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Purpose: To compare prostate diffusional kurtosis imaging (DKI) metrics generated 
using phase-corrected real data with those generated using magnitude data with and 
without noise compensation (NC).
Methods: Diffusion-weighted images were acquired at 3T in 16 prostate cancer 
patients, measuring 6 b-values (0-1500 s/mm2), each acquired with 6 signal averages 
along 3 diffusion directions, with noise-only images acquired to allow NC. In addi-
tion to conventional magnitude averaging, phase-corrected real data were averaged 
in an attempt to reduce rician noise-bias, with a range of phase-correction low-pass 
filter (LPF) sizes (8-128 pixels) tested. Each method was also tested using simu-
lations. Pixelwise maps of apparent diffusion (D) and apparent kurtosis (K) were 
calculated for magnitude data with and without NC and phase-corrected real data. 
Average values were compared in tumor, normal transition zone (NTZ), and normal 
peripheral zone (NPZ).
Results: Simulations indicated LPF size can strongly affect K metrics, where  
64-pixel LPFs produced accurate metrics. Relative to metrics estimated from magni-
tude data without NC, median NC K were lower (P < 0.0001) by 6/11/8% in tumor/
NPZ/NTZ, 64-LPF real-data K were lower (P < 0.0001) by 4/10/7%, respectively.
Conclusion: Compared with magnitude data with NC, phase-corrected real data can 
produce similar K, although the choice of phase-correction LPF should be chosen 
carefully.
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1  |   INTRODUCTION

Prostate cancer (PCa) is the most common cancer in men in 
developed countries.1 However, PCa encompasses a spec-
trum of low- to high-risk diseases, which are often poorly 
characterized by current diagnostic methods, leading to both 
overtreatment and undertreatment.2 Diffusion-weighted im-
aging (DWI), together with one of its metrics, the apparent 
diffusion coefficient (ADC), has shown promise as a non-
invasive tool for improved PCa risk stratification,3 although 
significant overlap still exists between ADC values for high- 
and low-grade tumors.4-10

Standard DWI is quantified using a monoexponential model 
of signal decay with b-value, which is derived from the simpli-
fied assumption of Gaussian diffusion, where water diffuses 
freely according to Brownian motion. However, water diffu-
sion in biological tissue is much more complex and often de-
viates substantially from Gaussian behavior.11 Consequently, 
several “non-Gaussian” signal models have been suggested to 
more accurately describe in vivo diffusion.12-22 One such ex-
panded model is diffusional kurtosis imaging (DKI),12 which 
provides an estimate of the apparent diffusional kurtosis 
(K): a dimensionless parameter that quantifies the degree of 
non-Gaussian diffusion. Since the first DKI studies,12,23 the 
technique has been applied extensively in neuroimaging24-26 
and other studies have demonstrated feasibility for body ap-
plications, including PCa.27-34 Several investigations have 
compared DKI with standard DWI in PCa,29-34 with disagree-
ment over whether DKI brings additional value compared to 
standard DWI29-31 or not.32-34 However, these findings may be 
influenced by methodological issues, including the choice of 
b-values and by whether and how noise compensation (NC) is 
performed, and this issue has yet to be fully investigated.

DKI acquisition protocols use DWI pulse sequences with 
a range of low to ultrahigh b-values, required to measure 
K accurately.35 Unfortunately, higher b-values are associ-
ated with low signal-to-noise ratios (SNRs). In such cases, 
the rician noise distribution in magnitude-reconstructed 
data introduces an increased mean pixel value,36 called the 
“rectified noise floor,”37 where the effect of this on the fitted 
DKI model is to mimic the presence of diffusional kurtosis, 
causing an upward bias in K.

Most low-SNR MRI applications are improved by use of 
complex signal-averaging to increase SNR and, hence, re-
duce noise-floor bias, although complex averaging is gener-
ally avoided in DWI, where motion-induced phase shifts lead 
to destructive interference between averaged data and severe 
loss of signal.36 In body DWI, each b-value image is typically 
calculated from 12-24 signal averages (3 diffusion directions 
and 4-8 signal excitations [NeX]), applying the magnitude op-
eration before averaging to avoid phase-interference artifacts. 
However, while magnitude averaging does reduce apparent 
noise, it does not reduce the upward bias of the noise floor.36,37

Several methods have been proposed to remove noise-floor 
bias from DWI.36-43 A common approach is to use a correc-
tion-scheme to compensate for biasing effects in noisy magni-
tude images.37-41 However, these techniques require knowledge 
of the noise statistics in a specific region of interest (ROI) and 
this is not easily determined in body DWI, especially on a vox-
elwise basis.36 Alternatively, NC methods see rician statistics 
taken into account in fitting the diffusion model,42 although 
this requires the acquisition of additional noise-only images at 
the expense of longer scanning times. A third approach is to 
reconstruct phase-corrected real data in an attempt to maintain 
the original noise statistics with no rectified noise floor.36,37,43 
The purpose of this study is to investigate the effects of 
phase-corrected real data for DKI in the prostate compared to 
standard magnitude data, with and without NC.

2  |   METHODS

All data analysis was carried out in MATLAB (Mathworks, 
Natick, MA, USA).

2.1  |  Patients

Sixteen patients with clinical suspicion of undiagnosed PCa 
were prospectively enrolled into this local institutional review 
board-approved (CUH/13/EE/0100) single-center study, with 
all subjects signing written informed consent. Inclusion crite-
ria were either prior negative biopsy or biopsy-proven low risk 
PCa and an MRI suspicious for a new high-grade tumor. This 
patient group was a subset of that used for a previous study.28

2.2  |  MRI

All patients underwent 3T MRI (Discovery MR750, GE-
Healthcare, WI, USA) using a 32-channel phased-array coil. 
A diffusion-weighted (Stejskal-Tanner dual-spin-echo EPI) 
sequence was used to acquire axial slices, with imaging pa-
rameters: echo time 95 ms; repetition time 6000 ms; 6 NeX; 
field of view (FOV) 28 × 28 cm2; slice thickness 3.6 mm; 
slice gap 0.4 mm; acquisition matrix 128 × 96; reconstruc-
tion matrix 256 × 256; parallel imaging (ASSET, essentially 
equivalent to the SENSE method)44 acceleration factor 2;  
6 b-values: 0, 100, 450, 800, 1150, 1500 s/mm2, with each 
non-zero b-value acquired along 3 orthogonal diffusion  
directions. For the purpose of NC, additional noise-only images  
were collected using an identical acquisition and reconstruc-
tion but without radiofrequency excitation pulses.45 The raw 
(k-space) data from both the DWI and ASSET calibration 
scans were stored to allow subsequent re-analysis.



      |  2245GOODBURN et al.

2.3  |  Data reconstruction

The manufacturer's research software (Orchestra SDK 1.6, 
GE Healthcare) was used to investigate and adapt DWI re-
construction. The relevant portion of the magnitude recon-
struction function performs the following steps for each 
unique slice location, b-value, diffusion-direction, and NeX:

1.	 For each channel image, a high-pass, preweighted image 
and a low-pass image are calculated as part of homo-
dyne detection,46 where preweighting corrects for partial 
sampling of k-space and low-pass images are used for 
phase correction.

2.	 Parallel imaging (ASSET) unaliasing is performed for 
both the preweighted and low-pass channel images.

3.	 Homodyne phase correction is performed using the 
ASSET-unaliased, preweighted, and low-pass images, and 
the real part of this homodyne-processed image is taken.

4.	 The magnitude of the real-valued, homodyne-processed 
image is taken.

These operations are repeated for each NeX, and the NeX 
images are averaged to give a magnitude-averaged image.

This algorithm was adapted to produce a reconstruction 
method that generates phase-corrected, real-valued images. 
First, step 4 was removed to avoid the magnitude operation. 
Second, phase correction (which is already part of homodyne 
processing) was adapted so that only the very slowly vary-
ing phase differences were removed while preserving higher 
frequency phase variations assumed to be due to random 
noise. Since some functions provided by the manufacturer 
were “black-boxes,” we could not directly change the filter. 
Instead, additional low-pass filtering was performed using 
a 2D Fourier-domain Hamming window on the ASSET-
unaliased, low-pass image following step 2 to produce a 
“lower-pass image,” used to perform phase correction:

1.	 For each channel image, a high-pass, preweighted image 
and a low-pass image are calculated as part of homo-
dyne detection.

2.	 Parallel imaging (ASSET) unaliasing is performed for 
both the preweighted and low-pass channel images.

3.	 A lower-pass image is calculated from the ASSET-
unaliased, low-pass image via a 2D Fourier-domain 
Hamming window.

4.	 Homodyne phase correction is performed using the 
ASSET-unaliased, preweighted and lower-pass images, 
and the real part of this homodyne-processed image is 
taken.

The optimal size of the Hamming window was determined 
via the use of digital-phantom simulations described in 
the next section. The resulting real-valued images were 

accumulated and averaged in the same way as for the orig-
inal reconstruction.

2.4  |  Simulations

To investigate optimal low-pass filter (LPF) sizes, we tested 
a simple real-data reconstruction method with phase correc-
tion using a range of LPF sizes for a digital phantom with 
simulated noise. The phantom was built as a 2D complex 
image (256 × 256) with independent, random Gaussian noise 
added to the real and imaginary parts. To simulate the ef-
fect of motion, the image phase (wrapped onto the range of 
[−π, π]) was offset by a random number between −π and π 
(translation) and scaled by a random slope within a range 
that varied with b-value, based on inspection of clinical data 
(Supporting Information Figure S1, which is available on-
line). The reconstruction method described above (without 
ASSET-unaliasing) was applied to a fully-sampled, full-Fou-
rier k-space, except that parallel imaging was not included. 
To mimic the preweighting filter, images were low-pass fil-
tered with a 200-pixel Hamming window, (chosen to produce 
visually similar phase when compared with clinical data). To 
reflect the patient protocol, 18 (6 NeX, 3 diffusion directions) 
repetitions were generated. Both magnitude-averaged and 
phase-corrected, real-averaged images were constructed.

For the real-averaged images, several sizes of 2D, low-pass 
Hamming-window filters were tested, ranging 8 to 128 pixels. 
Figure 1 illustrates 2 effects that appear to be influenced by 
the size of the LPF: smaller filter sizes generate more severe 
phase artifacts, while larger filter sizes produce positive-mean 
noise distributions, as observed in image histograms. Phase-
cancellation artifacts, manifesting as regions of low signal in-
tensity, are here especially apparent in the high-b-value image 
for the real-data phased-corrected with an 8-pixel LPF.

For each simulated dataset, images were generated using 6 
signal values from S(0) = 1500/2800, based on clinical values 
in tumor/normal tissue, over 6 b-values from 0 to 1500 s/mm2  
using simulated tumor/normal tissue apparent diffusion 
(D) and K values of 1.25/2.31 × 10−3 mm2/s and 0.83/0.48, 
respectively (Supporting Information Table S1). All “raw” 
data was confounded with noise SD of 310.

To reflect the patient measurements (see the Diffusional 
kurtosis model fitting section), each of the 3 NeX groups 
(diffusion directions) were fitted independently using the 
diffusional kurtosis model (Equation 1); D and K were cal-
culated as the arithmetic mean of the fitted values. Fits were 
performed for 2 representative pixels; a pixel in the center 
and off-center of the high-signal region that were differently 
affected by phase-cancellation artifact (marked by Xs in 
Figure 1). This process was repeated for 1000 magnitude- and 
real-data simulated reconstructions of the digital phantom.
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2.5  |  Diffusional kurtosis model fitting

Pixelwise nonlinear fits of the magnitude- and real-data pa-
tient datasets were performed independently for each diffu-
sion direction using:

to generate maps of D and K with fitting constraints35:

•	 D (×10−3 mm2/s): lower bound 0.001; upper bound 5.
•	 DK (×10−3 mm2/s): lower bound 0; upper bound 3/bmax.

Our in-house fitting method was written in Matlab 
(Mathworks, Natick, MA, USA) to fit data using the Trust-
Region Reflective algorithm. The code included an NC op-
tion to compensate for rectified noise floor in magnitude 
data, for which the model fitted was an estimate of the mea-
sured noisy signal, Sn, given by:

where S is an estimate of the true signal, and the noise param-
eter, n, is estimated from the mean of the separately acquired 
noise-only images, smoothed by a 25 × 25 pixelwise adaptive 
Wiener filter and multiplied by 

√

2∕� to correct for the mean 
value of a rician distribution at very low SNR.12,45

Average D and K maps were calculated as the pixelwise, 
arithmetic mean of D and K maps produced for each diffusion 

direction. In total, 7 sets of (average) D and K maps were 
generated for each patient, calculated from magnitude data 
without NC, magnitude data with NC, and phase-corrected 
real-data reconstructed with LPF sizes of 8, 16, 32, 64, and 
128 pixels. D and K maps were masked according to low- 
signal thresholding in the zero-b-value images and pixels 
with negative K values were set to zero.

2.6  |  ROI analysis

ROIs were outlined in the prostate by 1 author (fellowship-
trained uroradiologist with 7 years’ clinical prostate MR 
reporting experience), with reference to ADC maps and T2-
weighted images. Delineation was performed for tumor as 
the largest single tumor region, and for tissue that was nor-
mal-appearing on standard imaging sequences and benign on 
sector biopsies in the peripheral zone (NPZ) and transition 
zone (NTZ). These ROI volumes were then used to extract 
mean D and K in tumor, NPZ and NTZ.

2.7  |  Statistical analysis

Friedman tests were performed to compare mean D and K ROI 
metrics estimated using real data, magnitude data, and mag-
nitude data with NC. Due to the sample size of the study, the 
paired Wilcoxon signed-rank test was then used to compare 
these metrics. P-values less than 0.05 were taken as significant.

(1)S (b)=S (0) exp
(

−bD + b
2
D

2
K∕6

)

(2)S
n
=
√

S2 + n2

F I G U R E  1   6-NeX phantom images and background-region (white box) noise histograms for magnitude- and real-data reconstructions. 
Real-data phase-correction was performed with LPF sizes of 8, 16, 32, 64, and 128 pixels. Shown for a true signal of 2800 (b = 0 smm−2) and 233  
(b = 1500 smm−2) in the high-signal region and a SD of noise equal to 310 for each NeX, where central and off-center crosses indicate where pixels 
may yield different results due to the effect of artifacts
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3  |   RESULTS

3.1  |  Patients

Sixteen patients were scanned successfully. Their median age 
was 67 years (range, 50-76 years), while the median prostate 
specific antigen level was 7.66 ng/mL (range, 0.74-8.80 ng/mL).

3.2  |  Filter size tests

Table 1 summarizes the median and interquartile range 
(IQR) of the simulated DKI metrics. For models based on 
NPZ-tissue D (2.31 × 10−3 mm2/s) and K (0.49) values, real 
data produces less biased D and K with LPF sizes of 32 and 
64 pixels compared to magnitude data both with and without 
NC. However, for tumor-based values, only 128-pixel LPFs 
reduce overall biases, for which magnitude data without cor-
rection generates relatively accurate results. The use of NC 
appears to over-correct K here, where this is improved upon 
by real data with LPF sizes of 64 and 128 pixels.

Considering the 2 models of signal decay, the 64-pixel LPF 
produces the lowest total “average bias” for the pixels in artifac-
tual and nonartifactual regions, based on the absolute percentage 
differences from the true D and K values. Although this filter 
size is not expected to fully preserve zero-mean noise statistics, 
these simulations suggest that lower filter sizes introduce inac-
curacies likely due to the effect of phase-cancellation artifacts.

3.3  |  Magnitude and real images

Figure 2A compares prostate images where reconstruction 
was performed with magnitude and real data (phase correction 
with 64-pixel LPF). In contrast to b-zero-acquired images, 
a clear difference is apparent between the b = 1500 s/mm2 
magnitude- and real-data images, where SNRs are lowest; 
the mean value of noisy regions can be seen to be higher on 
the magnitude images than the real images. The intensity- 
profile plots below each pair of images confirm this biasing 
effect in the high-b-value case and demonstrate how real-data 
images can improve contrast for small intensity differences 
close to the noise floor. Comparing contrast-to-noise ratios 
(CNRs) of ROIs (shown in Figure 3) for these images and their 
corresponding noise images, magnitude data produced CNRs 
of 37 for tumor/NPZ, and real data gave 49 for tumor/NPZ.

Figure 2B demonstrates the reduction in noise-floor levels 
using real-data reconstruction by illustrating pixel-intensity dis-
tributions for zero-SNR noise images reconstructed using mag-
nitude- and real-data averaging. Real-data histograms are closer 
to the ideal case with zero-mean noise statistics, where biases 
increase with increasing phase-correction LPF size; in this ex-
ample, the mean value of the magnitude data is 108.3, compared 
to 7.4, 15.6, 31.9, 60.1, and 89.9 for real data reconstructed 
using phase-correction LPFs of 8, 16, 32, 64, and 128 pixels, 
respectively. Similar results were seen across all patients, where 
the value of mean intensity values for noise images in a central 
50 × 30-pixel region ranged from 87.2-126.2 for magnitude data  

T A B L E  1   Median (IQR) D and K values fitted from 1000 magnitude-data, without and with NC, and real-data digital-phantom reconstruction 
simulationsa

Data type

Apparent diffusion (D, x 10−3mm2/s) Apparent kurtosis (K, unitless)

Central ROI Off-center ROI Av. bias Central ROI Off-center ROI Av. bias

Noiseless sig. 2.31 - 0.49 -

Magnitude 2.33 (0.09) 2.33 (0.09) 0.7% 0.52 (0.06) 0.53 (0.06) 7.1%

Mag. & NC 2.31 (0.09) 2.31 (0.09) 0.2% 0.49 (0.07) 0.48 (0.07) 1.0%

Real, LPF8 2.31 (0.09) 2.81 (0.17) 10.9% 0.48 (0.07) 0.41 (0.10) 8.9%

Real, LPF16 2.31 (0.09) 2.37 (0.10) 1.5% 0.48 (0.07) 0.48 (0.07) 2.1%

Real, LPF32 2.32 (0.09) 2.31 (0.09) 0.2% 0.49 (0.08) 0.48 (0.07) 0.6%

Real, LPF64 2.31 (0.09) 2.31 (0.09) 0.2% 0.49 (0.07) 0.49 (0.07) 0.5%

Real, LPF128 2.32 (0.09) 2.33 (0.09) 0.6% 0.51 (0.07) 0.51 (0.06) 4.4%

Noiseless sig. 1.25 - 0.83 -

Magnitude 1.25 (0.10) 1.25 (0.10) 0.2% 0.85 (0.20) 0.84 (0.21) 1.6%

Mag. & NC 1.25 (0.10) 1.25 (0.10) 0.3% 0.80 (0.21) 0.79 (0.22) 4.3%

Real, LPF8 1.26 (0.10) 1.62 (0.16) 15.2% 0.79 (0.21) 0.46 (0.24) 24.8%

Real, LPF16 1.25 (0.11) 1.29 (0.11) 1.8% 0.79 (0.24) 0.75 (0.22) 7.5%

Real, LPF32 1.25 (0.10) 1.24 (0.10) 0.3% 0.78 (0.23) 0.78 (0.23) 5.9%

Real, LPF64 1.25 (0.10) 1.25 (0.10) 0.2% 0.80 (0.22) 0.80 (0.22) 3.7%

Real, LPF128 1.25 (0.11) 1.25 (0.11) <0.1% 0.82 (0.22) 0.83 (0.21) 0.7%
aAverage biases indicate the average absolute percentage differences from true DKI metrics for 2 central and off-center (Figure 1) pixels. The 2 pairs of values cor-
respond to NPZ (top) and tumor (bottom). 
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and 59.6-69.4 for real data with phase correction performed with 
64-pixel LPF. It is expected that the residual background offsets 
in real-valued images are due to the imperfect performance of 
the method to simultaneously reduce noise-floor bias and mini-
mize phase-related artifacts (see the Simulations section).

3.4  |  Apparent diffusion and apparent 
kurtosis maps

Figure 3 shows D and K maps estimated for an example 
patient slice, comparing maps calculated from magnitude 
data without NC, magnitude data with NC, and real data 
with phase correction performed with the range of LPF sizes. 
Also shown are overlaid ROIs for tumor, NPZ, and NTZ. For  
D maps, 8-pixel-LPF real data appear to yield the least tumor-
to-normal tissue contrast. Across the K maps, tumor and NPZ 
are vary visibly, where, compared to magnitude data with-
out NC, mean tumor/NPZ values were found to be 8%/11% 
lower in maps calculated with NC, and ranged from 28-3 to 
28-5% lower in K maps calculated from real data with phase- 
correction LPF sizes from, respectively, 8-128 for this patient.

3.5  |  Comparison of metrics across patients

Friedman tests indicated that real data (all LPF sizes) and magni-
tude data with and without NC yielded D and K values that were 

significantly different from each other (K P < 0.001 in tumor 
and normal tissue; D P < 0.001 in tumor, P < 0.001 in NPZ, 
P < 0.01 in NTZ). The boxplots in Figure 4 illustrate the me-
dian, quartile and extreme values (across 16 patients) of D and 
K maps calculated with magnitude data without NC, magnitude 
data with NC, and real data with phase correction performed 
using the range of tested LPF sizes. Supporting Information 
Table S1 summarizes these median values and IQRs, as well as 
percentage differences of the medians and paired Wilcoxon-test 
levels of significance with respect to magnitude-data without 
NC. Both NC and real data generated significantly (P < 0.001) 
lower K metrics than magnitude data without NC in all ROIs. 
Comparing 2 methods of noise removal, magnitude data with 
NC produced median K 6-11% lower, while 64-pixel-LPF real-
data K values were 4-10% lower. Choice of LPF size appeared 
to strongly affect K metrics: relative to magnitude data without 
NC, K metrics were 25-33%, 12-21%, 6-14%, and 2-3% lower 
for LPF sizes of 8, 16, 32, and 128 pixels, respectively.

4  |   DISCUSSION AND 
CONCLUSIONS

The biophysical modelling technique of DKI can wrongly 
attribute the nonmonoexponential decay of magnitude data 
confounded with its noise-floor to the kurtosis effect, artifi-
cially increasing the measured value of K above the value it 

FIGURE 2  A, Same-slice, 6 NeX magnitude- and real-data (phase correction performed with an LPF size of 64 pixels) prostate images shown for 
b-values of 0 and 1500 s/mm2 (right-left diffusion direction). Images were cropped by 70-90 pixels from each FOV edge. Bottom plots show intensity 
profiles of magnitude (dotted line) and real (solid line) data along the profiles in above images, where the dashed lines mark zero. For the high b-value 
images, real data increases contrast for small intensity differences. B, Noise histograms of magnitude and real data (with phase correction performed with 
LPF sizes of 8, 16, 32, 64, and 128 pixels, respectively) from same-slice noise images (6 NeX, single diffusion-direction), where the true SNR is expected 
to be close to zero (dashed line). Also shown are intensity profiles of magnitude (dotted line) and real (solid line) data equivalent to those in Figure 2A
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would have in an idealized noise-free situation. Indeed, our 
simulations in this study indicated uncorrected magnitude data 
can result in a ~7% increase of true K values in NPZ tissue. 
This is concerning and may account for the mixed results from 
earlier studies29-34 that compare DKI with DWI for PCa, where 
often no noise-correction method is performed at all. Here, we 
have investigated a real-data reconstruction approach to noise 
bias removal from DKI in the prostate. Our findings showed 
that DKI metrics derived from such phase-corrected real data 
and those fitted using magnitude data with NC were mostly 
similar (>±2%) and sometimes statistically insignificant.

To reduce spurious increases in K arising from the ef-
fect of the rectified noise floor on fitted DKI data, a post 

hoc NC method of standard magnitude-averaged images has 
generally been used.41 NC attempts to correct for noise-floor 
bias by finding the mean value within a local region of pro-
cessed noise-only images, whereas phase-corrected real data 
should reduce or eliminate noise floor bias seen in magnitude 
images, avoiding the need for NC.36

In this work, we simulated magnitude-data and phased- 
corrected real-data reconstructions of a digital phantom 
based on realistic D, K, and SNR values. Phase correction 
was tested with LPFs of 8, 16, 32, 64, and 128-pixel 2D 
Fourier-domain Hamming windows. These tests demon-
strated the importance of LPF selection, where lower sizes 
removed noise biases more successfully but very low-size 

F I G U R E  3   Same-slice, masked D (A) and K (B) maps estimated from magnitude data, magnitude data with NC, and real data with 
phase correction performed with LPF sizes of 8, 16, 32, 64, and 128 pixels, respectively. Zero-value masking was determined from low-signal 
thresholding
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LPFs introduced phase-related artifacts. DKI-model fitting of 
the simulated data generated D metrics that had a <1% bias 
in relation to the true values where magnitude data was used 
(both with and without NC), and real data produced similarly 
accurate results for LPF sizes of 32 pixels and above. K val-
ues generated from magnitude data were less accurate (2-7% 
biased). Considering all signal models, the 64-pixel LPF was 
found to be the most optimal and improved accuracy in both 
simulated tumor and NPZ tissue compared to the use of NC. 
This result is supported by our clinical-data investigations 
that showed that real-data D and K metrics generated using a 
64-pixel LPF were most similar to NC metrics, where NC is 
a gold-standard for this application.

As with the simulated results, the lowest (8-pixel) LPFs 
generate K values that are substantially lower than expected 
while the highest (128-pixel) filters produce K values slightly 
higher than expected. This increase of K with LPF size from 
below to above the true value is likely due to the combined 
effects of incomplete removal of phase-cancellation artifacts 
with increasing influence of non-zero noise biases. Optimal 
choice of phase-correction LPF size is, therefore, an import-
ant factor in obtaining accurate DKI metrics in prostate in 
real-data approaches.

The main advantage that a real-data approach to noise 
correction has over NC is that it does not require the acquisi-
tion of additional noise images, so that an automated or scan-
ner-integrated real-data reconstruction could reduce patient 
scan times. However, it is difficult to know whether the cor-
rect parameters (i.e., LPF size) are being used.

One limitation of this study is that simulated reconstruc-
tions did not incorporate parallel-imaging unaliasing or 

homodyne detection for multichannel, undersampled, par-
tial-Fourier data, unlike the manufacturer reconstruction 
method. Moreover, the optimal value of the LPF may be 
different for experiments with substantially different signal 
and noise, e.g., for much higher or lower resolution, different 
coils or for different tissue types and body regions. While 
this is not expected to vary greatly, such variations should be 
tested with simulations in future work. A second limitation is 
the selection of patients with previous negative biopsy, which 
may create selection bias, particularly for smaller tumors and 
in more anterior locations; however, this should not affect the 
results given the lesion-based assessment employed.

Our work here and studies using similar approaches in 
neuro36,37,43,47,48 and cardiac imaging49 have demonstrated 
phase-corrected real (or complex) data reconstruction offers 
potential advantages in diffusion MRI. Therefore, we will 
make our adapted reconstruction available on the GE MR 
Collaboration Community.

In conclusion, real-data reconstruction may be an alterna-
tive to NC for removing or reducing the noise-floor induced 
bias in DKI parameters D and K. However, LPF size has a 
significant effect on results so should be chosen with care. 
Results demonstrated with simulations and in patients that a 
64-pixel LPF produces accurate DKI metrics, which are sim-
ilar to those generated using NC.
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FIGURE S1 A comparison of clinical phase images across 
all b-values and diffusion-encoding directions for an example 
slice with modeled phase for our simulated diffusion phan-
tom. Dashed yellow lines indicate the position of the prostate
TABLE S1 Median (IQR) of DKI metrics in prostate ROIs 
across 16 patients and percentage difference from the median 
metrics calculated with magnitude-data without NC. Paired 
Wilcoxon-test levels of significance of the patient DKI met-
rics with comparisons made for magnitude-data without NC 
are indicated as ***P < 0.001, **P < 0.01, and *P < 0.05
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