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Abstract

Melittin is a cytolytic peptide component of bee venom which rapidly integrates into lipid bilayers and forms pores resulting
in osmotic lysis. While the therapeutic utility of free melittin is limited by its cytotoxicity, incorporation of melittin into the
lipid shell of a perfluorocarbon nanoparticle has been shown to reduce its toxicity in vivo. Our group has previously
demonstrated that perfluorocarbon nanoparticles containing melittin at concentrations ,10 mM inhibit HIV infectivity in
vitro. In the current study, we assessed the impact of blank and melittin-containing perfluorocarbon nanoparticles on sperm
motility and the viability of both sperm and vaginal epithelial cells. We found that free melittin was toxic to sperm and
vaginal epithelium at concentrations greater than 2 mM (p,0.001). However, melittin nanoparticles were not cytotoxic to
sperm (p = 0.42) or vaginal epithelium (p = 0.48) at an equivalent melittin concentration of 10 mM. Thus, nanoparticle
formulation of melittin reduced melittin cytotoxicity fivefold and prevented melittin toxicity at concentrations previously
shown to inhibit HIV infectivity. Melittin nanoparticles were toxic to vaginal epithelium at equivalent melittin concentrations
$20 mM (p,0.001) and were toxic to sperm at equivalent melittin concentrations $40 mM (p,0.001). Sperm cytotoxicity
was enhanced by targeting of the nanoparticles to the sperm surface antigen sperm adhesion molecule 1. While further
testing is needed to determine the extent of cytotoxicity in a more physiologically relevant model system, these results
suggest that melittin-containing nanoparticles could form the basis of a virucide that is not toxic to sperm and vaginal
epithelium. This virucide would be beneficial for HIV serodiscordant couples seeking to achieve natural pregnancy.
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Introduction

Several large-scale clinical trials have recently been performed

to evaluate the safety and effectiveness of microbicidal vaginal gels

in preventing HIV transmission [1,2]. This prophylactic approach

is favored in low-income and poorly educated populations due to

its low cost and ease of use [3]. The development of topical

microbicides with minimal impact on sperm function is especially

important for HIV serodiscordant couples desiring pregnancy.

Several reproductive options currently exist for these couples,

including sperm washing and prophylactic antiretroviral therapy

for the uninfected partner [4,5]. Unfortunately, both of these

options require access to medical care that may be difficult to

achieve in certain high-risk populations. Consequently, the

development of anti-HIV virucides that are not spermicidal is

warranted. These compounds would address an unmet need in the

global HIV community by providing an additional barrier to HIV

infection in serodiscordant couples desiring pregnancy.

We recently developed a biocompatible cytolytic-peptide-loaded

nanoparticle (NP) that inhibits HIV infectivity [6]. Melittin, the

active agent, is a 26 amino acid amphipathic peptide component

of bee venom. Free melittin rapidly integrates into lipid bilayers,

oligomerizes and forms pores resulting in osmotic lysis [7]. The

therapeutic utility of free melittin is limited by its cytotoxicity and

propensity to induce hemolysis. However, melittin has also been

shown to stably bind and insert into the unilayer lipid shell of NPs

with an inert perfluorocarbon (PFC) core [8]. This process does

not disrupt PFC NP structure and allows these NPs to serve as

passively loaded drug delivery vehicles for melittin in vivo. In this

way, non-specific melittin cytotoxicity is greatly reduced and no

harmful effects are observed in mice even after multiple

consecutive administrations of melittin NPs that exceed the known

LD50 for free melittin [9].

Melittin NP (Mel-NP) membrane targeting can be made specific

using ligands such as antibodies or peptidomimetics. Integrin-

targeted mel-NPs have been shown to inhibit melanoma tumor

growth in vivo [8,9]. In the case of HIV, innate mel-NP fusogenic

properties and electrostatic affinity for virions result in mel-NP

mediated HIV capture and envelope disintegration [6]. Mel-NPs

have been shown to inhibit HIV infectivity in vitro at equivalent

melittin concentrations ,10 mM (IC50 for CCR5-tropic virus:

3.6 mM) [6]. These NP concentrations were not cytotoxic to the

mammalian reporter cells used in this assay.
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Given these previous findings, the pre-clinical experiments

herein test the hypothesis that packaging melittin into PFC NPs

minimizes sperm and vaginal epithelial cell cytotoxicity. Address-

ing this hypothesis is the first step towards expanding the range of

mel-NP applications to include use as a prophylactic vaginal

virucide for HIV serodiscordant couples desiring pregnancy.

Materials and Methods

Ethics Statement
The collection and use of sperm for this study was approved by

the Washington University School of Medicine Institutional

Review Board. The Washington University Institutional review

Board is responsible for ensuring ethics and patient protection in

research at our institution. The IRB granted a waiver of patient

consent given that we were using de-identified samples that were

to be discarded. In all experiments, the samples were de-identified

and the investigator performing the experiments was blinded to all

patient identifiers.

Nanoparticle Synthesis and Characterization
Perfluorocarbon nanoparticles (PFC NPs) were synthesized as

previously described [10]. Briefly, a lipid surfactant co-mixture of

98.9 mol% egg lecithin, 0.1 mol% DiI and 1 mol% Carboxy-

PEG-DSPE (Avanti Polar Lipids, Piscataway, NJ) was dissolved in

chloroform, evaporated under reduced pressure and dried in a

50uC vacuum oven. DiI is a lipophilic carbocyanine dye

commonly used for membrane labeling due to its strong

fluorescence in hydrophobic environments and excellent retention

in lipid membranes [11,12]. The resulting lipid film (2.0% w/v)

was resuspended in distilled deionized water and combined with

perfluorooctylbromide (Gateway Specialty Chemicals, St. Peters,

MO) (20% w/v) in a Tissumizer Mark II tissue homogenizer

(Tekmar Company, Cincinnati, OH). This mixture was then

continuously processed at 20,000 lbf/in2 for 4 min with an S110

Microfluidics emulsifier (Microfluidics, Newton, MA) to obtain an

emulsion of PFC NPs. Subsequently, 25 ml of the emulsion was

mixed with 1.95 mg avidin (Sigma-Aldrich, St. Louis, MO) for

15 min. Next, 7.163 mg ethylcarbodiimide hydrochloride (EDCI,

Sigma- Aldrich, St. Louis, MO) was added for 40 min to facilitate

covalent linkage between avidin and carboxy-PEG-DSPE on the

NPs. Avidin NPs (blank NPs) were thus generated and dialyzed 36
in 2L of PBS for 30 min, overnight, and 30 min. NP size and zeta

potential were determined using a ZetaPlus Zeta Potential

analyzer (Brookhaven Instruments Corp., Holtsville, NY) and

NPs were stored in phosphate-buffered saline at 4uC until use.

When needed, the pH of phosphate-buffered saline was adjusted

using hydrochloric acid.

The avidin (blank) NPs were the precursor to the anti-sperm

NPs. To target sperm, anti-sperm adhesion molecule 1 (anti-

SPAM1) antibodies (Santa Cruz Biotechnology, Santa Cruz, CA)

were biotinylated and complexed with avidin NPs. To biotinylate

the monoclonal anti-SPAM1 antibody, 0.2 mg/ml antibody was

mixed with 8.24 mL 1 mM Biotin-NHS (Thermo Scientific,

Rockford, IL) and incubated at room temperature for 30 minutes.

To generate anti-SPAM1 NPs, 1.0 ml avidin NPs were mixed with

34.8 mL biotinylated antibody.

To load NPs with melittin, 1.0 mL of blank NPs or anti-SPAM1

NPs was incubated at a concentration of 1 mM melittin in water

with rotation at 4uC for 72 hours. NPs were isolated by low speed

centrifugation for 20 min. at 1000 g to ‘‘softly’’ pellet the NPs and

were washed three times with phosphate-buffered saline. Control

blank and anti-SPAM1 NPs underwent the same loading and

washing protocols without the addition of melittin. Thus, the

classes of NPs formed were: blank NPs, melittin NPs (mel-NPs),

anti-SPAM1 NPs, and anti-SPAM1 melittin NPs (anti-SPAM1-

mel-NPs).

The concentration of unbound melittin in the supernatants

generated by this loading procedure was determined by reversed-

phase high performance liquid chromatography (HPLC) using a

Waters HPLC system (Waters Corporation, Milford, MA) and a

Vydac 218TP54 (C18) column (Discovery Sciences, Albany, OR).

The mobile phase consisted of a mixture of 0.1% trifluoroacetic

acid (TFA) in water (solvent A) and 0.1% TFA in acetonitrile

(solvent B). Composition of the mobile phase was varied from 60%

solvent A/40% solvent B to 40% solvent A/60% solvent B over

the course of 20 minutes and eluting peptides were detected by

absorbance at 215 nm. Sample melittin concentrations were

determined by comparing the area under the eluting melittin

peak (retention time ,8.2 minutes) to a standard curve generating

using melittin samples of known concentration. The extent of

melittin loading on NPs was determined by subtracting the

amount of unbound melittin from the total amount of melittin

originally added to the NPs. For assays involving both blank and

melittin-loaded NPs, the ‘‘equivalent melittin concentration’’ of

melittin-loaded NPs was calculated as described above and an

equal number of blank NPs was used for comparison.

Vaginal Epithelium Viability
Immortalized vaginal epithelial cells (VK2/E6E7) were ob-

tained from ATCC (CRL-2616) and propagated according to the

suggested protocol. For cytotoxicity studies, 15,000 cells were

added to each well of a 96-well plate and allowed to attach for

24 hours. For single-dose studies, the agent of interest was then

added and incubated with the cells for 12 hours at 37uC. This

incubation time was chosen based on a tenofovir vaginal gel trial

in which participants were instructed to apply the gel twice in the

24-hour period surrounding sexual activity [1]. In repeat dosing

studies, the media was replaced by fresh media containing the

agent of interest once per day for 3 days. Following incubation,

cells were washed once with media and incubated with the MTT

reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium

bromide) for 4 hours. The colored product was solubilized in

DMSO and absorbance at 570 nm was measured using a plate

reader.

Nanoparticle-Sperm Interactions
Human semen samples were obtained from the Washington

University in St. Louis in vitro fertilization laboratory and stored at

37uC until use. Each treatment group (blank NPs, anti-SPAM1

NPs) consisted of samples from three different sperm donors.

Thus, a total of six fresh semen samples were used to assess the

interaction of NPs with sperm. Motile sperm were isolated from

each sample by density gradient centrifugation using a discontin-

uous Percoll gradient [13]. Briefly, 100% isotonic Percoll solution

was generated by mixing Percoll (Sigma-Aldrich, St. Louis, MO)

with 106 phosphate-buffered saline at a volume ratio of 9:1.

Further dilutions of this solution were made using 16phosphate-

buffered saline. A centrifuge tube containing layers of 80%

isotonic Percoll, 40% isotonic Percoll, and semen was carefully

prepared and centrifuged at 1000 g for 20 minutes to pellet motile

sperm. Afterwards, the supernatant was removed and the pelleted

sperm were resuspended in 4% paraformaldehyde and fixed at

37uC for 30 minutes. Fixed sperm were then washed three times

with phosphate-buffered saline to remove residual paraformalde-

hyde.

To determine the extent of NP binding to sperm, fluorescent

NPs at the appropriate concentration were added to sperm to

Nanoparticle Bound Melittin Is Minimally Cytotoxic
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achieve a final sperm concentration of 70 million per mL. For

comparison with the results of other assays, the highest number of

NPs added in this assay (361010 NPs) corresponded to the highest

NP concentration tested in the motility and viability assays (80 mM

equivalent melittin concentration). Samples were incubated for 30

minutes at 37uC and were pipetted up and down 3 times every 10

minutes to keep the sperm and NPs suspended. Afterwards, the

sperm/NP mixture was layered onto 100% isotonic Optiprep

medium (density = 1.32 g/mL, Sigma-Aldrich, St. Louis, MO)

and centrifuged at 1000 g for 20 minutes. Due to the high density

of the PFC NPs (,1.9 g/mL [14]), unbound NPs formed a pellet

while sperm and their associated NPs formed a band above the

Optiprep layer. This band was collected and NP content was

determined by measuring fluorescence at an excitation wavelength

of 549 nm and an emission wavelength of 565 nm. These

measurements were obtained using a Cary Eclipse spectropho-

tometer (Varian, Inc., Walnut Creek, CA) and compared to a

standard curve generated using NP solutions of known concen-

tration. Control runs containing NPs and no sperm were also

performed to quantify background fluorescence due to unbound

NPs that failed to pellet during the centrifugation.

Sperm Aggregation
Human semen samples were obtained from the Washington

University in St. Louis in vitro fertilization laboratory and stored at

37uC until use. A single fresh semen sample was used for the

aggregation experiments. Semen was diluted in EmbryoMax

Human Tubal Fluid (HTF, Millipore) and 361010 fluorescent NPs

were added to achieve a final sperm concentration of 70 million

per mL. Samples were incubated for 30 minutes at 37uC and were

pipetted up and down 3 times every 10 minutes to keep the sperm

and NPs suspended. Afterwards, sperm aggregation was visualized

by brightfield and fluorescent microscopy.

Sperm Motility and Viability
Human semen samples were obtained from the Washington

University in St. Louis in vitro fertilization laboratory and stored at

37uC until use. Each treatment group (free melittin, blank NPs,

mel-NPs, anti-SPAM1 NPs and anti-SPAM1 mel-NPs) consisted

of samples from three different sperm donors. Thus, a total of

fifteen fresh semen samples were used for motility and viability

experiments. All semen samples used in this study had .50%

motility at the time of donation and were used on the day of

Figure 1. Physicochemical properties and stability of blank NPs and mel-NPs. (A and B) Size and zeta potential of blank NPs and mel-NPs
immediately following preparation. (C and D) Size and zeta potential of blank NPs and mel-NPs following incubation for up to 3 days at pH 7.4 or
pH 4.4. Error bars represent S.D. of n = 3 replicates, NS p.0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0095411.g001
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donation. Semen was diluted in EmbryoMax Human Tubal Fluid

(HTF, Millipore, Billerica, MA), aliquoted, and the agent of

interest was added to achieve a final sperm concentration of 10

million per mL. Samples were incubated for 30 minutes at 37uC
and were pipetted up and down 3 times every 10 minutes to keep

the sperm and NPs suspended. This incubation time was chosen

based on previous reports indicating that sperm leave the vagina

within minutes of deposition and are found throughout the female

reproductive tract 30 minutes after insemination [15,16]. After-

wards, VIADENT stain (Hoechst 33258, Hamilton Thorne,

Beverly, MA) was added to achieve a final stain concentration of

10 mg/mL and samples were incubated for an additional 5

minutes. This stain is membrane-impermeant and only labels

nonviable cells with disrupted membrane integrity. Percent

motility and viability were determined using an IVOS Computer

Assisted Sperm Analyzer (Hamilton Thorne, Beverly, MA). The

motion of each sperm head identified in the sample was recorded

for one second and used to generate a smoothed trajectory curve.

A spermatozoon was considered to be motile if its average velocity

along this path exceeded 10 mm/second. A spermatozoon was

considered to be viable if it did not demonstrate detectable nuclear

staining following addition of the VIADENT stain. Motility and

viability measurements following treatment were then normalized

to the motility and viability of untreated sperm from each semen

sample.

Statistical Analysis
For simple two-sample comparisons, an unpaired Student’s t

analysis was performed assuming a normal sample distribution

and a= 0.05. For comparisons of more than two samples, a one-

way analysis of variance (ANOVA) followed by Tukey HSD

analysis of all possible sample pairings was performed using JMP

Version 10 (SAS Institute, Cary, NC) statistical software assuming

a normal sample distribution and a= 0.05.

Results

Melittin Loading and Nanoparticle Stability
In order to characterize the loading of melittin onto perfluor-

ocarbon nanoparticles (PFC NPs), we compared the size and zeta

potential of blank NPs to those of mel-NPs immediately following

preparation. Blank NPs were found to be 268 nm in diameter

while mel-NPs were 304 nm in diameter, indicating a slight but

statistically significant increase in size following melittin loading

(Fig. 1A, p = 0.004). In contrast, the zeta potential of blank NPs

was 242.7 mV while the zeta potential of mel-NPs was 33.7 mV

(Fig. 1B, p,0.0001). These results demonstrate a dramatic

reversal of zeta potential upon loading of the cationic melittin

peptide. HPLC analysis was performed to further quantify the

extent of melittin loading and indicated a loading efficiency of

41.9% with an estimated 16,210 melittin peptides per NP.

NP stability was assessed by monitoring the size and zeta

potential of NPs stored at either pH 7.4 or pH 4.4. Storage at

pH 7.4 was used to determine NP stability in phosphate-buffered

saline and many biological environments, including plasma and

cellular media. In contrast, storage at pH 4.4 was used to assess

NP stability in the acidic vaginal environment. No significant

changes in size or zeta potential were observed over the course of

three days in any of the storage conditions (Figs. 1C and 1D).

Importantly, mel-NPs stored at pH 4.4 for three days did not

exhibit any significant difference in size (p = 0.48) or zeta potential

(p = 0.08) compared to freshly prepared mel-NPs. After three days

of storage at pH 4.4, mel-NPs had a zeta potential of 30.6 mV,

which was substantially more positive than that of blank NPs

stored under the same conditions (234.1 mV, p,0.0001).

Vaginal Epithelium Toxicity
In order to determine the impact of NP incorporation on the

cytotoxicity of melittin, we assessed vaginal epithelial cell viability

following exposure to free melittin, mel-NPs, or blank NPs for

12 hours (Fig. 2A). Vaginal cell viability was significantly reduced

upon exposure to free melittin at concentrations $1 mM (p,0.001

Figure 2. Effect of free melittin, blank NPs and mel-NPs on vaginal epithelial cell viability. (A) VK2 vaginal cell viability following
treatment with a single dose of free melittin, blank NPs or mel-NPs for 12 hours. (B) VK2 vaginal cell viability following repeated treatment with fresh
media (control) or a 10 mM equivalent melittin dose of blank NPs or mel-NPs once per day for 3 days. VK2 viability was determined using MTT assay.
Error bars represent S.D. of n = 6 replicates. Labels indicate level of statistical significance compared to untreated control, NS p.0.05, *** p,0.001.
doi:10.1371/journal.pone.0095411.g002
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relative to control). The IC50 for cell viability was 1.3 mM and

exposure to free melittin at concentrations $4 mM resulted in

essentially complete loss of vaginal cell viability. In contrast, mel-

NPs did not significantly affect vaginal cell viability at equivalent

melittin concentrations up to 10 mM (p = 0.48) and exhibited an

IC50 for cell viability of 24.3 mM. At equivalent melittin

concentrations $40 mM, mel-NPs also resulted in essentially

complete loss of vaginal cell viability. Blank NPs did not

significantly affect vaginal cell viability at any concentration tested

up to 80 mM equivalent melittin concentration (p = 0.81).

Given that a single treatment with mel-NPs at an equivalent

melittin concentration of 10 mM did not significantly affect vaginal

cell viability, we next tested whether multiple treatments of blank

NPs or mel-NPs at this concentration would be cytotoxic (Fig. 2B).

There was no significant effect on cell viability following daily

treatment for three days with either blank NPs or mel-NPs at

10 mM equivalent melittin concentration (p = 0.86).

Sperm Targeting
For comparison with untargeted NPs in terms of sperm affinity

and toxicity, we next conjugated an antibody to sperm adhesion

molecule 1 (SPAM1) to the surface of our blank NPs. The SPAM1

hyaluronidase is a highly conserved sperm surface antigen that has

previously been used as a target for immunocontraception [17,18].

We reasoned that anti-SPAM1 targeting would maximize

interactions between NPs and sperm, thus revealing the upper

limit of NP cytotoxic potential. Targeted NPs were similar to

untargeted NPs in terms of size and zeta potential (Figs. 3A and
3B). Anti-SPAM1 NPs had a diameter of 271 nm and zeta

potential of 238.2 mV, while anti-SPAM1-mel-NPs had a

diameter of 273 nm and zeta potential of 30.0 mV. Thus, melittin

loading onto targeted NPs did not significantly impact NP size

(p = 0.42), but caused a dramatic reversal of zeta potential

(p,0.0001). To examine NP-sperm interactions, fluorescent NPs

were added to sperm for 30 minutes, followed by density gradient

centrifugation to separate sperm-bound NPs from unbound NPs.

The extent of NP binding to sperm was then quantified using

fluorescence spectrophotometry (Fig. 3C). Both blank and anti-

SPAM1 NPs exhibited bound NP fluorescence greater than

background control at all concentrations tested (p,0.001 for

addition of 361010 NPs). However, anti-SPAM1 NPs resulted in

significantly higher fluorescence than blank NPs at all concentra-

tions tested (p,0.001 for addition of 361010 NPs). Comparison of

measured fluorescence values with a standard curve (Fig. 3D)

indicated that addition of 361010 NPs resulted in binding of

approximately 372 blank NPs and 898 anti-SPAM1 NPs to each

spermatozoon. Interestingly, when 361010 NPs were added to

fresh semen samples, blank NPs produced a uniform distribution

of individual motile sperm (Fig. 3E) and diffuse NP fluorescence

(Fig. 3F), while anti-SPAM1 NPs produced large fluorescent

complexes containing NPs and visibly intact sperm with hindered

motility (Figs. 3G and 3H).

Sperm Toxicity
Finally, we compared the effects of free melittin, blank NPs,

mel-NPs, anti-SPAM1 NPs, and anti-SPAM1-mel-NPs on sperm

motility (Fig. 4A) and viability (Fig. 4B). Both motility and

viability were significantly reduced following exposure to .2 mM

free melittin (p,0.001 relative to control). The IC50’s for sperm

motility and viability were 4.0 mM and 4.9 mM respectively.

Exposure to $8 mM free melittin resulted in essentially complete

elimination of sperm motility and viability. In contrast, intragroup

Figure 4. Effect of free melittin, blank NPs, mel-NPs, anti-SPAM1 NPs, and anti-SPAM1-mel-NPs on sperm motility and viability. (A
and B) Sperm motility and viability following treatment with the appropriate agent for 30 minutes. Motility and viability were determined by IVOS
Computer Assisted Sperm Analysis and normalized to the motility and viability of untreated sperm. Error bars represent S.D. of n = 3 replicates using
sperm samples from distinct donors. Labels indicate level of statistical significance compared to untreated control, NS p.0.05, * p,0.05, ** p,0.01,
*** p,0.001.
doi:10.1371/journal.pone.0095411.g004

Figure 3. Characterization of SPAM1-targeted NPs and their interactions with sperm. (A and B) Size and zeta potential of anti-SPAM1 NPs
and anti-SPAM1-mel-NPs immediately following preparation. (C) Fluorescence of sperm-bound blank NPs and anti-SPAM1 NPs following incubation
with sperm for 30 minutes and removal of unbound NPs by density gradient centrifugation. Control samples did not contain sperm and were used to
determine background fluorescence due to remaining unbound NPs. (D) Standard curve of blank NP and anti-SPAM1 NP fluorescence used for
quantification of sperm binding. Error bars represent S.D. of n = 3 replicates, NS p.0.05, *** p,0.001. (E, F, G and H) Brightfield and fluorescence
images of semen samples following addition of 361010 blank NPs or anti-SPAM1 NPs. Scale bar = 50 mm.
doi:10.1371/journal.pone.0095411.g003
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analysis indicated substantially lower toxicity for melittin incorpo-

rated into NPs. Significant loss of motility only occurred following

exposure to $40 mM of mel-NPs (p,0.001) or $10 mM of anti-

SPAM1-mel-NPs (p = 0.003). Significant loss of viability occurred

following exposure to $40 mM of mel-NPs (p,0.001) or $20 mM

of anti-SPAM1-mel-NPs (p = 0.03). The IC50’s for sperm motility

were 28.8 mM for mel-NPs and 14.0 mM for anti-SPAM1-mel-

NPs, while the IC50’s for sperm viability were 36.9 mM for mel-

NPs and 28.5 mM for anti-SPAM1-mel-NPs. Exposure to 80 mM

equivalent melittin concentration of either mel-NPs or anti-

SPAM1-mel-NPs resulted in complete loss of motility and viability.

Blank NPs and anti-SPAM1 NPs which did not contain melittin

were substantially less toxic. Blank NPs had no significant effect on

sperm motility (p = 1.0) or viability (p = 0.42) even at the highest

concentration tested and anti-SPAM1 NPs only caused a slight

reduction in sperm motility to 69.0% at this concentration

(p = 0.06). Intergroup analysis indicated that anti-SPAM1-mel-

NPs were more toxic than untargeted mel-NPs at intermediate

concentrations such as 20 mM (p,0.001). Overall, both mel-NPs

and anti-SPAM1-mel-NPs were more toxic than NPs that did not

contain melittin (p,0.001 at 80 mM equivalent melittin concen-

tration) and substantially less toxic than free melittin (p,0.001 at

10 mM equivalent melittin concentration).

Discussion

These data confirm our hypothesis that formulation of melittin

into NPs significantly decreases sperm and vaginal epithelial cell

cytotoxicity. Free melittin reduces both sperm and vaginal

epithelial cell viability at concentrations .2 mM while mel-NP

cytotoxicity requires an equivalent melittin concentration

$20 mM. This difference is best explained by the NP capacity

for reducing melittin activity, combined with the presence of

polyethylene glycol (PEG) on the NP surface. Previous studies

support our results in that PEGylation of NPs prevents their

interaction and uptake by vaginal and mononuclear cells making

them safe for use as topical vaginal microbicides [19]. Importantly,

blank NPs did not affect cell viability at any concentration tested,

indicating that mel-NP cytotoxicity is due to melittin delivery and

not inherent toxicity of the NP carrier.

Size and zeta potential are two key parameters which influence

NP behavior in biological systems. All NPs generated during this

study were approximately 250-300 nm in diameter, consistent

with those used in our previous study [6]. The relatively large size

of these NPs may prevent penetration of the vaginal epithelial

barrier, thereby minimizing systemic absorption of melittin

following application [20]. Additionally, size and zeta potential

analysis confirmed stability of both blank NPs and mel-NPs at

vaginal pH for at least three days, further supporting the use of

these NPs as intravaginal melittin delivery agents.

Our long-term goal is to develop a vaginal gel-based mel-NP

platform for HIV serodiscordant couples. This will require

additional safety and efficacy experiments in animal model

systems more closely simulating the true vaginal environment.

Our current results indicate that mel-NPs are not toxic to vaginal

cells at equivalent melittin concentrations up to 20 mM. It is

expected that gel suspension of NPs will further increase NP safety

because the gel will attenuate contact between NPs and vaginal

epithelium. Further studies will also be needed to characterize the

dynamics of melittin delivery in vivo and determine the optimal

time for gel application prior to sexual activity.

For optimal therapeutic utility in serodiscordant couples

desiring pregnancy, the mel-NP concentration must be sufficient

to completely inhibit HIV infectivity while simultaneously

preventing sperm and vaginal toxicity. Based on these criteria,

our results demonstrate that an equivalent melittin concentration

of 10 mM could serve as a starting point for future investigation.

However, this NP concentration may need to be adjusted based on

the results of in vivo toxicity testing. Interestingly, mel-NP toxicity

to sperm was enhanced with sperm targeting. Thus, the targeted

mel-NP platform might be adapted for alternative use as a

contraceptive agent.

The membranolytic activity of mel-NPs makes them highly

effective virucides of enveloped viruses such as HIV. Rapid mel-

NP mediated rupture is facilitated by the relatively small virion

surface area, high internal pressure and inability to repair

membrane defects [6]. It is unlikely that HIV will acquire

mutational resistance against this virucidal mechanism. This

approach would be capable of inactivating both free virions and

those transmitted through sperm surface associations [21,22].

HIV-infected seminal leukocytes also mediate infectivity [23].

While the current mel-NP design does not target leukocytes, our

data demonstrate that anti-sperm targeted NPs could potentially

aggregate infective sperm. It follows that a similar strategy could

be employed to selectively target cluster of differentiation and/or

HIV infectivity markers on the surface of infected seminal

leukocytes. Such NPs might effectively prevent cell to cell

‘‘virological synapse’’ mediated HIV transmission through aggre-

gation and lysis of infective seminal cells.

In conclusion, we have demonstrated the proof of concept that

it is possible to design an HIV virucide with minimized

cytotoxicity to sperm and vaginal epithelium. Mel-NPs can

effectively serve as an additional barrier to HIV transmission that

might one day find favorable use by serodiscordant couples

desiring pregnancy.
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21. Ceballos A, Lenicov FR, Sabatté J, Rodrı́gues CR, Cabrini M, et al. (2009)
Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the

virus to dendritic cells. The Journal of Experimental Medicine 206: 2717–2733.
22. Cardona-Maya W, Velilla PA, Montoya CJ, Cadavid Á, Rugeles MT (2011) In
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