effects of these pollutant par-
ticles [157]. Also, in another study, it was found that
although MPs increase blood flow in the umbilical artery,
NPs decrease blood flow in this artery. These results
show that MNPs cause impaired placenta function, which
is strongly dependent on the size of these particles [158].

In addition, significant changes in placental metabo-
lism due to exposure to MPs have been reported, such
that exposure to high concentrations of 5 uM PS-MPs
caused a significant decrease in the relative concentration
of placental lysine and glucose, and cause disturbances



Balali et al. Reproductive Biology and Endocrinology ~ (2024) 22:141

in glycolysis, gluconeogenesis, biotin metabolism, and
lysine degradation [159]. Also, PS-NPs disrupt choles-
terol metabolism in the placenta and fetus and show
significant metabolic disorders by affecting the concen-
tration of sucrose and daidzein as well as complement
and coagulation cascade pathways. On the other hand,
these nanoparticles also affect the expression level of
genes related to inflammation and iron homeostasis [160,
161].

NPs reach fetal tissues within 24 h after maternal
exposure but are removed from fetal circulation before
birth. The health of children after birth and adulthood
is affected by the deposition of these particles in fetal
tissues during its development [29]. Also, PS nanopar-
ticles can cause abnormal cell morphology in both pla-
centa and fetus [161]. It has been found that exposure
to PS-MPs can reduce the fertility rate and the number
of embryos and lead to abnormal conception and affect
the formation of the embryo. PS-MPs also affect the fer-
tility of male and female mice, reducing the survival and
growth of embryos. It should be noted that the fertility
of female mice is more affected by these substances than
male mice [24, 62, 162].

Exposure of male and female mice to MPs, in addition
to causing changes in sex ratio and body weight in the
offspring, can also disrupt the metabolism of lipids and
amino acids in the offspring and affect the health of the
next generation [56, 163]. While MPs increase the level of
ROS in oocyte, blastocyst, and embryo, by inducing oxi-
dative stress, they increase apoptosis in embryonic cells
and decrease the level of GSH in these cells [58]. To treat
this condition, N-acetylcysteine (NAC) has been pro-
posed as an antioxidant to reduce the oxidative damage
caused by PS-MPs [83]. Oxidative stress caused by ges-
tational and lactational MPs exposure in mice can also
cause damage in their offspring [58].

The passage of NPs through the blood-placenta bar-
rier (BPB) and their transfer via breast milk to offspring
are the two main pathways through which offspring are
exposed to nanoplastic particles [29, 78], and the transfer
of these materials through the placenta depends on their
size [164]. Exposure of mother mice to NPs during preg-
nancy and lactation can cause deposition of these nano-
particles in the intestine, liver, brain, lungs, kidney, and
heart tissues of the next generation mice and disrupts
their immune system, nervous system, metabolism, and
reproduction [29, 77, 78].

After mother’s exposure to MPs, glycolipid metabo-
lism was reduced by the oxidative inhibition of fatty
acids in the offspring, which is probably due to the
reduction of carnitine levels in them. In addition, lipids
were accumulated in the liver for a longer period of
time and the absolute weight of the children’s liver was
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greatly reduced due to inflammatory infiltration and
oxidative stress [79, 163, 165]. It has been observed
that when the mother is exposed to MPs during preg-
nancy, the weight of the testes in their male offspring is
reduced and disorganized arrangement occurs in their
spermatocyte layers [79]. By disrupting the homeosta-
sis of the children’s immune system, these substances
cause a decrease in T cells and an increase in Th cells
in their spleen and can also inhibit the maturation of
dendritic cells [56].

MPs disrupt the balance and function of maternal and
fetal immune systems and increase the number of T cells
in the placenta; Also, they suppress the immune system
by reducing the ratio of pro-/anti-inflammatory cytokines
and ultimately indirectly increase the risk of miscarriage
[33]. Recent studies show that exposure to MPs dur-
ing pregnancy and early development in mice can lead
to neurodevelopmental problems in the offspring. This
includes defects in brain development, impaired brain
function and metabolism, and cognitive impairment
[79]. Although both MPs and NPs can accumulate in the
placenta, only NPs can cross the BPB and enter the fetal
brain, especially the thalamus, and disrupt the fetal brain
development by inducing oxidative stress and inhibiting
the production of y-aminobutyric acid (GABA) [53].

Also, PS nanoparticles caused anxiety-like behaviors
in eight-week-old offspring of mice, which can eventu-
ally lead to neurobiological disorders. It was found that
the use of glutathione supplementation can reduce oxida-
tive stress and apoptosis caused by PS-MPs in neuronal
cell lines [53]. MPs also affect neural stem cells, prevent
normal neural growth, and lead to reduced cell prolifer-
ation and abnormal production of glial cells in the hip-
pocampus. These substances also change gene expression
patterns in neural stem cells and lead to defective neu-
rogenesis by reducing genes involved in cell division and
proliferation [78].

In female offspring, MPs exacerbate cognitive dysfunc-
tion during brain development. In addition, prenatal
and early postnatal exposure to MPs leads to decreased
dopamine transporter protein, impaired glucose metabo-
lism, altered gene expression, and autism-like behaviors
in offspring and parental exposure to MPs exacerbates
these neurodevelopmental disorders in offspring [79].
It has also been determined that the heart rate index of
the middle cerebral artery in fetuses exposed to MNPs
decreases significantly, which is caused by dilation of
cerebral circulation vessels, a type of fetal adaptation
preserve oxygen delivery. As a result, exposure to NPs
during pregnancy can lead to adverse neurodevelopmen-
tal outcomes by causing hypoxia and impaired placental
function and fetal brain development [158]. A summary
of studies on placentas and fetuses of different animals
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that were affected by exposure to microplastics and nan-
oplastics is summarized in Table 2.

Human studies

Here, we discuss the effects of microplastics and nano-
plastics on the placenta, fetus, and other tissues related
to female human reproductive system. MPs can enter the
food chain and disperse as airborne particles, so involun-
tary ingestion and inhalation are not out of the question.
Due to their small size, MNPs and especially NPs can
pass through the digestive epithelium and be absorbed by
the body. Although it is believed that only 0.3% of these
particles can be absorbed, it has been determined that
particles with a size of less than 10 micrometers enter the
placenta by passing through the cell membrane and cause
toxicity in the fetus [171-173]. Embryonic cells are very
vulnerable to toxicity due to intense and regulated pro-
liferation, differentiation, apoptosis and migration during
organogenesis, and any disturbance in the growth, prolif-
eration, and differentiation of cells before and after birth
can lead to adult-onset disease [174, 175]. Exposure of
pregnant mothers to nanoplastics can damage the devel-
oping fetal brain. These particles can cross the placental
barrier, causing neuroinflammation, oxidative stress, and
disruption of signaling pathways. These effects may lead
to defects in brain development, cognitive impairments,
and motor disorders [164, 176-179] (Fig. 3). However,
these particles can cause developmental toxicity by accu-
mulating in the placenta and damaging it, which may
overshadow the health of the mother during pregnancy
in addition to the health of the fetus [180]. Epidemio-
logical data showed that preeclampsia, premature birth,
stillbirth, and spontaneous abortion can be the results
of exposure of pregnant mothers to (ultra)fine particles
[180, 181].

Exposure to MPs results in placental growth disor-
ders, oxidative stress and inflammation, activation of
placental-like receptors (TLRs) and changes in hormone
secretion [92]. Also, the absorption of MPs in the villous
tissues, which are the main tissues of the placenta for the
exchange of nutrients between the mother and the fetus,
may significantly increase the risk of miscarriage [32].
So far, the presence of MNPs in placenta samples, meco-
nium, infant feces, and breast milk samples has been
reported [182]. Based on the studies, MPs with a size of
approximately 5 to 10 um were observed in placental tis-
sue and chorioamniotic membranes [30, 163]. Also, the
presence of 11 different types of MPs in placenta tis-
sue has been identified, among which polyvinyl chlo-
ride (PVC)-MP has the largest share [183]. Grafmueller
et al. showed that all PS-MPs accumulate in the placental
syncytiotrophoblast, indicating transport of MPs in an
energy-dependent manner in the placenta [184].
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Examining the placenta tissue in several studies has
shown the accumulation of MNPs particles in this tissue.
Using Raman microspectroscopy, researchers revealed
the presence of 12 MPs fragments in the placentas of 6
women [30]. Also, in confirmation of these findings, in
another study, the existence of MPs in the tissue of 17
human placentas was evaluated and it was determined
that polypropylene, polyvinyl chloride and polybutyl-
ene succinate particles with a size of 200-307.29 um can
accumulate in the placenta [183]. Amereh et al. showed
the presence of MPs such as PE and PS in the placentas of
43 women who agreed to have their pregnancies checked
for the presence of microplastics (2 to 38 particles per
placenta). The results showed that these pollutant par-
ticles, which were mostly smaller than 10 pum in size,
may cause disturbances in the mutual relations between
the placenta and the fetus through disruption of gas and
nutrient exchange [185].

Also, placental tissue analysis using pyrolysis-gas chro-
matography and mass spectrometry showed the presence
of 12 types of MPs with different concentrations in this
tissue that PE, PVC and nylon constituted the majority
respectively [179]. In another study, the measurement
of MPs in placenta, meconium, infant feces, breast milk,
and infant formula samples of 18 cases, showed 16 types
of MPs with an average size of 20—50 um, with polyam-
ide and polyurethane constituting the majority. Scrub
cleaners, toothpaste, food bottles and plastic toys were
also introduced as sources of exposure for these preg-
nant women and infants to MPs [182, 186]. In addition,
MPs and plastic additives have also been observed in
the amniotic fluid of women who experienced preterm
prelabor rupture of membranes [187]. On the surface of
villi containing MPs in placentas collected from some
women, oxidative stress, cell death, and inflammatory
reactions were observed [30].

Infants are at greater risk from these particles due to
their insufficient production of metabolizing enzymes
and reduced ability to eliminate MPs [188]. The heart,
as a fetal organ targeted by MNPs, can face developmen-
tal disorders under the influence of these substances. By
disrupting the differentiation of cardiomyocytes from
human embryonic stem cells (hESCs), PS-NPs cause
their immaturity and increase mitochondrial oxidative
stress, and finally reduce the pluripotency of hESCs by
activating the P38/Extracellular signal-regulated kinase
(Erk) Mitogen-activated protein kinase (MAPK). It was
also found that continuous exposure to PS-MPs reduces
cardiac contractility and fetal blood flow [189].

The toxicity of MPs largely depends on their size and
surface charge. A study has determined that NH2-labeled
PS-NPs increase oxidative stress and toxicity in placental
cells, inhibit protein kinase A activity, and cause cell cycle



Page 20 of 34

141

(2024) 22

Balali et al. Reproductive Biology and Endocrinology

[€]

[191]

92 [BUOINBU UI
sisoxdode pue saidads uabAxo
SAI1D3J BIA UONDONIISIP 01 bul

-pes| ‘snwejeyl 1) 3yl Paus1us

s3|onedourU a1 ‘BI0WIaYLINY

'8 Y29/ 1e elepbAWE pue X91400

|e3uoya1d 3Y3 Ul S|2A3) pIoe
SuAingoulwe-ewweb U uon
-onpai e Aq palueduwiodde
‘Jolneyaq ayij-A1aixue
pauqiyxe buudsyo ay|

‘ejuade|d syy ul

2dA1gns Z|A JUBUILIOP B PJemO]
sabeydoidew ur ones zy

/LW 9U2 Ul JIYs e pue ‘s|[22 43| 1
[RINJRU Ul 9582103p B ‘S[|3D |
Jad|ay ur aseaidul Ue sem a1ayl
‘Aljleuonippy ‘buudsyo ur A ddns
POO|q 2uLI3IN pacnpai 01 bulpes|
‘S9]0lS1IR BULISIN JO 3ZIS pue
Aujenb ayy ui aseainap e pue
a1es uondiosais ay Ul

95e3IDU| UB SeM 312y |

“Jauuew dyads

-19puab e Ul PAISIUBW YDIYM
‘s;uawiedwl aAubod pue
|ed1bojoisAydoinau ul buninsas
‘uawdo|aAsp uleIq [PULIOUGR O}
P3| dNSd JO SUORIIUSDOUOD

ybiy 01 21nsodx3 0IIA Ul SHSN
pain1jnd Ul Pa12319p OS|e JIM
dNSd Ag paonpul saiiljewouge
|euonouny pue Jejndsjo bunds
-JJo J1ay1 ur ABojoisiy uteiq pue
5]192 [eAN3U Jo uonIsodwiod ayl
‘(SDSN) SJ[3 W3S [eanau Jo
Buruonouny sy1 pardaye uon
-e10€| pue uonelsab buunp
SI9UI0W 01 (dNSd) Sansejdoueu
aualkisAjod Jo uonensiuiwpy

B
II-ASY Ul paynsal bulpas) 34

'sapedsed uofenfeod pue
JUaWR|dWOD ‘WSI|ogeIaW |01}
-s3|0U 01 patejai shkemyied Jo
UONNQISIP YL Ul PAAIISGO
2I9M SUONEJR)[R ‘A|[PUONIPPY
'sn1ay pue eyuade|d ay1 yioq ul
sa1bojoydioul ||92 [ewiouge Jo
aduasaid ay1 yum buoje
‘S1yblam [e19) Ul 953109P
9|geIOU B SeM 3Jay] ‘SUoIL
-B1)USDU0D 3INsodxa Iaybiy 1y

uonn|os Jw/bw o|

aulfes 11 00z/6r 05¢

saqnd A||af asolebe ayy ul
PauIRIUOD SIN-Sd
€wd/6rl 000’ '00S ‘001 0L 'S0 ‘0

T oot/wdd oot

/6w ol pue |

w0001 pue wu o0l

wrigl

wrl 60 ‘wu 05

wrl oz-01

wu ool

SdIN-Sd PUe SdN-Sd

SdN-Sd

SdN-Sd
18 SdN-Sd
paiejfxoqied

Sd-3d

SdN-Sd

0¢

8l

oL

oy

ulelg

auuRIN

(W21sAS SNOAJSU [R1IUSD) Ulelg

ujeig

wsljogeisw pue
‘Yimoib [e1a) ‘e1usde|g

901U TGLSD 4dS

921U 5/g71vg po1ew-9/18/5D

01w

19/1845D
Jueubald

921U [9/19/5D

901W9/18 £5D

s|apow [eyuswiadxa 1w pue ey (v

dUI3RY

s}nsay

uoiesudU0d/sIuaWbeI
snsejdosdiw Jo saquiny

azIs 3dled

SdIN Jo 9dAL

azis 9| dwes

anssi} 1o uebiQ

wsiuebio

suebIO pue $2INIDNIIS (P13} SNOLIEA UO SD13se|doudiW JO 3dUaN|Ul 3y ¢ djqeL



Page 21 of 34

141

(2024) 22

Balali et al. Reproductive Biology and Endocrinology

[8¢]

‘Bundsyo sy ul
eWIOUIDIEI0UPE Alew

-Wew pue ‘XIAJ2 auLia1n 3yl Jo
BUIODJES ‘SnUaINn ay) Jo sdAjod
Jewons pue eisediadAy ed
dA1e Ul paynsal os|e vdg 01
ainsodxa [eulalely ‘sdnoib
vdg 6%/6M 0001 pue ‘001
'1"0 841 Ul PaAISSO aIaM
SEUIOUIPE-1SAD UBLIBAO B[IUM
‘dnoib vdg By/6r-| ayi ut
pasealnul Apuesyiubis asem
51545 UBLIBAQ 1ONPIAC 31 JO
SUOIS3| dANRIY|0Id 9AISSID
-0id Ul 95B2I0UI UP SEM J3U||

"35e[E1ED pUR
3SEINWSIP BpIX0I3dns JO s3N
-IAIB 3] Ul SUOIBIR)[e pue
uonelauab apAyspleipuolew
paseainul Aq paduapIAS se ‘301w
Bundsyo Jo sa1581 2y ul sbewep
SAIIEPIXO PISNED PUe JUN0D
wiads pasnpal ‘wniiayids snoss
-Jluiwss 2y Jo uondnisip ybram
$11531 Pasea.d3p 01 P3| SIN-Sd 01
ainsodxa [ereulsod pue -aid
Yrog 01w buudsyo ajew Jo

SISAI| Y3 Ul WSI|0qRIBWO0A|6
paxdnisip pue ‘saunjoifd A101
-ewiweyulold Jo uoissaldxa ayy
pa1ejnbaidn ‘uonenjyu |22
Aioyewiweyul pa1abb1i ‘ssans
SA11EPIXO PadNPUl 1yblam

J1aAI] paseaidap SdN-Sd JO

5350p YbIH "921w bundsyo ul
1yb1am Apoq [ereulsod pue
1ybrem yuig padnpal ul

pay|nsai saiedoueu sual
-f1sAjod 01 ainsodxa [eusaiey

‘Buidsyjo ajeway ayy ut
1uswdojeAsp djuokiquws pue
'31eJ UONeZI|1J3) ‘Uolieinlew
214200 Ul UONONPaJ B SEM 3I3Y)
‘Aljeuonippy 21w bundsyo ul
1ybrem Apogq [ereursod pue
1y619M YLIq Ul 9583109p B 01
pa| Aoueubaid Bunp sonseld
-0IDIW 01 2INSOdxa [eulaley

Kep/by
/6110001 pUe’00L ‘0L "L 'L'0

1/Bw ol pue L 10

p/63/6w 0 pue v 70

wu ool

wrl 051-01

pe dnseld) vdg

SdN-Sd

SdW-3d

0¢

[43

09

12NpIAo pue
IAJ2D BULIRIN ‘SNIIN 'AIBAQ 2dlW [-gD ueubaid pawi|

01w
S11S9) pUE JAAI] Buiwuny|

wia1sAs aAnonpoiday 221w Buwuny|

ERIVEIEIEN

synsay

uoneuadUod/syuswhely
Jnsejdosdiw Jo JaquinN

azis 3diled

SdIN Jo adAL

azis s|dwes

anssn Jo uebiQ wsiuebio

(panunuod) g ajqey



Page 22 of 34

141

(2024) 22

Balali et al. Reproductive Biology and Endocrinology

"uol1eWIIO) 3UOQ [RUON
-eJauabiarul Jo Juswiieduw pue
‘Aijenb auoq paseainap ‘sai
-IULIOJIP [PID[3HS JO S3DUDLINII0
pasealoul ‘uoiewLR Ul [eull
-sa1ul 01 bulpes| quswdojansp
2U0q U0 1oedwl 3|qIUIASIP B
aneY os|e A3y | "Uonez||iay
-150d SyuOW 33143 0} Y1uow
auo woyy adeys 663 pasaye pue
‘eaJe ¥|oA ‘A1punday paonpai bul
-pnjaul ‘syesy [eauswidojeAsp Ul

[991]

‘Bundsyo jon

-u0> 01 pasedwod Juswdojarsp

|PAJ| Ul 3531D3P %8| Ue pue

PI2IA [eAJRI-Q Ul 35R2103P

%1 € pauqiyxe syuased

[z9]  pasodxa woiy paAusp bundsyo

sauab passaidxa
1USISHIP JO JUSWYDHUS Jued
-giubis yum Aemuied o3y pue
‘uonesauab G4 ayi Ul s314500 Jo

[6G]  sisoidode pue sisoiau pasealdu|

‘uonelayijoid ||23 padnpai pue
€ 9sedsed paAea| JO S|aA3|
paseainul Aq pasuapIng se

‘s||92 1sejgoydoay i sisordode

Bupnpur Jo sjgeded aiam (ju
/611 006 Jo uonenUdUOD B

18) WU Of pue (jw/Bri 0oz Jo
UONBJIUIOUOD B 1B) WU (T JO
SI219Welp Yum ss|piedouen
WU Ot JO JS1BWRIP & Yum
sapo11ed Joy 1aybiy A|gelou sem
anssi) [eluade|d Aq sapnued
-OueU Jo »eidn ay] Usllieq
|eausde|d ay) 35I9ARA PINOD pUR
ejuade|d ay1 Aq paglosae asem
[ss1] WU 008 JO 32s & YIM S3|dliied

wrl 00/£-65€

sappied wrl-9 syl Jo %9 F 69 pue
3Ped wirl-z aY1 Jo %7 F 171

16U 001 pue ‘05 ‘0L ‘L

/611 006 >

wrl /z-0¢

wrig pue ¢

wu ool

wu 00S PUe ‘00z ‘001 ‘o ‘0¢

(deg-dwW)
sualAd[p]ozusq pue sdw-3d

SdN-Sd

SdN-Sd

s3|onJedoueu S4 pay
-Ipow 21e|AX0qied U3I6-MO||9A

00€

ove

Wia15As aA1SIBIP ‘Wi21sAs
[PI3[3YS ‘WR15AS aAndNpoiday

w21sAs aAndNpoiday

wia1sAs aAnonpoiday

ejuade|d

(ou31 O1UEQ) Ysyeigez

121540

J215060UDJOW DIYdOSOI]

saads 1910 (v

201W N/gA ueubalyg

ERIVEIEIEN s}nsay

uonjeuUdU0d/syuswWhely
snsejdosdiw Jo JaquinN

azis 3dhled

SdIN Jo adKL

azis s|dwes

anssn Jo uebiQ

wsiuebio

(panunuod) g ajqey



Page 23 of 34

141

(2024) 22

Balali et al. Reproductive Biology and Endocrinology

[oz1]

[691]

[291]

‘Bundsyo [ease| jo sanssn
1URI3YIP Ul SD1se|doudiw 2UaIAIS
-A|od Jo uole|nwN2e0Iq 3y Ul
osealdul pcmtcmambwco_umbcmu
-U0D B SeM J3U)) '2I0uWdIayling
*SNIANDR SWAZUS pale|as
-AlUNWWI U] 9583109p B SeM
2131 A|leuonippy ‘panissqo
2Jam speuoh sy ul ssusb
paiejas-sisordode Jo uoissaidxa
paseainul pue sausb dusbop
-101315 JO UoIssaidxa paisly
"9BAJE| | 4 JO [BAIAINS PUE $5920NS
buiysiey pasnpal 03 buipes|
‘3dUB[EQUII SUOWIOY X35 pue
Aujenb |j90 wisb sejnonsay
pardnisip buipn|pul ‘uonsuny
Jejnonsa) umeid sjew uo

$123J42 3SI9APE P1LIIPUI ANSSI
13591 Ul SS2115 9ABPIXO 'DeAJE|
umeid Jo a1es Lieay aya Ul
9582123p B Ul Pa1|Nsas
sonsejdoiiu 01 aunsodx3y

“suonewlojew pue A1

-lexiow bundsyo pasned ‘Bunds
-0 urusawdo|aAsp MoJs pue
awi) uoneqnoul pakejsg

"Aid1xo1 Juiof pareaeibbe oy
21NQLIUOD 1yDIw sniels suow
-1oy ploiAy) uo sonsejdoidiu jo
10943 Y1 ‘Ajjeuonippy ‘sa1el
Buiysiey somo| 01 buipes|

‘ssauly [ewsiuebio Bunoedw
Ajlenuaiod Joineyaq pue Abo
-jo1sAyd uo 103y Huniaxe pue
‘SaNssI} Jl2y) Ul buneinwnooe
‘ysyeiqgaz buidojanap Jo
uouoyd ay1 bunensuad Jo
3|qeded ase sonsejdoinipy

‘(156 pue

dA5) uonesyixoisp Jejn|jed pue
(Zpos pue | pos 1ed) ssalis
SAIBPIXO O} pajejal sauab Jo
Sjlons| uondudsuel) ay Uy
958310Ul UB SEM 3J3U)1 ‘2I0W
-I2YLn4 's9K3 BY1 Ul SINIINAS
[eNSIA PSIWOIdWOD 31aM I3y}
‘A||euonippy ‘|iel pue uwinjod
Jeuids ay1 bunoaye Ajuewnd san
-1ULIOJOP 3|GRIOU LIM 'PIAISSCO
219M JUsWdOaAp [eAle] Ul
sabueyd pue buiydey ui Aejap v

/6w oz pue ¢

SdIN-Sd
116w G0+ 1N 116U 05 10 'Sd
-Sd L-1BW S0 ‘LW 116U 05100

/6w 07

Jw/BrioL pue’y Lo

qui/sappited 0oz

wrl oz pue wu 59

wu o

wrl oy

SdN-Sd

1N +5dW-Sd

SdN-Sd

SdN-Sd

SdN-Sd

oL

[4)

081l

11e3y ‘snsal ‘WaisAs anonpoiday

w1sAs aAndnpoiday

uonoyD

WwiasAs aAdNpoIdal pue sak3

umeld

usyeiqaz

ysyeigaz

(o121 oluBQ) Ysyeiqaz

(o121 0luBQ) Ysyeigez

ERIVEIEIEN

synsay

uoneuadUod/syuswhely
Jnsejdosdiw Jo JaquinN

azis 3diled

SdIN Jo adAL

azis s|dwes

anssn Jo uebiQ

wsiuebio

(panunuod) g ajqel



Page 24 of 34

141

(2024) 22

Balali et al. Reproductive Biology and Endocrinology

/]

[0/]

[£8]

"uoieIauUab | 43U Ul [PAIAINS
padnpal ul paynsal “qu/brl 67
‘W JO uonenusduod 1saybly ay |

Bundsyo uo s1oedwi
buibewep uj bunjnsai pue
e1U92e(d 33 BIA UOISSILISURI]

‘S|ENPIAIPUL O 989 01

pasealdul sa1euoau buowse suon
-BULIOJeW JO SDUIPIDUI 3Y} pue
"J9MO]| BI9M SDJRUOBU JO

2215 Apog pue Jaquinu ay |

94d o

Aidixo) [euonelsusbsuen syl
pa1eqIadeXa Sq 18yl buisodoid
‘soAIquia ul eipiedApeiq pasnpul
-ayd paieaeibbe sgyy ‘os|y

'S JO SUOIRIIUSDUOD Y1 YIm
Sa5eaIdUl uolie|nunddoe dIuUo
-Kiqua pue Bupdsyo sy o3
panoW aq ued (3yd) auaiyl
-ueusyd Jo axeidn jeulsiepy

"pasuan|ul
2I9M 3eAIR| JO UONDNPOIdal pue
‘Yimoib ‘|leAiaINS 3y |

“‘y1bus| Apog sy
pasealdap pue ‘(1/6 og) a1es
ueay sbuudsyo pue a1el bui
-Udley ay1 padnpai pue swin

uoneqgndul ay1 pauodisod

Jw/bri sz-sz'1

skep g 10} /611 0§

/Sdoueu B €01 pue zz'0

7/61 002

V/sepied OLX |

/611 00z pue ‘07’70

wrl 9 pue ‘s ’'so0

WU 99z’ 0F€0°€C

wu o/

wrl gl

wrl 11-01

wri gy

SdN-Sd

SdN-Sd

speaq 54-oueu

SdW-Sd

sa1aydsoIIw 54

Sd-Sd

09

9

s[enpiAlpul

0€ pauleluod a1edj|dal yoes
pue

sa1ed)|dal 311 papnppul sdnolb
Buipasj-uou pue HBuipasy yoe3

0

wi21sAs aAndNpoiday

wi21sAs Jejndsenolpie)

w154 aAnoNpolday

snojuodof sndoubi

D1D[N21331 DI|12204

pubpw pluydopg

(owbnsojaw
spIZAIO) YePaW 3ULIBY

(owbpspjaw
SDIZAIQD) BYepaW SULey

(pwbnsojaw
$DIZAIO) eepaw auliely

EITEYETEN]

synsay

uolesuDU0d/s3uBWGeRIY
Jnsejdosdiw jo Jaquiny

3z1s 3died

SdN Jo adAL

azis s|dwes

anssi 1o uebiQ

wsiuebiQ

(penunuod) zajqeL



Balali et al. Reproductive Biology and Endocrinology ~ (2024) 22:141

Nanoplastic
Microplastic

Placenta
Testis Ovary Intestine

Metabolism related
disorder

Reproductive system
disorder

Page 25 of 34

Immune cells

Immune balance disruption

y Inflammation 1
@ Oxidative stress 1

W iver Liver absolute weight |

Heart

Cardiac developmental
disorders

Reduced cell division
genes

Brain development disorders

Fig. 3 Schematic representation of the impact of micro/nano plastics on the fetus, offspring, and its various organs. Maternal exposure to MNPs

causes the accumulation of these particles in placenta tissue, but among them, only NPs can pass through the BPB and affect different fetal
organs. These particles disrupt the fetal immune system and show their negative effects on this organ by increasing inflammation and oxidative
stress as well as reducing liver absolute weight. MNPs particles have disturbed the growth and development of the heart and the brain, it leads
to a decrease in the expression of genes related to cell division in the hippocampus, and on the other hand, inhibits thalamic GABA synthesis
and causes problems in brain development. Also, disturbance in metabolism and reproductive system in both sexes is one of the results

of exposure to these harmful particles

arrest in G1 or G2 phase [28]. Also, HTR-8/Svneo human
trophoblast cells were used to measure the effect of
100 nm PS-NPs on placental trophoblasts at the mother-
fetal interface. The results showed that these nanoparti-
cles can reduce cell viability, stop the cell cycle, reduce
the migration and invasion ability of cells, increase the
intracellular ROS level, and produce TNF-a and IFN-y
pro-inflammatory cytokines in a dose-dependent man-
ner, by entering the cytoplasm of trophoblast cells. In
addition, RNA-sequencing results on HTR-8/Svneo cells
showed the differential expression of 344 genes, which
resulted in the activation of thyroid hormone, Hippo,
TGF-B and FOXO signaling pathways [190]. NPs such as
polycarbonate (PC), polyethylene terephthalate (PET),
and PS, by inducing the highest toxicity, inhibit key pla-
cental enzymes and pose significant risks to the placenta
[191]. In an in vitro study, the human ovarian granulosa

COV434 cell line was exposed to different concentrations
of NPs and it was found that COV434 cell line viability
was significantly decreased at a concentration of 150 ug/
ml. Also, the level of antioxidant markers SOD2 and
GSH decreased, leading to oxidative stress [55]. Recently,
extensive studies have been conducted on the role of
MNPs with different sizes and doses on different human
placenta cell lines (Table 3). These studies confirm the
toxic effects of these polluting particles on the repro-
ductive system and fertility of women. They confirm
that MNPs particles can accumulate in the placenta and
reduce the viability of its cells.

Conclusion

With the global increase in plastic consumption and
human exposure to MNDPs, attention has been drawn to
the effect of these substances on the reproductive system
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and fertility in both sexes. Recent studies have confirmed
the impact of these polluting particles on female infertil-
ity. MNPs can enter the body through various methods
and affect its function by accumulating and changing the
structure of the uterus, ovaries, and other components
of the female reproductive system. These substances also
affect the secretion and metabolism of sex hormones,
disturb the balance of the reproductive endocrine sys-
tem, and perturb the estrous cycle. Exposure to MNPs
induces oxidative stress in the key components of the
female reproductive system. It increases the risk of infer-
tility in females by causing apoptosis in these cells and
disrupting the ovulation process. Inflammation in the
female reproductive system, which can lead to reproduc-
tive aging, is one of the main results of exposure to high
amounts of MNPs. Also, they could trigger malignancies
in the female reproductive system. In addition, MNPs
have recently been found in human organs and tissues
such as the placenta, which indicates their ability to cross
the blood-placental barrier and transfer to fetal organs.
MNP particles can show strong cytotoxic and genotoxic
effects by passing through the placenta and accumulating
in different tissues of the fetus and face serious problems
in fetal growth and development. Also, maternal expo-
sure to MNPs, in addition to intensifying disorders of the
nervous system, immunity, and reproduction in offspring,
may cause premature death and decrease the number of
offspring. All these results show that MNPs as environ-
mental pollutants have the potential to inflict irrevers-
ible harm on the reproductive system of females and
the health of future generations and increase the rate of
female infertility. Hence, managing microplastics to miti-
gate their risks and uphold reproductive health appears
imperative. Addressing this concern entails implement-
ing measures to diminish the prevalence of microplastics
in the environment and to minimize human exposure to
them.
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