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A B S T R A C T   

The present research work was carried out to determine the bioaccumulation of manganese and chromium in the 
gills, intestine, muscles, skin and bones, as well as its acute toxicity and effects on hematological and biochemical 
parameters in Common carp (Cyprinus carpio). Adult carps were exposed for 96 h to manganese sulphate and 
chromium chloride solution, a sub lethal concentration was used in the experiment. Bioaccumulation was highest 
in the gills followed by intestine > muscles > skin > bones. The concentration of hematocrit (HCT) 
(37.3 ± 0.36), hemoglobin (HGB) (9.0 ± 0.04), Red Blood Cells (RBCs) (3.7 ± 0.025), mean corpuscular volume 
(MCV) (121.2 ± 0.36), mean corpuscular hemoglobin (MCH) (41.3 ± 0.3) and mean corpuscular hemoglobin 
concentration (MCHC) (41.06 ± 0.072) was significantly higher at 96 h (P < 0.01) after exposure to manganese 
and chromium, while the concentration of platelets (PLT) (16.8 ± 0.12) and white blood cells (WBCs) 
(62.7 ± 0.11) was lower at 96 h of exposure. Serum glutamic pyruvic transaminase (SGPT) (40.6 ± 0.4), Blood 
Urea (13 ± 0.1), serum triglycerides (231.21 ± 0.04), high-density lipoprotein (HDL) (39 ± 0.07), serum Alka-
line PO4 (242 ± 0.2), lactate dehydrogenase (LDH) (1239 ± 13.21), and serum Uric Acid (4.81 ± 0.33) were 
significantly higher (P < 0.01) at 96 h of exposure. The highest concentration of serum cholesterol (339 ± 0.09), 
serum reatinine (0.9 ± 0.01), low density lipid (240 ± 0.2) was observed at 24 h. Serum glutamic-oxaloacetic 
transaminase (SGOT) (19 ± 0.13), and serum albumin were at the highest level at 72 h (3.19 ± 0.07) 
(P < 0.01) post exposure.   

1. Introduction 

Fishery makes significant contribution to the field of nutrition and 
trade as well, provided opportunities in employment, millions of people 
are doing their jobs in fishery and earn money to look after their families 
well so fishery also provide jobs for the people and play a role in the 
employments sector of a country [1–3]. 

Heavy metal pollution is an environmental problem of global 

concern, which often has ecological consequences threatening aquatic 
organisms. Heavy metals accumulate in skin, gills, intestine, liver, kid-
ney and other organs of fish and causes physical as well internal damage 
to the fish body [4–6]. The study of hematological indices is useful in the 
diagnosis of many diseases and in the investigation of extent and 
damaged blood cells by toxic effects of different chemical or microbial 
effects [7,8]. 

The stressed behavior, irregular swimming patterns, hyperactivity 
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and aggression, are consequences of environmental stress [9]. Over-
exposure to Mn2+ may have negative physiological effects on fish and 
other organisms inhabiting heavy metal polluted waters [10,11], found 
the highest bioaccumulation capacity in terms of Ca, Mg, Na, Ni, As, Zn 
and Cd was registered in caudal fin, liver and intestine tissues while K, 
Fe, Cu and Mn had the highest bioaccumulation in their muscle, spleen, 
liver and gills. Selenium (Se) is also toxic for aquatic organisms when 
present at high concentrations [12]. 

Hematological and biochemical parameters are important in diag-
nosing the structural and functional status of fish exposed to toxicants 
[13–15], describe xenobiotic molecules as the changer of physiological 
homeostasis of fish that can produce an oxidative stress. Differences in 
hematological parameters hematocrit, hemoglobin concentration, 
leukocyte and erythrocyte count have been used as pollution and 
physiological indicators of organic dysfunction in both environmental 
and aquaculture studies [16–18]. Salinity and seasonal variations can 
have an influence on the level of erythrocyte, hemoglobin, hematocrit, 
leucocytes and thrombocytes and on all biochemical parameters [19,16, 
20]. C. carpio is a common edible fish used among the world population 
therefore different experiments regarding toxicity of heavy metals have 
already been done which indicated that heavy metals directly affects fish 
health and can cause damages to its population. This design was 
intended to quantify the influence of manganese and chromium bio-
accumulation in C. carpio, various tissues such as gills, intestine, mus-
cles, skin and bones by examining hematological and biochemical 
parameters. This evaluation will also contribute to an upgraded 
knowledge of heavy metals bioaccumulation and its effect on C. carpio. 

2. Material and methods 

2.1. Ethical approval 

Ethical approval of the study was given by 20th Advance Study 
Research Board (ASRB) meeting under item No.2; section 8(iv) of 
Islamia College Peshawar on 21 February 2019. 

2.2. Fish collection and acclimatization 

Total of 50 Adult C. carpio were obtained from Sherabad Carp 
hatchery District Peshawar, Khyber Pakhtunkhwa (KP) Pakistan, placed 
in a shopping bag filled with water, brought to the laboratory and were 
acclimatized for almost 3 weeks providing fresh water and 2% of food by 
weight on daily basis. After acclimatization, fishes were checked for 
mortality, 2 fishes were found dead and 48 were found fresh and 
healthy, free from any kind of disease causing agents or death precursors 
and ready to perform experiments. Before the experiment the length and 
weight of experimental carps were measured the average length and 
weight were 14 cm and 360 g respectively. 

2.3. Preparation of stock solution for manganese sulphate and chromium 
chloride 

Manganese sulphate and Chromuim chloride solution was used as 
test solution for the experiments. A stock solution 1000 mg/l 
(1000 ppm) of MnSO4 and CrCl3 were prepared by adding 1 g of Man-
ganese sulphate and chromium chloride to 1 L of distal water and that 
was stored in a glass bottle. Sub-lethal concentrations, 1.12 mg/l of 
MnSO4 and 3.41 mg/l of CrCl3 were used based on the 96 h LC50 value 
for MnSO4 and CrCl3 i.e. 5.6 mg/l. and 17.05 mg/l respectively. 

2.4. Experimental design 

After acclimatization, the 96 h LC50 for MnSO4 was determined as 
5.6 mg/l, and for of CrCl3 as 17.05 mg/l. Fish were exposed to two sub 
lethal concentrations of MnSO4 i.e. 1.12 mg/l, and CrCl3 i.e. 3.41 (20%, 
respectively of LC50 value). The carps were randomly distributed in 

three different glass tanks with a density of 16 fish per tank having 120 L 
of water. One tank was labeled as control group and the other two were 
labeled as treated groups. i.e. (Mn treated) and (Cr treated). Treated 
tanks were then exposed to the concentration of 1.12 mg/l for MnSO4 
and 3.41 mg/l for CrCl3. No chemicals were added to the control group. 
After 24 h, four fish from each treated and control tank were sacrificed 
and dissected for the removal of different organs and analysis of bio-
accumulation. Blood was collected for biochemical and hematological 
parameters. The same procedure was performed for 48 h, 72 h and 96 h 
four fish were sacrificed each day from each tank respectively. 

2.5. Measurement and analysis of bioaccumulation 

C. carpio were dissected and different visceral and body organs were 
isolated, about 0.5 g of tissue was cut off from Gills, intestine, muscles, 
skin and bones and kept in 10 mL of nitric acid for 24 h to be digested. 
After 24 h, for complete digestion samples were placed in a 100 ◦C Hot 
plate (Gallenkamp: A England, CAT No: SS260, APP No: 4-SS260, 6.5 
Amp, 220/240 V) and then cooled down at room temperature adding 
30 mL of distilled water and filtered by whatman filter paper. The 
filtrate was to be analyzed for the presence of heavy metals. For detec-
tion of Manganese and Chromium in different organs of fish atomic 
absorption spectrophotometer (Model: Analyst 700, Parkin Elmer, USA, 
Serial No: 700S5040102) was used. 

2.6. Determination of LoD and LoQ 

The limit of detection (LOD) was predicted from three times the 
standard deviation (SD) of ten replicates of the blank divided by the 
slope of the calibration curve. The limit of quantification (LOQ) was 
calculated from ten times the SD of ten replicates of the blank divided by 
the slope of the calibration curve [21]. 

2.7. Hematological and biochemical analysis 

The blood samples were taken from the caudal vein of the fish by a 
sterile syringe containing heparin (1000 IU/mL) anticoagulant solution. 
The blood plasma was obtained by centrifugation of the blood at 
3000 rpm for 15 min while the non-hemolyzed plasma was stored in a 
cool place for further biochemical observations. These blood samples 
were used for RBCs count following the method of [22], and the he-
moglobin content [23]. The value of hematocrit, was calculated by the 
mentioned rules and formulae of [24], plasma glucose was determined 
by using assay kits supplied by Human Diagnostics Worldwide according 
to [25]. Total protein content was determined according to the method 
of [26] and lipid contents was determined by colorimetrically as by 
[27]. The activity levels of aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) were determined colorimetrically according to 
[28]. 

2.8. Statistical analysis 

Graph pad prism version 6.01 was used for statistical analysis. 
ANOVA technique was used for the statistical analysis, means were 
separated according to the Fisher’s LSD (least significant difference) test 
and compared by using the Duncan’s Multiple Range test (DMRT). The 
Significant differences were defined at (P < 0.01) 

3. Results and discussion 

C. carpio is the common culture able fish species, exposing it to 
different concentrations of manganese and chromium results in high 
bioaccumulation in the gills. The toxicity of heavy metals is different in 
test organisms due to different mechanisms of action, chemical char-
acteristics of test solution, sensitivity and tolerance limit of the test or-
ganism [29–31] noted that metal accumulation depends upon species, 
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Fig. 1. Showing manganese bioaccumulation (μg/g dry weight of fish) in gills, intestine, muscles, skin and bones of both control and treated C. carpio, exposed to 
manganese sulphate for 24, 48, 72 and 96 h respectively. 

Fig. 2. Showing chromium bioaccumulation (μg/g dry weight of fish) in gills, intestine, muscles, skin and bones of both control and treated C. carpio, exposed to 
chromium chloride for 24, 48, 72 and 96 h respectively. 
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location and seasonality, with Seabass having higher heavy metal con-
centrations than seabream. Generally heavy metals accumulate in the 
metabolically active tissues of the body of living organisms [32] which is 
observed in the current study. 

Heavy metals are elements with high density such as, Aluminum 
(Al), Arsenic (As), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), 
Magnesium (Mg), Manganese (Mn), Lead (Pb), Tin (Sn), Zinc (Zn) are 
quite toxic in low concentrations and can accommodate in different 
organs of fish [33,34]. Even trace amounts of heavy metal can be toxic to 
fish, and its toxicity is dependent on the concentration of heavy metal 
and it its most bioavailable form [35]. Chromium and its particulates 
enter the aquatic medium from different industries such textiles, elec-
troplating workshops, dyeing, and medical industries, as it is a 
commonly used metal. The most toxic form is hexavalent chromium it 
can readily cross cellular membranes and then reduced to trivalent form. 
This trivalent chromium combines with several macromolecules 
including genetic material inside the cytosol, and ultimately alters 
behavior, physiology, cytology, histology and morphology [36]. 

The limits of detection (LOD) and the limits of quantification (LOQ) 
in present study were calculated based on the standard deviation of 10 
readings obtained for the analytical blanks and the slopes of the 
analytical curves. The values (mg/kg) were 0.042–0.078 (Mn) and 
0.062–0.153 (Cr). 

After 24 h of exposure the Mn and Cr (0.54 ± 0.04) and 
(0.78 ± 0.01) was highly detected in the gills of the C. carpio followed by 
intestine, while significantly low accumulation was detected in the 
bones. [37] detect high concentrations of chromium (570 ± 52.1) and 
manganese (66.7 ± 8.5) in the gills of C. carpio collected from river 

Kabul. Muscles and skin also have low concentration compared to gills 
and intestine. Gills are the first target and directly exposed to the 
water-born heavy metals [38,39]. Gill surface is negatively charged and 
has the potential for the positive charged metals [40–42]. Fish which 
take heavy metals in their feed have maximum and elevated levels of 
heavy metal in the digestive tract as compared to their gills [43,44]. Skin 
is in direct contact with the external environment and that also results in 
elevated levels of heavy metals [37]. Similar trends were observed after 
48 h bioaccumulation, gills accumulated high concentrations 
(0.64 ± 0.07) and (0.79 ± 0.19) compared to 24 h of exposure, muscles 
and intestine followed the same trend of accumulation as 24 h of 
exposure. While exposing C. carpio up to 72 h the overall accumulation 
was considerably high (0.73 ± 0.07) and (0.8 ± 0.21) in the organs 
compared to 48 h. Moreover, during 96 h of exposure gills accumulated 
a high concentration of Mn (0.933 ± 0.08) and Cr (0.8 ± 0.24) 
compared to 72 h. The pattern of bioaccumulation of heavy metals 
versus time of exposure followed pattern 96 h > 72 h > 48 h > 24 h 
(P < 0.01) while the accumulation in organs are in sequence like 
gills > intestine > muscles > skin > bones. Figs. 1 and 2  showing 
concentrations of manganese and chromium in different organs of the 
treated organisms. Concentration of heavy metals detected after 
different time exposure shown in Table 1. 

3.1. Hematological indices 

Chromium and manganese is absorbed into the fish from the water 
and both of them interfere and alter the hematological and biochemical 
parameters of fish blood [45,46]. All the heavy metals induces increase 

Table 1 
Showing bioaccumulation in the gills, intestine, muscles, skin and bones after 24, 48, 72 and 96 h exposure of C. carpio to manganese and chromium. All the values are 
expressed as (Mean ± SE) using Fisher’s LSD test. Presented values are Significant (≥0.1) at p ≤ 0.01.  

Time of Exposure Organs Manganese Chromium   

Control Treated Control Treated 

24 h Gills 0.49 ± 0.07 0.54 ± 0.04 0.65 ± 0.18 0.78 ± 0.01  
Intestine 0.067 ± 0.04 0.07 ± 0.09 0.5 ± 0.07 0.5 ± 0.01  
Muscles 0.07 ± 0.04 0.07 ± 0.07 0.4 ± 0.04 0.43 ± 0.02  
Skin 0.041 ± 0.04 0.05 ± 0.07 0.3 ± 0.03 0.32 ± 0.01  
Bones 0.03 ± 0.04 0.03 ± 0.07 0.06 ± 0.07 0.06 ± 0.05 

48 h Gills 0.49 ± 0.07 0.64 ± 0.07 0.65 ± 0.18 0.79 ± 0.19  
Intestine 0.067 ± 0.04 0.1 ± 0.04 0.5 ± 0.07 0.57 ± 0.10  
Muscles 0.07 ± 0.04 0.07 ± 0.04 0.4 ± 0.04 0.45 ± 0.06  
Skin 0.041 ± 0.04 0.05 ± 0.04 0.3 ± 0.03 0.33 ± 0.04  
Bones 0.03 ± 0.04 0.04 ± 0.07 0.06 ± 0.07 0.06 ± 0.02 

72 h Gills 0.49 ± 0.07 0.73 ± 0.07 0.65 ± 0.18 0.8 ± 0.21  
Intestine 0.067 ± 0.04 0.159 ± 0.04 0.5 ± 0.07 0.58 ± 0.12  
Muscles 0.07 ± 0.04 0.09 ± 0.04 0.4 ± 0.04 0.45 ± 0.07  
Skin 0.041 ± 0.04 0.07 ± 0.1 0.3 ± 0.03 0.34 ± 0.06  
Bones 0.03 ± 0.04 0.05 ± 0.01 0.06 ± 0.07 0.06 ± 0.03 

96 h Gills 0.49 ± 0.07 0.933 ± 0.08 0.65 ± 0.18 0.8 ± 0.24  
Intestine 0.067 ± 0.04 0.177 ± 0.09 0.5 ± 0.07 0.6 ± 0.14  
Muscles 0.07 ± 0.04 0.12 ± 0.04 0.4 ± 0.04 0.45 ± 0.07  
Skin 0.041 ± 0.04 0.1 ± 0.04 0.3 ± 0.03 0.35 ± 0.07  
Bones 0.03 ± 0.04 0.07 ± 0.04 0.06 ± 0.07 0.06 ± 0.04  

Table 2 
Showing hematological parameters of both control and treated C. carpio after exposure time of 24, 48, 72 and 96 h to combine effect of manganese and chromium. All 
the values are expressed as (Mean ± SE) using Fisher’s LSD test. Presented values are Significant (≥0.1) at p ≤ 0.01.   

Control Treated 

Hematological Indices  24 h 48 h 72 h 96 h 
White Blood Cells (WBCs) 115 ± 1.3 66.2 ± 0.1 47 ± 0.33 45 ± 0.450 39 ± 0.9 
Hemoglobin (HBG) 12.5 ± 0.5 12.9 ± 0.7 12.1 ± 0.34 11.4 ± 0.7 12.9 ± 0.11 
Red Blood Cells (RBCs) 2.4 ± 0.4 2.8 ± 0.7 3.09 ± 0.11 3.1 ± 0.9 3.8 ± 0.32 
Hematocrit (HCT) 29.5 ± 0.3 31.05 ± 07 33 ± 0.12 35.5 ± 0.11 41.1 ± 0.21 
Mean corpuscular volume (MCV) 107 ± 1.4 112 ± 0.07 133 ± 0.3 131.5 ± 0.3 143.5 ± 0.4 
Mean corpuscular hemoglobin (MCH) 33.01 ± 0.5 40 ± 0.2 43 ± 0.15 43.5 ± 0.13 47.6 ± 0.3 
Mean corpuscular hemoglobin concentration (MCHC) 28.1 ± 0.9 30.1 ± 0.09 41.2 ± 0.34 45.5 ± 0.6 47.1 ± 0.4 
Platelets (PLT) 18 ± 0.7 18 ± 0.1 19 ± 0.16 13 ± 0.9 12.4 ± 0.13  
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in the frequency of erythroblast cells which was particularly in the Pb 
exposed fish, this shows the stress related to the catecholamine-induced 
contraction of the spleen where the blood cells stores, and the within a 
short interval of time it releases new erythrocytes cells to the blood-
stream [47] but [48] reports that the quantitative red blood parameters 
are rather stable and little sensitive to environmental factors, due to 
considerable compensatory abilities of fish organism. Hematology is the 
best indicator to express the health status of fish, exposing C. carpio to 
heavy metals can bring prominent change in the hematological indices 
of fish, similar change was also observed in the present study, the con-
centration of hematocrit (HCT) (41.1 ± 0.21), hemoglobin (HGB) 
(12.9 ± 0.11), red blood cells (RBCs) (3.8 ± 0.32), mean corpuscular 
volume (MCV) (143.5 ± 1.4), mean corpuscular hemoglobin (MCH) 
(47.6 ± 0.3), procalcitonin blood test (PCT) (0.037 ± 0.01) and mean 
corpuscular hemoglobin concentration (MCHC) (47.1 ± 0.4) was 
significantly high at 96 h (P < 0.01) after exposure to Manganese and 
chromium, while the concentration of platelets (PLT) (12.4 ± 0.13) and 
white blood cells (WBCs) (39 ± 0.9) was considerably low at 96 h of 
exposure while high at 24 h (P < 0.01) shown in Table 2. 

3.2. Biochemical parameters 

Variations in fish proteins can be used as a bio-indicator to monitor 
the physiological status of the treated fish [49]. Inhibited or elevated 
enzyme activity compared to reference groups serves as a diagnostic tool 
in toxicology and is a good marker of metabolic changes in fish, i.e., 
hypoxic conditions, impaired antioxidant mechanisms, and cellular or 
tissue damage in fish [50]. During the present study exposing C. carpio to 
heavy metals (Mn, Cr) significant difference was observed in level of 
biochemical parameters, i.e level of serum glutamic pyruvic trans-
aminase (SGPT) (40.6 ± 0.49) was significantly high (P < 0.01) at 96 h 
of exposure to heavy metals while low value was noticed at 24 h 
(23.5 ± 0.23), similar trend was followed by Blood Urea (13 ± 0.1), 
Serum Creatinine (0.21 ± 0.36), high-density lipoprotein (HDL) 
(39 ± 0.07), Serum Alkaline PO4 (242 ± 0.2). Serum triglycerides were 
significantly low (231.21 ± 0.04) at 24 h (P < 0.01) while high 
(239.2 ± 0.04) at 96 h of exposure. Highest values of Serum Cholesterol 
(339.06 ± 0.098) and low density lipid (LDL) (240.1 ± 0.15) were 
detected at 24 h. Serum glutamic-oxaloacetic transaminase (SGOT) was 
high at 72 h (19 ± 0.13), lactate dehydrogenase (LDH) was significantly 
high at 96 h (1239 ± 13.21) (P < 0.01), moreover Serum Albumin was 
low at 24 h (2.7 ± 0.02) while high at 72 h (3.09 ± 0.04), Serum Uric 
Acid was considerably low (4.09 ± 0.04) at 24 h and high (4.81 ± 0.03) 
at 96 h (P < 0.01) while all the values of control groups were low 
compared to treated show in Table 3. Aspartate aminotransferase (AST) 
and alanine aminotransferase (ALT) are liver specific enzymes that are a 
more sensitive measure of hepatotoxicity and histo-pathological 
changes and can be assessed within a shorter time. The marked in-
crease in the level of AST, showed liver dysfunction [51]. Due to 

increasing exposure time and concentration of heavy metals, the level of 
bioaccumulation in the C. carpio increases accordingly, gills the direct 
exposed organs accumulated high concentration compared to other or-
gans. The overall results from the present research work shows that 
excess amount of heavy metals affect the physiological, biochemical and 
hematological parameters of the fish and can affect the fish growth and 
normal body functions. 

4. Conclusion 

Present results show that manganese and chromium accumulated in 
different organs of the fish. Highest bioaccumulation was observed in 
gills while lowest in bones. Intestines also accumulate high concentra-
tion of manganese and chromium due to dietary heavy metals. Current 
results show that the heavy metal not only leads to bioaccumulation but 
also severely affects the fish biochemistry and hematology. It is sug-
gested, to further evaluate the effect of heavy metals on other fish spe-
cies and its impact on human health. 
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Showing biochemical parameters of both control and treated C. carpio after exposure time of 24, 48, 72 and 96 h to combine effect of manganese and chromium. All the 
values are expressed as (Mean ± SE) using Fisher’s LSD test. Presented values are Significant (≥0.1) at p ≤ 0.01.   

Control Treated 

Biochemical parameters  24 h 48 h 72 h 96 h 
Serum glutamic pyruvic transaminase (SGPT) 29 ± 0.3 23.5 ± 0.2 37 ± 0.09 39 ± 0.13 40 ± 0.4 
Blood Urea 9 ± 0.07 11 ± 0.9 9 ± 0.09 13 ± 0.04 13 ± 0.1 
Serum Creatinine 0.9 ± 0.01 0.4 ± 0.2 0.14 ± 0.02 0.18 ± 0.05 0.21 ± 0.36 
Serum Triglycerides 204 ± 4.1 231 ± 0.04 2 18 ± 0.1 221 ± 0.1 239 ± 0.04 
Serum Cholesterol 189 ± 2.31 339 ± 0.09 202 ± 0.21 205 ± 0.33 189 ± 0.2 
High-density lipoprotein (HDL) 26 ± 0.31 37 ± 0.2 36 ± 0.17 39 ± 0.31 39 ± 0.07 
Low-density lipoprotein (LDL) 124 ± 2.1 240 ± 0.2 139 ± 0.21 139 ± 0.11 124 ± 0.2 
Serum glutamic-oxaloacetic transaminase (SGOT) 10 ± 06 13 ± 0.1 16 ± 0.7 19 ± 0.13 8.3 ± 0.1 
Lactate dehydrogenase (LDH) 1118 ± 11.1 1230 ± 0.1 1227 ± 0.1 1136 ± 0.1 1239 ± 0.21 
Serum Albumin 1.6 ± 0.8 2.7 ± 0.1 2.9 ± 0.3 3.1 ± 0.7 3.09 ± 0.04 
Serum Uric Acid 1.7 ± 0.1 4.09 ± 0.02 3.2 ± 0.7 3.3 ± 0.14 4.8 ± 0.03 
Serum AlkalinePO4 194 ± 4.21 198 ± 0.2 210 ± 0.15 214 ± 0.2 242 ± 0.2  
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