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Abstract

Developing drugs that can effectively block STAT3 activation may serve as one of the most
promising strategy for cancer treatment. Currently, there is no putative STAT3 inhibitor that
can be safely and effectively used in clinic. In the present study, we investigated the poten-
tial of dihydroartemisinin (DHA) as a putative STAT3 inhibitor and its antitumor activities

in head and neck squamous cell carcinoma (HNSCC). The inhibitory effects of DHA on
STATS activation along with its underlying mechanisms were studied in HNSCC cells. The
antitumor effects of DHA against HNSCC cells were explored both in vitro and in vivo. An
investigation on cooperative effects of DHA with cisplatin in killing HNSCC cells was also
implemented. DHA exhibited remarkable and specific inhibitory effects on STATS3 activation
via selectively blocking Jak2/STATS3 signaling. Besides, DHA significantly inhibited HNSCC
growth both in vitro and in vivo possibly through induction of apoptosis and attenuation of
cell migration. DHA also synergized with cisplatin in tumor inhibition in HNSCC cells. Our
findings demonstrate that DHA is a putative STAT3 inhibitor that may represent a new and
effective drug for cancer treatment and therapeutic sensitization in HNSCC patients.

Introduction

Signal transducer and activator of transcription (STAT) proteins are a family comprised of
seven members, includingSTAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STATS6. It
is now clear that STAT3, originally considered as an acutephase response protein [1], is a latent
cytoplasmic protein that can be activated by various extracellular polypeptides and other

PLOS ONE | DOI:10.1371/journal.pone.0147157 January 19, 2016

1/17


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0147157&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

DHA as a Putative STAT3 Inhibitor in Head and Neck Squamous Cell Carcinoma

stimuli. These include cytokines (such as IL-6) and growth factors (such as EGF) [2], and hyp-
oxia stress [3], etc. Activation of STAT3 involves phosphrylation of specific tyrosine on
STAT?3, which in turn induces STAT3monomer’s homodimerization and/or heterodimeriza-
tion with STAT1 or STATS5 through reciprocal Src homology 2 (SH2) domain/phosphotyro-
sine interactions. Consequently, dimerized STAT3 translocates to the nucleus and binds to
specific DNA sequences, and regulates transcription and expression of downstream genes that
are associated with cell survival and proliferation [4], cell cycle regulation [5], apoptosis [6]
and angiogenesis [7].

Persistent phosphorylation of STAT3 has been found in numerous malignant neoplasms
[8-14], such as head and neck cancers [8]. In fact, frequency of persistentSTAT3activation is
more than 95% in head and neck cancers. It has been reported that activation of STAT3 plays a
crucial and pivotal role in initiation of malignant transformation [9], immune evasion and sup-
pression [10], as well as cancer invasion and metastasis, suggesting that therapeutic interven-
tions specifically targeting STAT3 can convert the effects of STAT3 activation from pro-tumor
to anti-tumor events. Therefore, several novel small-molecule compounds have been developed
to inhibit STAT3 phosphorylation [11, 12], but their poor solubility and ambiguous after-
effects to host preclude them from clinical trials and practical uses in cancer treatment.

Dihydroartemisinin (DHA) is a semi-synthetic derivative and main active metabolite of the
artemisinin, a natural product isolated from a Chinese medicinal herb (Artemisia annua). It
is one of first-line antimalarial drugs recommend by World Health Organization in regions
where Plasmodium falciparumis becomes resistant to traditional drugs. Moreover, DHA has
been shown to exert antibacterial [13] and antiviral [14] effects. In addition to these efficacies,
evidence from epidemiological, pharmacological and case control studies has suggested that
DHA possess antitumor activity and selective cytotoxicity to various malignancies [15-18].
Notably, its low toxicity to host and easy solubility in water is the major incentive for develop-
ing the compound as an anticancer agent.

A most recent preliminary study [19] revealed that in T cells of contact hypersensitivity
mouse model, artemisinin exerted a strikingly inhibitory effect on IL-17 production, and
diminished the level of IL-6, which effects were accompanied with a significant reduction of
STATS3 activation, suggesting that reduced STAT?3 activation is a result of IL-16 expression
inhibition. However, there is no further and direct evidence for proving artemisinin/DHA
to be a putative STAT3 inhibitor, and little is known about inhibition effects of DHA on prolif-
eration of HNSCC cells. In the present study, we tested the possibility of DHA as a putative
STATS3 inhibitor. Therapeutic potency of DHA against HNSCC cells was validated in vitro and
in vivo. It is for the first time that we identified DHA as a putative inhibitor of STAT3, and
thus the compound represents a promising therapeutic agent against HNSCC.

Materials and Methods
Cell lines and main reagents

Human HNSCC Fadu and Hep-2 cells were obtained from the American Type Culture Collec-
tion (Manassas, VA). Cal-27 cells were purchased from American Type Culture Collection
(Manassas, VA). The cells were maintained in Dulbecco’s modified Eagle’s medium or RPMI-
1640 medium supplemented with 10% fetal bovine serum (Gibco, Rockville, MD) and 1% peni-
cillin and streptomycin (Gibco, Rockville, MD)under conditions of 37°C, 5% CO,, and 95%
humidity in a carbon dioxide incubator. DHA was provided by Tokyo Chemical Industry, Co,
Ltd (Tci, Tokyo, Japan), which was dissolved in dimethyl sulfoxide (DMSO) (Sigma, St. Louis,
MO)and stored as a 200mmol/L stock solution and frozen in aliquots at —20°C. Monoclonal
antibodies to p-Jak2(Tyr1007/1008), Jak2, p-SRC (Tyr416), p-EGFR(Tyr1068), p-Akt
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(Serd73), p-Stat3(Tyr705), Stat3, p-ERK1/2 (Thr202/Tyr204), Bcl-xl, CyclinD1, Mcl-1, MMP-
2, and MMP-9 were obtained from Cell Signaling Technologies (Cambridge, MA). Polyclonal
antibody to HIF-1o. was purchased from Abcam (Cambridge, MA). Polyclonal antibody to
VEGEF was provided by Santa Cruz Biotechnology (Santa Cruz, CA). Monoclonal antibody to
Anti-B-actin was purchased from Bioworld Technology Inc (St. Louis Park, MN, USA). IL-6
was a product from PeproTech (Rocky Hill, NJ, USA).

Western blot analysis

HNSCC cells from culture or from tissue specimens were lysed in Radio Immunoprecipitation
Assay (RIPA) lysis buffer (Beyotime Institute of Biotechnology, Haimen, China) and Western
blotting was performed using previously described procedures [20]. Briefly, equivalent
amounts of proteins were separated by 10% or 12%SDS-PAGE, and then transferred onto a
PVDF membrane (Milipore Corporation, Temecula, CA). After blocking with TBS plus 5%
non-fat milk for 1 h at room temperature, the membrane was incubated with indicated primary
antibodies overnight. Membranes were incubated with a horseradish peroxidase-conjugated
secondary antibody (Zhongshan Goldenbridge Co, Ltd, Beijing, China) for 1 h at room temper-
ature. Immunoreactive proteins were visualized with an enhanced chemiluminescence detec-
tion system (GE Healthcare Life Sciences, Amersham, UK).

MTT assay

In brief, cells were seeded in 96-well culture plates (10x10’cells /200 ul per well) and incubated
overnight, and then treated for 24 or 48h with various concentrations of DHA or with the
diluting vehicle (DMSO). After incubation, freshly prepared 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) (20ul; 5 mg/ml; Sigma) was added to each well and
incubated for 4 h at 37°C. The culture medium was removed from the wells and substituted
with the reduced MTT solublized in 150pl/well DMSO. The prepared plates were subjected to
examination with an Enzyme-linked Immunosorbent Detector (Model 550, Bio-Rad, Hercules,
CA, USA) with absorbance values of 490 nm to evaluate cell viability.

Wound healing assay

1x10°’HNSCC cells were seeded in 24-well plates and starved for 12 h in serum-free medium.
Then a scratch in the cell monolayer was made using a sterilized pipette tip (10ul). Thereafter,
all wound-healing processes were performed in serum-free conditions. After washing three
times with 0.01M phosphate-buffered saline (PBS, pH 7.4), the plates were incubated with
DHA (40 or 20uM) or with the DMSO, and images were captured at 0, 12, 24 and 48 h using
digital camera (Canon, Tokyo, Japan) connected to an inverted microscope (Olympus, Tokyo,
Japan). The distance of wound sealing was calculated with Image J software (National Institutes
of Health, MD, USA).

Plasmid constructs and transient transfections

Dominant negative EGFR (DN-EGFR, GenBank_ID: NM_005228), dominant negative Jak2
(DN-Jak2, GenBank_ID: NM_004972), and dominant negative SRC (DN-SRC, GenBank_ID:
NM_005417) plasmid constructs were purchased from Gene Chem Co, Ltd (Shanghai, China),
and detected by Reverse transcription polymerase chain reaction (RT-PCR) and Western
blotting (Figs A and B in S1 File). A constitutive active STAT3 (CA-STAT3, GenBank ID:
NM_139276) construct was obtained from Gene Copoeia, Inc (Guangzhou, China). 3x 10°Cal-
27 cells per well were seeded in 6-well plates. When plated cells reached 80% confluence,
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transfections were performed with Lipofectamine 2000 (Invitrogen Corp, Carlsbad, CA)
according to the manufacturer’s instructions. After 24 h, the transfected cells were ready for
subsequent DHA treatment studies.

Flow cytometry

4x10° HNSCC cells were seeded in each well of 6-well plates in triplicates, incubated overnight,
and treated with various concentrations of DHA, or DMSO for 24 h. For cell cycle analysis, the
treated cells were harvested, washed twice with ice-cold PBS and fixed in 70%methanol, the
samples were exposed to RNase A and stained with propidium iodide (PI) for analyzing the
DNA content by FACS Calibur flow cytometer (Becton Dickinson, San Diego, CA). For assess-
ing cell apoptosis, we used the Annexin V-FITC Apoptosis Detection Kit (Becton Dickinson,
San Diego, CA) and performed the assessment according to manufacturer’s instructions. Per-
centage of apoptotic cells was analyzed by FACS Calibur flow cytometer.

Murine xenograft model and tumor treatment

Four to 6weeks old BALB/c male mice weighing18 to 20 g were obtained from Vital River Lab-
oratory Animal Technology Co. Ltd. (Beijing, China) and were maintained in an air-condi-
tioned room with constant temperature (22-24°C) and a dark-light cycle (12 h/12 h), and
housed in plastic cages, maximum 5 mice per cage. They were fed a standard chow and tap
water ad libitum. All animal experiments were reviewed and approved by the ethics committee
of Bethune International Peace Hospital. To establish a xenograft tumor, 1x10” Cal-27 cells in
200 pl culture medium were inoculated subcutaneously into the left inguinal area of each nude
mouse. The general conditions of animal, including mental state, diet and defecation were
observed every day after tumor implantation. Furthermore, the bitten wound and locally cuta-
neous ulcer were also paid close attention. Tumor-bearing mice were randomly assigned to
either treatment group or control group when average tumor diameter reached 5 mm. The
treatment group received intraperitoneal injection of DHA at a dosage of 50 mg/kg once daily,
5 times per week, for 4 weeks. The control group was given DMSO. Tumor size and body
weight was measured every 4days throughout the study. Tumor volume was calculated by the
formula: V (cm?) = width? (cm?) x length cm)/2. Tumor growth inhibition rates were calcu-
lated using the formula (1-average tumor weight of experimental group/average tumor weight
of control group) x 100%. In our experiments, no mice were observed to be died of tumor load-
ing. All animals were pre-euthanized with CO, and sacrificed by cervical dislocation at the ter-
mination of experiments, and the tumors were excised and weighed. The portions of each
tumor were taken for Western blot and pathological analyses.

Statistical analysis

All in vitro experiments were repeated at least three times and data were expressed as mean + SD.
Student’s t test or on-way ANOVA was used for statistical analysis when indicated. P values
< 0.05 were considered to indicate statistical significance.

Results

DHA, as a putative STAT3 inhibitor, effectively blocks activation of
STAT3in HNSCC cells

First, DHA inhibits constitutive phosphorylation and activation ofSTAT3 in HNSCC cells. As
observed, three HNSCC cell lines (Fadu, Cal-27 and Hep-2) expressed certain amount of p-
STAT3 under normal cultural conditions, typical of constitutive or persistent activation of
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STATS3 (S1 Fig). DHA significantly inhibited activation of STAT?3 in the three HNSCC cell
lines in dose- and time-dependent manners (Fig 1A). Second, DHA effectively inhibited activa-
tion of STAT3 induced by hypoxia and IL-6 in HNSCC cells. When hypoxia or IL-6 was given,
activation of STAT3 was substantially induced, which was effectively inhibited by DHA (Fig
1B and 1C). Finally, inhibition of STAT3 activation by DHA was also confirmed in vivo as
observed on expression of p-STAT3 in the xenograft animal tumors (Fig 1D). Taken together,
DHA inhibits STAT3 activation under different circumstances.

The efficacies of DHA on STAT3 inhibition were compared with those of AZD1480 and
AG490, two specific inhibitors of Jak2/STATS3 signaling, which are commonly used in the
experimental studies. The doses of AZD 480 and AG490 were chosen based on a preliminary
dose-escalation study (S2 Fig). All of the three inhibitors remarkably downregulated levels of
p-Jak2 and p-STAT3in HNSCC cells (Fig 2). The inhibitory effects of DHA on STAT3 activa-
tion were comparable with those of AZD 480 and AG490, which was most likely more effective
than that of AG490 in Hep-2 cells (Fig 2, the right panel).

Inhibition of STAT3 activation by DHA in HNSCC cells is attributed to
selective blockade of Jak2 phosphorylation

After treating Fadu, Cal-27 and Hep-2 cells with different concentrations of DHA, inhibition of
STATS3 activation was prominent, but little or no inhibition of Akt and ERK phosphorylation
was observed (Fig 3A); the expression of p-Jak2 in three HNSCC cell lines was markedly
reduced in a dose-dependent manner; however, neither inhibition of p-SRC nor downregulation
of p-EGFR was observed (Fig 3B). It was of particular interest to note that, in the xenograft ani-
mal tumors, application of DHA resulted in significant simultaneous decrease of p-STAT3 and
p-Jak2 expression, but the levels of p-SRC and p-EGFR remained unchanged (Fig 3C). Further-
more, treatment with DHA and/or dominant negative Jak2 (DN-Jak2) rather than abrogation
of EGFR and SRC activation by their dominant negative constructs (DN-EGFR and DN-SRC)
reduced the expression of p-Jak2 and p-STAT3 in Cal-27 cells (Fig 3D). However, DHA did not
altered the level of overexpressed p-STAT3, apoptosis, and cell cycle in Cal-27 cells transfected
with constitutively active STAT3 (CA-STAT3) construct (Fig 3E). Collectively, inhibition of
STATS3 activation by DHA is through selective blockade of Jak2 phophorylation and activation.

DHA inhibits proliferation, growth and migration of HNSCC cells in vitro

DHA significantly inhibited the proliferation of HNSCC cells. Fadu cells were the least sensi-
tive to DHA while other two cell lines were more sensitive to the compound comparatively
(Fig 4A). The DHA-induced growth inhibition involved apoptosis induction. The percentage
of the apoptotic cells in HNSCC cells treated with DHA was greater than that in untreated
(control) cells (Fig 4B). It was also observed that DHA reduced the migration of all three cell
lines in a time-dependent manner (Fig 4C, left and middle panels) (p<0.01). As demonstrated
in the cell migration assay, expression of two important metastasis-associated proteins (MMP-
2 and -9), were remarkably decreased after treatment with DHA (Fig 4C, right panel). Other
proteins downstream of STAT3 including Mcl-1, Bcl-xl, Cyclin-D1 and VEGF were also down-
regulated in the three HNSCC cell lines after DHA treatment (Fig 4D).

DHA inhibits tumor growth in the xenograft animal models of human
HNSCC

Compared to the vehicle (DMSO), DHA significantly decreased tumor size, overall tumor
weight, and mean tumor volume (Fig 5A-5C). However, the general conditions and the body
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Fig 1. DHA selectively blocked activation of STAT3 under different conditions in HNSCC cells. (A) DHA blocked constitutive activation of STAT3.
FaDu, Cal-27, and Hep-2 cells incubated with indicated concentrations of DHA or DMSO for 24 h (upper panel), or treated with fixed concentrations (160 uM
for Fadu cells, and 80uM for Cal-27 and Hep-2 cells) of DHA for 0, 12, 24, and 48 h (lower panel). Expression of p-STAT3 was determined by Western
blotting. (B) DHA inhibited hypoxia-induced activation of STAT3. Three HNSCC cell lines were treated with DHA (160 uM for Fadu, and 80uM for Cal-27 and
Hep-2) under hypoxia for 24 h. Levels of p-STAT3and HIF-1a were determined by Western blotting. (C) DHA blocked IL-6-induced activation of STAT3.
HNSCC cells were treated with160 uM DHA (Fadu) or 80 uM DHA (Cal-27 and Hep-2) for 24h and exposed to IL-6 (20ng) for 1 h. Levels ofp-Jak2 and p-
STATS3 were evaluated by Western blotting. (D) DHA inhibited STAT3 activation in vivo. Tumor-bearing mice were treated with DHA as described in the
materials and methods. Expression of p-STAT3 in representative tumor tissues of experimental and control animals was evaluated by Western blotting. All

experiments were performed in triplicates.

doi:10.1371/journal.pone.0147157.g001
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Fig 2. Comparison of inhibitory effect of DHA on STAT3 activation with that of other two available Jak/STAT3 inhibitors. Fadu, Cal-27 and Hep-2
cells were exposed to different concentrations ofDHA, AZD1480 and AG490 or DMSO for 24 h, after which time the expression of p-Jak2 and p-STAT3 were
analyzed by Western blotting. The doses of these inhibitors were chosen based on a preliminary dose-escalation study (S3 Fig).

doi:10.1371/journal.pone.0147157.g002

weight of the animals treated with DHA showed nearly no change for the period of DHA appli-
cation, which implies that the compound has no obvious toxicity to experiment animals (Fig
5D). As expected, the expressions of the above-mentioned functional proteins downstream of
STATS3 were all inhibited in xenograft animal tumors treated with DHA. Apart from inhibition
of p-Jak2 and p-STAT3 in DHA-treated tumors (Fig 3C), expression of downstream proteins
of STAT3 including Mcl-1, Bcl-x1, Cyclin-D1, VEGF, MMP-2, and MMP-9 was significantly
suppressed in DHA-treated tumors (Fig 5E).

DHA synergistically potentiates the antitumor activity of cisplatin in
HNSCC cells

The synergistic effects between the two drugs were seen in different combinations in separate
cell lines (Fig 6A). For Cal-27 cells and Hep-2 cells, synergistic effects were observed when cells
were treated with 10 uyM DHA and 10 uM cisplatin, as well as 20 uM DHA with 5 and 10 uM
cisplatin. In Fadu cells, synergistic effects were noted when cells were cultured with 10 or

20 uM DHA and5 or 10puM cisplatin. The CIs of these combinations were all less than 1, sug-
gestive of a synergistic activity between the two drugs in proliferation inhibition on HNSCC
cells (Fig 6B). Inhibition of STAT3 activation resulted in reversion of the cell cycle distribution
patterns induced by upregulation of p-STAT3. It was revealed that, after treatment with DHA,
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treated with DHA as described. Expression of p-EGFR, p-Jak2, p-SRC and p-STAT3 in tumor tissues was
analyzed by Western blotting. (D) DHA specifically blocked Jak2 activation in HNSCC cells. Cal-27 cells were
transfected with DN-EGFR, DN-Jak2, DN-SRC, CA-STATS3, or empty vector, and exposed to 80 uM DHA for
24 h. Expression of p-EGFR, p-Jak2, p-SRC and p-STAT3 were studied by Western blotting. (E)
CA-STAT3attenuated the cell cycle arrest induced by DHA. Cal-27 cells were transfected withCA-STAT3or
empty vector and exposed to 80 uM DHA for 24 h. Cell cycle and cell apoptosis were analyzed by flow
cytometry. All experiments were performed in triplicates.

doi:10.1371/journal.pone.0147157.g003

a GO/G1 phase accumulation occurred in the three cell lines with a simultaneous decrease in
the percentage of cells in the S and/or G2/M phase. In addition, DHA resulted in G1 cell cycle
arrest in HNSCC cells in time-and dose-dependent manners (Fig 6C).

Discussion

Searching novel therapeutic agents that target some specific signaling molecules is crucial for
developing revolutionized and promising treatment modalities to cure HNSCC [21]. Of partic-
ular interest, STAT3 may serve as a potential target for this purpose. It has been demonstrated
that activation of STAT3 is necessary for the growth of HNSCC cell lines [22], and the status of
STATS3 activation is a marker to predict the survival and prognostic outcomes in HNSCC
patients [23]. In this regard, targeting activation of STAT3 would be an ideal strategy for pre-
venting pathogenesis and progression of HNSCC.

Up till now, several compounds have been screened and shown to inhibit the STAT?3 activa-
tion. These STAT3-targeting agents are currently divided into two main groups, direct action
group and indirect action group. The former group, which includes Stattic [24], ST3-H2A2
[25], S31-1757 [26] and Diindolylmethane [27], interacts with structural domain of STAT3 and
disrupts the process of STAT3 phosphorylation. By contrast, the indirect action group alters
the status of STAT?3 activation via acting on the upstream proteins that dominate the STAT3
activation. In fact, Pentoxifylline [28], AZD1480 [29], AG490 [30], JSI-124 (cucurbitacin I)
[31], Indirubin [32] and LBH589 [33] belong to the indirect inhibitors of STAT3. Although the
before-mentioned agents have been shown to possess substantial activities on inhibiting
STATS3 activation, they are mostly used for experimental purposes, and only a very few have
been approved for clinical trials by FDA as a STAT3 inhibitor due to major toxicity-related
safety concerns. Very recently, a first-in-man phase I study was conducted in patients with
refractory solid malignancies [34] to evaluate the safety, pharmacokinetics, pharmacodynamics
and tumor inhibition efficacy of OPB-51602, a novel small-molecule and direct inhibitor of
STAT 3 phosphorylation at Tyr705 and Ser727 sites. Although the preliminary tumor inhibi-
tion effects were observed in non-small cell lung carcinoma (NSCLC), the side effects and
dose-related toxicities of the chemical were obvious, which need further in-depth and long-
term clinical investigations.

As a highly effective treatment drug of falciparum malaria, DHA has been proved to be a
safe, well tolerated, and widely used in clinic. Moreover, a few studies have reported that the
efficient antimalarial drug DHA shares strong antitumor activities in different human cancer
cells, such as colorectal carcinoma cells, T-lymphoma cells, and leukemia cells [35-37]. How-
ever, there has been no available evidence for proving the effects of DHA on growth of HNSCC
cell inhibition to date. In the present study, it is for the first time we demonstrated that DHA
possesses antitumor properties against a variety of human HNSCC cells both in vitro and in
vivo. The underlying mechanism involves selective inhibition of Jak2/STAT3 signaling and its
downstream target proteins, thereby producing proliferation inhibition and inducing cell
apoptosis.
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Fig 4. DHA resulted in proliferation inhibition and migration, and induced apoptosis in HNSCC cells.
(A) FaDu, Cal-27, and Hep-2 cells were treated with indicated concentrations of DHA for 24 or 48h, and cell
viability was tested via MTT assay. IC50 values of DHA were calculated for the three cell lines. (B) DHA
induced apoptosis in HNSCC cell. Three HNSCC cell lines were incubated with indicated concentrations of
DHA for 24 h, followed by flow cytometric analysis with Annexin V-FITC and propidium iodide (PI) labeling.
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(C)DHA induced inhibition of migration of HNSCC cells. Cells were incubated with 40uM (FaDu) or 20uM
(Cal-27and Hep-2) DHA or DMSO. The wound healing capacity was measured at 0, 12, 24, and 48 h. Data
were expressed as means + SD (left and middle panels). Simultaneous determination of levels of MMP-2,
MMP-9 and p-STAT3 was conducted (right panel). (D) Effects of STAT3 inhibition by DHA on expression of
downstream proteinsMcl-1, Bcl-xI, Cyclin-D1 and VEGF in HNSCC cells as determined by Western blotting.
All experiments were performed in triplicates.

doi:10.1371/journal.pone.0147157.g004

Our results also demonstrated that the DHA-induced inhibitory effects on STAT3 signal-
ing are selective and specific, as we summarized in Fig 7. In the present study, we made it clear
that inhibition of STAT3 by DHA depended on blockade of Jak2 kinase rather than on inhibi-
tion of EGFR tyrosine and SRC family kinases in HNSCC cells. Moreover, DHA inhibited
phosphorylation of STAT3, but did not affect the constitutive activation of Akt and ERK, the
key proteins of PI3K/Akt and MAPK/RAS oncogenic signaling pathways. Our observations
further confirmed the notion that Jaks are central mediators of STAT3 signaling in solid
tumor cells [29].

In the present investigation, the efficacy of STAT3 inhibition by DHA was also confirmed.
DHA exhibited substantial effects on inhibiting STAT?3 activation both in vitro and in vivo.
Inhibition of STAT?3 activation by DHA exerted functional impacts on HNSCC cells, including
decrease in cell viability and migratory capability, GO/G1 phase cell cycle arrest and apoptosis
in HNSCC cells. As postulated in Fig 7, these effects are most likely to be attributed to downre-
gulation of the cycle regulator cyclin D1, antiapoptotic proteins Bcl-xL and Mcl-1, growth fac-
tor VEGF, and metastasis-associated proteins MMP-2 and MMP-9, most of which are major
downstream targets of STAT3 [33, 38].

Apart from direct inhibition of tumor growth, blocking STAT3 activation is of potential
value in combating chemoradiotherapeutic resistance of HNSCC. For instance, activation of
STATS3 is associated with resistance of laryngeal carcinoma cells to ionized radiation; blockade
of STATS3 signaling by shRNA sensitized the laryngeal carcinoma cells to radiotherapy both
in vitro and in vivo [39]. Moreover, activation of STAT3 is also associated with chemoresis-
tance of HNSCC [40]. In the present study, we demonstrated for the first time that DHA
potentiates the antiproliferative effects of cisplatin in HNSCC cells. It would be of great interest
to further elucidate whether DHA has synergized effects with other chemotherapy drugs in kill-
ing HNSCC cells.

STATS3 activation is also responsible for HNSCC resistance to some molecular targeted ther-
apies. In fact, activation of STAT3 is related to resistance of HNSCC to EGFR monoclonal
antibodies, such as Cetuximab [41]. Targeting STAT3 with a STAT3 decoy reduced cellular
viability and the expression of STAT?3 target genes in EGFR inhibitor (Cetuximab) resistance
models; the addition of a STAT3 inhibitor to EGFR blocking strategies significantly enhanced
antitumor effects of Cetuximab in vivo [42]. Activation of STAT3 also constitutes a cause of
insensitivity of HNSCC cells to proteasome inhibitor. For instance, Bortezomib up-regulates
STAT3 and synergizes with inhibitors of STAT3 to promote cell death in HNSCC [43]. There-
fore, addition of DHA, as a putative and effective STAT3 inhibitor, to the above-mentioned
targeting therapies may greatly enhance the treatment efficacies and thus outcomes of HNSCC
patients.

Owing to the scarcity of the available STAT3 inhibitors that can be used in clinic, defining
DHA as a putative STAT3 inhibitor is of profound clinical implications. Because our results
are preclinical, further controlled clinical trials are due to carry out to confirm the efficacy of
DHA in improving the outcomes of HNSCC or some other human malignancies.
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concentrations of DHA for 24h. The proportions of cells in G1 were calculated. Data were expressed as means * SD, *p<0.05, **p<0.01. All experiments
were performed in triplicates.

doi:10.1371/journal.pone.0147157.9006
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Fig 7. A schematic chart showing the pathways by which DHA inhibits STAT3 activation and signaling.
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S1 Fig. Basal expression levels of p-STAT3 (Tyr705) and STAT3 in Fadu, Cal-27 and Hep-2
cells.
(TIF)

S2 Fig. The dose-escalation studies of AZD1480 and AG490 in HNSCC cells.
(TTF)

S1 File. RT-PCR and Western blotting of associated genes in Cal-27 cells transfected with
different plasmids. 3x105 Cal-27 cells per well were seeded in 6-well plates. When plated cells
reached 80% confluence, they were transiently transfected with plasmids of DN-Jak2 (Empty
vector, 19017-1, 19018-1, and 19019-1), DN-EGFR (Empty vector, 7991-1, 7992-1, and
7993-1), and DN-SRC (Empty vector, 18909-1, 18910-1, and 18911-1). The transfection
was performed with Lipofectamine 2000 according to the manufacturer’s instructions. After
24 h, the transfection efficiency was analyzed by RT-PCR (Figure A) and Western blotting
(Figure B). The results indicated that 19019-1 (DN-Jak2), 7992-1 (DN-EGFR), and 18911-1
(DN-SRC) were the optimum plasmids to inhibit the corresponding genes. Therefore, we
chose these plasmids to fulfill the transfection study in Cal-27 cells.

(TTF)
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